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RESUMO 
 
A agricultura é a atividade de uso da terra mais importante do mundo. A agricultura não 
apenas afeta a mudança de cobertura da terra, mas também tem um profundo impacto 
no desenvolvimento sustentável da economia social, segurança alimentar, água e meio 
ambiente, serviços ambientais, mudança climática e ciclo do carbono. Desta forma, o 
Brasil é o maior produtor mundial de café, com uma participação de 32% da produção 
mundial, sendo o café Arábica responsável pela maior parte da produção. Para se 
manter no topo da produção, o monitoramento de diversas variáveis assume importância 
para um ganho contínuo de produção, temos o destaque da evapotranspiração (ET), 
importante para a gestão de diferentes culturas. Neste trabalho, objetivamos avaliar 
diferentes métodos de estimativa da evapotranspiração por sensoriamento remoto em 
diferentes locais nos cafés Arábicas e Robustas. Em primeiro lugar, fazemos uma visão 
geral dos modelos de evapotranspiração (ET) comumente aplicados, usando dados de 
sensoriamento remoto para fornecer uma visão geral da estimativa da evapotranspiração 
em escala regional a partir de dados de satélite. Geralmente, estes modelos variam 
muito em entradas, principais suposições e precisão dos resultados. Esta revisão resume 
as teorias básicas dos métodos de estimativa da radiação solar (onda curta), térmica 
(onda longa) e evapotranspiração (fluxo de calor latente), tanto da terra como de 
satélite, que são intrinsecamente complexas para medir em larga escala. Nos artigos 2 e 
3 aplicamos dois métodos diferentes de estimativa da evapotranspiração por 
sensoriamento remoto (METRIC e SAFER). As aplicações conjuntas dos algoritmos 
METRIC e SAFER permitiram compreender a variação do ET no campo irrigado de 
café com alta resolução espacial (30 e 10 m) e temporal (16 e 5 dias), e a partir desta 
variação no ET, entender como melhor gerenciar a irrigação nesta cultura. Mesmo 
assim, a boa precisão do modelo METRIC foi encontrada na estimativa da 
evapotranspiração, fornecendo assim informações importantes para a entrada de dados 
no balanço hídrico para a determinação dos projetos de irrigação. 
 
 
Palavras-chave: Manejo de irrigação, Fluxo de calor Latente, Evapotranspiração, 
Landsat 8, Sentinel 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

ABSTRACT 

 
Agriculture is the world's most important land-use activity. Agriculture not only affects 
land cover change, but also has a profound impact on the sustainable development of 
the social economy, food security, water and the environment, environmental services, 
climate change and the carbon cycle. Thus, Brazil is the world's largest coffee producer, 
with a 32% share of world production, with Arabica coffee accounting for most of the 
production. To stay on top of production, the monitoring of several variables assumes 
importance for a continuous production gain, we highlight the evapotranspiration (ET), 
important for the management of different crops. In this work, we aim to evaluate 
different methods of estimating evapotranspiration by remote sensing in different 
locations in Arabica and Robusta coffees. First, we give an overview of commonly 
applied evapotranspiration (ET) models using remote sensing data to provide an 
overview of regional-scale evapotranspiration estimation from satellite data. Generally, 
these models vary widely in inputs, key assumptions, and accuracy of results. This 
review summarizes the basic theories of methods for estimating solar (shortwave), 
thermal (longwave), and evapotranspiration (latent heat flux) radiation from both earth 
and satellite, which are inherently complex to measure on a large scale. In papers 2 and 
3 we apply two different methods of estimating evapotranspiration by remote sensing 
(METRIC and SAFER). The joint applications of the METRIC and SAFER algorithms 
allowed to understand the variation of ET in the irrigated coffee field with high spatial 
(30 and 10 m) and temporal (16 and 5 days) resolution, and from this variation in ET, to 
understand how to better manage irrigation in this crop. Even so, the good accuracy of 
the METRIC model was found in the estimation of evapotranspiration, thus providing 
important information for data input in the water balance for the determination of 
irrigation projects. 
 
Keywords: Irrigation management, Latent heat flux, Evapotranspiration, Landsat 8, 
Sentinel 2. 
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1. INTRODUÇÃO 

 

The main and first challenge faced by agriculture is producing enough food for a 

continued increasing population in a complex context of population growth and 

urbanization, poverty, increased demands for food, ever-growing competition for water 

and land, climate change, climate uncertainty and droughts, variable supply reliability, 

decline in critical ecosystems services, changing regulatory environments and less-

participatory water resources governance (FAO, 2012). 

Brazil is the largest world’s coffee producer, followed by Vietnam and 

Colombia. Coffee is the major export product of some countries such as Uganda, 

Burundi, Rwanda and Ethiopia. About 70% of the world crop is grown on 

smallholdings smaller than 10 ha, and hence it is often a family business that provides 

maintenance for over 25 million people worldwide. 

Among some 100 species of the Coffea genus (DAVIS et al., 2006), only C. 

arabica L. (arabica coffee) and C. canephora Pierre ex A. Froehner (robusta coffee) are 

economically important worldwide, with these species being responsible for about 99% 

of world bean production. Presently, arabica coffee accounts for about 64% of coffee 

produced, and Robusta coffee for the rest (FASSIO; SILVA, 2007). 

Water scarcity affects first and foremost the 52% of world’s population who live 

in arid and semi-arid regions (WWAP, 2006). Consequently, there is a mounting 

pressure to reduce irrigation water use, while sustaining agricultural production in these 

regions (DEHGHANISANIJ et al., 2009). To optimize crop yield and quality, a robust 

and effective irrigation management strategy, that is adaptable to these regions, must 

also be developed and adopted by local farmers. 

irrigated agriculture composes a global food productive system very important in 

all the word. Irrigated land comprises less than one-fifth of the total cropped area of the 

world but produces about two-fifths of the world’s food (WWAP, 2006). This sector 

however competes heavily for the already limited water resources in irrigation regions. 

Thus, appropriate planning in water resources, and more specifically in irrigation, is 

becoming increasingly important given the challenges of already-stressed water 

resources, climate change, growing population, increased prosperity, and potential food 

short- ages. 

For the better irrigation management, evapotranspiration is essential to schedule 

the irrigation. Thus, Allen et al. (1998), define, the combination of two separate 
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processes whereby water is lost on the one hand from the soil surface by evaporation 

and on the other hand from the crop by transpiration is referred to as evapotranspiration 

(ET). 

Evapotranspiration (ET) is an important part of both the water and energy cycle. 

The spatio-temporal variation of ET has been widely used to inform regional water 

resources management and allocation, including irrigation scheduling, drought 

monitoring and forecasting. Remote sensing techniques, characterized by high temporal, 

spatial, and spectral resolution, have been a viable and economical way to map ET in 

heterogeneous regions. Many models with different degrees of complexity have been 

developed in recent decades to obtain trends in spatial and temporal variability of ET 

(BASTIAANSSEN et al., 1998; JIANG; ISLAM, 1999; SU, 2002), which differ with 

respect to landscape type and spatial extent of model application, type of remote sensing 

data, and required ancillary meteorological and land-cover data (KALMA; MCVICAR; 

MCCABE, 2008). 

Remote sensing technology has been developed today for earth observation from 

different sensors and platforms. All the factors with geospatial distribution and data 

acquisition frequency result in remote sensing big data with huge volume and high 

complexity. Remote sensing technology has been developing with new, high-

performance sensors with higher spatial, spectral and temporal resolutions. Agricultural 

remote sensing is a highly specialized field to generate images and spectral data in huge 

volume and extreme complexity to drive decisions for agricultural development. 

In light of that, Big Data has significant potential to address the issues of modern 

societies, including the needs of consumers, financial analysts, marketing agents, 

producers, and decision makers. While some of these information technologies have 

been available for some time, adoption surveys such as (GRIFFIN et al., 2017; 

HENNESSY; LÄPPLE; MORAN, 2016; SCHIMMELPFENNIG; EBEL, 2016) suggest 

continued increased rates of adoption of the various forms of these technologies. 

A variety of technological advances have created the opportunities of Big Data 

(SONKA, 2021). In many cases, computational capacity both in terms of speed and 

volume allows for modern analyses previously not possible. 

The objective of this work was to analyze and estimate evapotranspiration 

through remote sensing using different coffee varieties (Arabica and Robusta), with 

different estimation models (METRIC and SAFER) for the states of Minas Gerais and 

Espírito Santo, respectively. 
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SPACE-TIME CHARACTERIZATION OF REMOTELY SENSED 

EVAPOTRANSPIRATION UNDER DIFFERENT IRRIGATION COFFEE 

MANAGEMENT 

 

Marcus André Braido Pinheiro, Marcelo de Carvalho Alves 

 

ABSTRACT 

An overview of the commonly applied evapotranspiration (ET) models using remotely 

sensed data is given to provide insight into the estimation of ET on a regional scale 

from satellite data. Generally, these models vary greatly in inputs, main assumptions, 

and accuracy of results. This narrative review summarizes the basic theories of 

estimation methods of solar (shortwave) radiation, thermal (longwave) radiation and 

evapotranspiration (latent heat flux) from both the ground and satellite measurements, 

which are inherently complex to measure a large scale. We discuss the main inputs, 

assumptions, theories, advantages, and drawbacks of each model. Moreover, approaches 

to the extrapolation of instantaneous ET to the daily values are also briefly presented. 

This study infers that the further advances in the satellite remote sensing and worldwide 

ground-based measurement networks will enhance the capabilities for the potential 

estimation of the ET parameters as well as monitoring the global water and energy 

cycles to develop significant environmental studies for the betterment of living on the 

Earth. 

 

KEYWORDS: energy balance; solar radiation; remote sensing; satellite. 

 

1. INTRODUCTION 

Evapotranspiration (ET) is a major unknown variable involved in the 

understanding of ecohydrological systems and can amount up to 95% of the water 

balance in dry areas (WILCOX; BRESHEARS; SEYFRIED, 2003). The individual 

components of ET include evaporation from soil (E) and transpiration through plant 

stomata (T), and in some instances, evaporation of water intercepted by plant canopy 

and litter layer. The function of E and T within ecosystems is distinctly different: T is 
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usually associated with plant productivity, whereas E does not directly contribute to 

production. 

On a global basis, the mean ET from the land surface accounts for 

approximately 60% of the average precipitation. It is therefore indispensable to have 

reliable information on the land surface ET when natural hazards such as floods and 

droughts are predicted and weather forecasting and climate change modeling are 

performed (BRUTSAERT, 1986). 

In agriculture, accurate ET estimation is fundamental to determine water 

management practices, design irrigation systems and irrigation regimes, and calculate 

crop yield (ALLEN et al., 1998). 

Irrigated agriculture is a consumptive use of water, that is, it changes its 

conditions as it is removed from the environment and most of it is consumed by the 

evapotranspiration of plants and soil, not returning directly to water bodies. In numbers, 

irrigated agriculture removes 46 percent of the country's available water. 

On a global scale, concerns about climate change have raised interest in the 

connection between ET and carbon sequestration (SCOTT et al., 2006), and the 

influence of ET partitioning on land-atmosphere patterns which affect climate 

simulations (LAWRENCE et al., 2007). 

While several reviews have previously described ET research (BURT et al., 

2005; FARAHANI et al., 2007; LI et al., 2009; RANA; KATERJI, 2000; 

SHUTTLEWORTH, 2007; TANNY, 2013), None of them focused specifically on 

remote sensing applied to coffee irrigation management as performed in this work. 

Estimation of water consumption based on ET models using remotely sensed 

data has become one of the hot topics in water resources planning and management over 

watersheds due to the competition for water between trans-boundary water users 

(BASTIAANSSEN et al., 2005). 

For vegetated land surfaces, ET rates are closely related to the assimilation rates 

of plants and can be used as an indicator of plant water stress (JACKSON et al., 1981). 

Therefore, accurate estimates of regional ET in the land surface water and energy 

budget modeling at different temporal and spatial scales are essential in hydrology, 

climatology, and agriculture. 

In various practical applications, there are still no specific ways to directly 

measure the actual ET over a watershed (BRUTSAERT, 1986). Conventional ET 

estimation techniques (i.e., pan-measurement, Bowen ratio, eddy correlation system, 
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and weighing lysimeter, scintillometer, sap flow) are mainly based on site (field)-

measurements and many of those techniques are dependent on a variety of model 

complexities. 

Remote sensing technology is recognized as the only viable means to map 

regional- and meso-scale patterns of ET on the Earth’s surface in a globally consistent 

and economically feasible manner and surface temperature helps to establish the direct 

link between surface radiances and the components of surface energy balance 

(CASELLES; SOBRINO; COLL, 1992; IDSO et al., 1975; JACKSON, 1985; 

KUSTAS; NORMAN, 1996; MCCABE; WOOD, 2006; MORAN et al., 1989). Remote 

sensing technology has several marked advantages over conventional “point” 

measurements: 1) it can provide large and continuous spatial coverage within a few 

minutes; 2) it costs less when the same spatial information is required; 3) it is 

particularly practical for ungauged areas where man-made measurements are difficult to 

conduct or unavailable (ENGMAN; GURNEY, 1991; RANGO, 1994). 

Combining surface parameters derived from remote sensing data with surface 

meteorological variables and vegetation characteristics allows the evaluation of ET on 

local, regional, and global scales (LI et al., 2009; MAUSER; SCHÄDLICH, 1998). 

Therefore, with the consideration of the characteristics of the various ET 

methods developed over the past decades and of the significance of land surface ET to 

hydrologists, water resources and irrigation engineers, and climatologists, know how to 

calculate the ET over a regional scale or how to estimate ET precisely based on the 

remote sensing technology has become a critical question in various ET-related 

applications and studies. Thus, among the great potential of high-resolution satellite 

images, remote sensing combined with surface energy balance models is the ability to 

return the spatial distribution of actual evapotranspiration (ETa) over individual fields 

and/or irrigation districts. 

This paper provides an overview of a variety of methods and models that have 

been developed to estimate land surface ET on a field, regional and large scales, based 

mainly on remotely sensed data. For each method or model, we shall detail the main 

theory and assumptions involved in the model development, and highlight its 

advantages, drawbacks, and potential. 

 



 

16 
 

2. EVAPOTRANSPIRATION 

ETa is the process of water transferring from land to the atmosphere and is 

comprised of evaporation from the Earth's surface and transpiration from plants. These 

processes are typically estimated together due to the difficulty in partitioning them 

(PETKOVIĆ et al., 2015; SAWANO et al., 2015). 

ET is a fundamental parameter of the hydrological cycle used in studies and 

agricultural areas (BERTI et al., 2014; BORGES JÚNIOR et al., 2017; MARTÍ et al., 

2015) and has an extremely important role in the development and operation of 

irrigation projects (ABDULLAH et al., 2015). This importance is summarized by the 

parameter to be responsible for 90% water loss in irrigated vegetated systems 

(HOOGEVEEN et al., 2015; RANA; KATERJI, 2000). 

The determination of ET for further use in irrigation depends on the previous 

calculation of reference evapotranspiration (ET0). Allen et al. (1998, 2005), introduced 

some parameters for the calculation of ET0, such as the proposal of a “hypothetical 

crop” with a height of 0.12 m, surface aerodynamic resistance of 70 s m-1, and albedo de 

0.23. 

Evapotranspiration of a crop under standard conditions (ETc) is defined as 

evapotranspiration of a crop free from pests and diseases, without nutritional and water 

restriction, grown in large fields reaching their productivity under specific climatic 

conditions (ALLEN et al., 1998; LEWIS; ALLEN, 2017). 

From the definition, the ETc is obtained from the ET0 product by the crop 

coefficient (Kc), considering the water requirements of the crop in each phenological 

stage, being influenced by the type of plant, distribution in the cultivated area, and 

vegetative conditions (ALLEN et al., 1998). 

Finally, there is the definition of actual evapotranspiration (ETr or ETa), 

(ALLEN et al., 1998), conceptualizing this parameter as crop evapotranspiration under 

non-standard conditions that is, crop development occurs under conditions adverse to 

better growth. ETr is generally lower than ETc (LEWIS; ALLEN, 2017). Limited soil 

water content, low fertility, high salinity, disease occurrence, and agricultural pests 

affect its determination (ALLEN et al., 1998; LEWIS; ALLEN, 2017). 
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3. FACTORS AFFECTING EVAPOTRANSPIRATION 

Meteorological variables, crop characteristics, management, and environmental 

factors are some of the factors that affect evapotranspiration (ALLEN et al., 1998). 

Solar radiation, wind speed, air temperature, and relative humidity are meteorological 

variables that affect evapotranspiration (ALLEN et al., 1998; DARSHANA; PANDEY; 

PANDEY, 2013; DINPASHOH et al., 2011; ISHAK et al., 2010; TABARI; GRISMER; 

TRAJKOVIC, 2013). 

When the study is performed using meteorological variables, it is observed that 

if there is greater availability of air temperature, wind speed, and solar radiation 

combined with low relative humidity, the evaporative demand of the atmosphere will be 

high, increasing the evapotranspiration rate (TAGLIAFERRE et al., 2015). 

Among all the meteorological variables addressed, the available energy or 

radiation balance is the main factor that influences evapotranspiration, being the main 

source of energy for biological metabolism, causing water loss by vegetative surfaces 

and temperature variations in the soil-plant-atmosphere (PEREIRA et al., 2015). 

However, not only are meteorological variables influencing ET, crop type, 

variety, phenological stage, and planting density also affect crop evapotranspiration due 

to differences in perspiration resistance, crop height, canopy roughness, leaf reflective 

power, soil cover type, and rooting characteristics. The combination of these factors 

results in different ET levels for different crops, even under similar edaphoclimatic 

conditions. 

As well as the factors mentioned above, salinity, low soil fertility, presence of 

impenetrable horizons, and lack of disease and pest control can also limit crop 

development and reduce ET (ALLEN et al., 1998). 

Remote sensing-based ETa estimates first appeared in the 1970s (LI et al., 

2009). Since then, several approaches have been developed including surface energy 

balance approaches are listed in this work. 

 

4. IMPORTANCE OF EVAPOTRANSPIRATION IN IRRIGATION 

MANAGEMENT 

Water is among the most valuable natural resources, and it is becoming 

progressively insufficient to meet the current and future demands. With the increasing 

complexity and magnitude of environmental concerns due to agricultural intensification, 
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exacerbated by climate change scenario, the allocation of existing water resources must 

be optimized (MINACAPILLI et al., 2016; PROVENZANO; SINOBAS, 2014; 

RALLO et al., 2014a).  

By far, agriculture is the most significant consumer of freshwater. Definitely, 

agriculture accounts for 70% of total global freshwater withdrawals from watercourses 

and groundwater. The total global freshwater withdrawals for irrigation purposes are 

estimated to increase of about 10% by 2050. 

Energy fluxes and water vapor exchange are always of importance for the 

interaction between land surface ecosystems and the atmosphere (BALDOCCHI; XU; 

KIANG, 2004; RODRIGUES et al., 2014; TIMOUK et al., 2009). In agricultural areas, 

available solar radiation, evapotranspiration (ET), and carbon fluxes ultimately 

determine yield and water productivity (SHEN et al., 2013). The processes are always 

influenced by several interacting biophysical and environmental factors, such as climate 

conditions, crop development, and water supplies (LEI; YANG, 2010; SUYKER; 

VERMA, 2008). 

However, for crop irrigation scheduling applications, ET is often required at 

locations where such measurements may not be readily available. Also, highly 

technical, expensive facilities like large lysimeters and EC instrumentation are 

nonviable to have at every location where crops are cultivated, as is maintaining them 

for long-term data collection. In this context, state-of-the-science agricultural system 

models are cheap, viable, and widely accepted tools for developing location-specific ET 

data for irrigation scheduling and developing crop-ET response functions for predicting 

crop response to irrigation water (MCNIDER et al., 2015; SASEENDRAN et al., 2015). 

The accurate evaluation of actual evapotranspiration fluxes, ETa is essential for 

irrigation water management and the sustainable use of water resources, especially in 

areas prone to water scarcity (AUTOVINO; MINACAPILLI; PROVENZANO, 2016; 

NEGM; JABRO; PROVENZANO, 2017; RALLO et al., 2014b). Optimizing irrigation 

management requires that water managers and policymakers give accurate estimations 

of the water volumes for irrigation applications (DROOGERS; IMMERZEEL; 

LORITE, 2010). Improvement of water use efficiency in irrigated agriculture would 

undoubtedly lead to saving both water and energy. The reduction of the energy cost in 

the farms can in fact be indirectly achieved by reducing the volumes of water applied 

with irrigation. 
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Rahimzadegan and Janani (2019), used the SEBAL model to estimate ET rates 

for pistachio crops in Iran, achieving a higher coefficient of determination (R2=0.8) than 

direct measurements. Bhattarai and Liu (2019), tested the validity of the SEBAL model 

using flux sites in Nebraska, USA, and found that the model could predict ET with a 

high degree of accuracy, with a determination coefficient between estimated and 

measured ET between 0.78 and 0.89, respectively. Ochege et al. (2019), successfully 

estimated ET in the Aral Sea Basin using Landsat 7 Enhanced Thematic Mapper (ETM) 

data based on the SEBAL model. Estimated and directly measured ET values were well 

correlated with R2 values ranging from 0.94 to 0.98, respectively. 

All above considered there is an urgent need to seek out technological 

advancements and scalable solutions in the context of Precision Farming (PF) 

(LIAGHAT; BALASUNDRAM, 2010; MULLA, 2013; VUOLO et al., 2015) to 

address management strategies on water inputs in response to seasonal drought. 

 

5. SURFACE ENERGY BALANCE MODELS 

Over the past decades, several methods and algorithms to estimate actual ET 

through satellite measurements have been developed. Energy balance models may have 

advantages over conventional ET estimation methods, especially at regional scales, 

promoting the spatialization of this parameter. 

In addition, the energy balance can detect reduced ET values caused by lack of 

water, salinity, or even frost, as well as increased ET caused by evaporation of 

uncovered soil or water present in plant canopies after moisture-increasing events, such 

as irrigation or precipitation. Most of these estimates are based on the surface energy 

balance equation. The surface energy balance describes the partitioning of natural 

radiation absorbed at Earth’s surface into physical land surface processes. 

Evapotranspiration is one of these key processes of the energy balance, because latent 

heat (energy) is required for evaporation to take place. The energy balance at Earth’s 

surface reads (ALLEN et al., 2011b; BASTIAANSSEN et al., 1998b; SENAY et al., 

2016): 

LE=Rn – G – H, 

where Rn is the net radiation, G is the soil heat flux, H is the sensible heat flux, 

and LE is the latent heat flux. Each of the three components of the energy balance 

equation, including Rn, G and H, can be estimated by combining remote sensing-based 
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parameters of surface radiometric temperature and shortwave albedo from visible, near-

infrared, and thermal infrared wavebands with a set of ground-based meteorological 

variables of air temperature, wind speed, and humidity and other auxiliary surface 

measurements. 

 

5.1. Net Radiation Equation (Rn) 

Surface net radiation (Rn) represents the total heat energy that is partitioned into 

G, H, and LE. It can be estimated from the sum of the difference between the incoming 

(Rs) and the reflected outgoing shortwave solar radiation (0.15 to 5 µm), and the 

difference between the downwelling atmospheric and the surface emitted and reflected 

longwave radiation (3 to 100 µm), which can be expressed as (JACKSON, 1985; 

KUSTAS; NORMAN, 1996): 
4 4(1 )n s s s a a s sR R T Tα ε ε σ ε σ= − + − , 

where αs is surface shortwave albedo, usually calculated as a combination of 

narrow-band spectral reflectance values in the bands used in the remote sensing, Rs is 

determined by combined factors of solar constant, solar inclination angle, geographical 

location and time of year, atmospheric transmissivity and ground elevation (ALLEN; 

TASUMI; TREZZA, 2007), sε  is surface emissivity evaluated either as a weighted 

average between bare soil and vegetation (LI; LYONS, 1999) or as a function of NDVI 

(BASTIAANSSEN et al., 1998b), aε  is atmospheric emissivity estimated as a function 

of vapor pressure (WILFRIED, 1975).  

Kustas and Norman (1996), reviewed the uncertainties of various methods of 

estimating the net shortwave and longwave radiation fluxes and found that a variety of 

remote sensing methods of surface net radiation estimation had an uncertainty of 5-10% 

compared with ground-based observations on meteorologically temporal scales. Bisht et 

al. (2005), proposed a simple scheme to calculate the instantaneous net radiation over 

large heterogeneous surfaces for clear sky days using only land and atmospheric 

products obtained using remote sensing data from MODIS-Terra satellite over Southern 

Great Plain (SGP). Allen; Tasumi and Trezza (2007), detailed an internalized 

calibration model for calculating ET as a residual of the surface energy balance from 

remotely sensed data when surface slope and aspect information derived from a digital 

elevation model were considered. 
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5.2. Soil Heat Flux (G) 

Soil heat flux (G) is the heat energy used for warming or cooling substrate soil 

volume. It is traditionally measured with sensors buried beneath the surface soil and is 

directly proportional to the thermal conductivity and the temperature gradient with the 

depth of the topsoil. To estimate the regional-scale G is expressed as follows: 

( )( )( )4273,15 0,0038 0,0074 1 0,98s
n

G T NDVI
R

α= − + − , 

where Ts is the surface temperature (℃) and NDVI is the Normalized 

Differential Vegetation Index. 

Many papers have found that the ratio of G to Rn ranges from 0.05 for full 

vegetation cover or wet bare soil to 0.5 for dry bare soil (DAUGHTRY et al., 1990; 

JACKSON, 1985; JHAJHARIA et al., 2014; KUSTAS; NORMAN, 1996; LI; LYONS, 

1999; REGINATO; JACKSON; PINTER, 1985) and this ratio is simply related in an 

exponential form to LAI (CHOUDHURY, 1994), NDVI (ALLEN; TASUMI; 

TREZZA, 2007; BASTIAANSSEN et al., 1998a; MORAN et al., 1989), Ts (ALLEN; 

TASUMI; TREZZA, 2007) and solar zenith angle (GAO et al., 1998) based on field 

observations. The value of G has been shown to be variable in both diurnal and yearly 

cycles over diverse surface conditions (KUSTAS; DAUGHTRY, 1990). However, the 

assumption that the daily value of G is equal to 0 and can be negligible in the daily 

energy balance is generally regarded as a good approximation (PRICE, 1982). 

Comparisons of G between results from these simplified techniques and observations at 

micrometeorological scales showed an uncertainty of 20-30% (KUSTAS; NORMAN, 

1996). 

 

5.3. Sensible Heat Flux (H) 

The sensible heat flux (H) is the heat transfer between ground and atmosphere 

and is the driving force to warm/cool the air above the surface. It is computed using the 

following equation for heat transport: 

( )c a
p

ah

T T
H c

r
ρ

−
= , 

where, ρ is the air density (kg/m3), cp is the air specific heat (1004 J/kg/K), Tc 

and TA are the surface and the air temperatures (°C), respectively, and rah is the 

aerodynamic resistance to heat transport (s/m). 
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Aerodynamic resistance ra is affected by the combined factors of surface 

roughness (vegetation height, vegetation structure), wind speed, and atmospheric 

stability. Therefore, aerodynamic resistance to heat transfer must be adjusted according 

to different surface characteristics except when the water is freely available (BRISSON; 

SEGUIN; BERTUZZI, 1992). (HATFIELD; PERRIER; JACKSON, 1983) have shown 

that ra decreased as the wind speed increased, regardless of whether the surface was 

warmer or cooler than air, and ra decreased if the surface become rougher (HATFIELD; 

PERRIER; JACKSON, 1983). The commonly applied one being (BRUTSAERT, 

1982): 

( ) ( )1 2
2

ln / ln /a om a oh
ah

z d z z d z
r

k u
− −Ψ − −Ψ      =   

with neutral stability, 1Ψ  = 2Ψ  = 0. 

Jackson et al. (1983), found that Ts-Ta varied from -10 to +5ºC under medium to 

low atmospheric humidity, which shows that neutral stability cannot prevail under a 

wide range of vegetation cover and soil moisture conditions. Under stable and unstable 

atmospheric stability conditions, the Monin-Obukhov length (BUSINGER JA et al., 

1971) was introduced to measure the stability and it needs to be solved with H 

iteratively (CHOUDHURY et al., 1994): 
3

p au c T
kgH
ρ

Λ =   

where if Λ< 0, unstable stability; Λ> 0, stable stability. 

For unstable conditions (usually prevailing at daytime) with no predominant free 

convection, 1Ψ  and 2Ψ  can be expressed as (PAULSON, 1970): 

( )
2

1
1 12ln ln 2arctan

2 2 2
x x x π + + Ψ = + − +  

   
  

2
12 ln

2
x+ Ψ =  

 
  

with 
0.25

1 16 az dx − = − Λ 
  

For stable conditions (usually prevailing at night-time), the formula proposed by 

(BUSINGER JA et al., 1971; WEBB, 1970) was adopted to account for the effects of 

atmospheric stability on rah: 
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1 2 5 az d−
Ψ = Ψ = −

Λ
  

Some papers have specified zom is equal to zoh and can be either a function of 

vegetation height (GURNEY; CAMILLO, 1984; SOER, 1980), in which zom is typically 

5 to 15 percent of vegetation height depending on vegetation characteristics. 

In view of this, some models have been developed to estimate ET at different 

temporal and spatial scales using remote sensing data based on ground energy balance, 

also called Land Surface Energy Balance (LSEB). More complex methods such as 

SEBAL (BASTIAANSSEN et al., 1998a, 1998b), METRIC (ALLEN et al., 2007; 

ALLEN; TASUMI; TREZZA, 2007), TSEB (NORMAN; KUSTAS; HUMES, 1995), 

ALEXI-/-Disalexi (ANDERSON et al., 1997), Surface Energy Balance Index (SEBI) 

(MENENTI; CHOUDHURY, 1993), Simplified Surface Energy Balance Index (S-

SEBI) (ROERINK; SU; MENENTI, 2000), Enhancing the Simplified Surface Energy 

Balance (SSEB) (SENAY et al., 2007), Operational Simplified Surface Energy Balance 

(SSEBop) (SENAY et al., 2013), or simpler, using only a few parameters related to the 

energy balance together with the Penman-Monteith equation, for example, the SAFER 

(TEIXEIRA, 2010). Although there is no consensus on the best algorithm or approach. 

 

5.4. Surface Energy Balance Algorithms for Land - SEBAL 

Developed by Bastiaanssen et al. (1998b), to evaluate ET with minimum 

ground-based measurements, SEBAL is a one-layer energy balance model that 

estimates latent heat flux and other energy balance components without information on 

soil, crop, and management practices.  

Since the satellite image provides information for the overpass time only, 

SEBAL computes an instantaneous ET flux for the image time. The ET flux is 

calculated for each pixel of the image as a “residual” of the surface energy budget 

equation. 

One of the main considerations in SEBAL, when evaluating pixel by pixel 

sensible and latent heat fluxes, is to establish the linear relationships between Ts and the 

surface-air temperature difference dT on each pixel with the coefficients of the linear 

expressions determined from the extremely dry (hot) and wet (cold) points. The dT can 

be approximated as a relatively simple linear relation of Ts expressed as: 

sdT a bT= +   
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where a and b are empirical coefficients derived from two anchor points (dry and 

wet points). At the dry (hot) pixel, latent heat flux is assumed to be zero and the surface-

air temperature difference at this pixel is obtained by inverting the single-source bulk 

aerodynamic transfer equation: 

dry ah
dry

p

H r
dT

Cρ
×

=   

where Hdry is equal to Rn-G. At the wet (cold) pixel, latent heat flux is assigned 

a value of Rn-G (or a reference ET), which means sensible heat flux under this 

condition is equal to zero (when reference ET is applied, both H and dT at this pixel 

will not equal zero anymore). Obviously, the surface-air temperature difference at this 

point is also zero ( wet dT = 0). 

SEBAL has been applied for ET estimation, calculation of crop coefficients, and 

evaluation of basin-wide irrigation performance under various agroclimatic conditions 

in several countries including Spain, Sri Lanka, China, and the United States 

(BASTIAANSSEN et al., 2005; SINGH et al., 2008). Timmermans et al. (2007), 

compared the spatially distributed surface energy fluxes derived from SEBAL with a 

dual-source energy balance model using data from two large scale field experiments 

covering sub-humid grassland (Southern Great Plains '97) and semi-arid rangeland 

(Monsoon '90). Norman, Anderson and Kustas (2006), showed that the assumption of 

linearity between surface temperature and the air temperature gradient used in defining 

the sensible heat fluxes did not generally hold true for strongly heterogeneous 

landscapes. 

Teixeira et al. (2009), reviewed the inputs to the SEBAL model and assessed ET 

and water productivity with SEBAL using ground measurements observed over the 

semi-arid region of the Low-Middle São Francisco River basin, Brazil. Opoku-duah, 

Donoghue and Burt (2008), employed the SEBAL model with remote sensing data 

derived respectively from MODIS and AATSR sensors to estimate ET over large 

heterogeneous landscapes and found that both sensors underestimated daily ET when 

compared with eddy correlation observations. The selection of dry pixel and wet pixel 

can have a significant impact on the heat flux distribution from SEBAL. 
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5.5. Mapping Evapotranspiration with Internalized Calibration - METRIC 

The METRIC model was initially developed to maximize the accuracy of ET at 

the field scale using Landsat satellite imagery. It is a variant of the SEBAL model, and 

it has been extended by incorporating reference ET to minimize the computational 

biases of aerodynamics resistance and to allow the regional advection of heat (ALLEN 

et al., 2011a; ALLEN; TASUMI; TREZZA, 2007; GOWDA et al., 2011). Following the 

SEBAL foundation, a linear relationship between the near-surface temperature gradient 

(dT) and the surface temperature (Ts) is developed in METRIC by employing the 

Calibration using Inverse Modeling at Extreme Conditions (CIMEC) process with 

theoretically defined hydrological extremes (cold and hot). The advantage of using the 

dT vs. Ts relationship is that it eliminates the need for air temperature (Ta) to map H 

within the modeling domain. Moreover, the use of the CIMEC process excludes the 

effect of potential biases related to energy balance components, radiometric correction, 

and model assumptions on the final estimated ET (ALLEN et al., 2011a; IRMAK et al., 

2012). 

After the establishment of Rn, G, and H from the Landsat 8 image processing, 

the LE was calculated as a residue of the Energy Balance equation. The LE obtained is 

equivalent to ETinst at the time of passage of the Landsat 8 satellite, according to Eq. 

(23). 

3600inst
LEET

ωλρ
=            (23) 

Where ETinst is the instantaneous evapotranspiration (mm.h-1), 3600 converts 

from seconds to hours, ρω is the density of water (∼1000 kg.m-3) and λ is the latent heat 

of vaporization (J.kg-1) representing the heat absorbed when a kilogram of water 

evaporates. 

The λ component was calculated according to Eq. (24) 

( ) 62,501 0,00236 273,15 10sTλ = − − ×              (24) 

Finally, as shown in Eq. (25), the reference ET fraction (ETrF) was calculated as 

the ratio between the computed ETinst of each pixel and the reference ET (ET0) 

calculated from the meteorological station data. 

inst
r

r

ETET F
ET

=               (25) 
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The ETrF obtained was later extrapolated to daily values. In the processes, ET24 

was calculated assuming that the instantaneous ETrF computed at the time of satellite 

passage is the same as the mean ETrF over the 24 h mean (ALLEN; TASUMI; 

TREZZA, 2007), according to Eq. (26). 

( )( )24 24rad rET C EF ET=              (26) 

Where Crad is a correction term used to correct the variation over 24 hours versus 

the instantaneous availability of energy (ALLEN et al., 2007). 

This algorithm has been successfully implemented in many homogeneous 

ecosystems around the world with different levels of accuracy (ALLEN et al., 2013; 

BHATTARAI et al., 2017; CHOI et al., 2011; FRENCH; HUNSAKER; THORP, 2015; 

LOSGEDARAGH; RAHIMZADEGAN, 2018; MADUGUNDU et al., 2017; PÔÇAS et 

al., 2014; TREZZA; ALLEN; TASUMI, 2013). 

 

5.6. Surface energy balance index (SEBI) and Simplified Surface Energy 

Balance Index (S-SEBI) 

The SEBI model is based on the crop water stress index (CWSI), by scaling up 

the observed temperature in the maximum (max) temperature (dry condition) and the 

minimum (min) temperature (wet condition). Jackson et al. (1981), which is the 

fundamental concept for all the SEB models. The observed max and min surface 

temperatures are interpolated to calculate the relative evaporative fraction (EF) then for 

a particular surface albedo and roughness, the pixelwise SEBI computes the regional ET 

from pixelwise max and min surface temperature redefined CWSI and relative EF. Due 

to the complexity in the determination of the max and min surface temperatures and 

poor accuracy of SEBI, it was further developed with a simplified form named 

simplified-SEBI (S-SEBI) (ROERINK; SU; MENENTI, 2000). Here, a reflectance 

(albedo)-dependent max and min surface temperatures are pointed out to determine the 

dry and wet conditions for partitioning the available energy into sensible and latent heat 

fluxes. The ET is calculated in terms of EF, which can be defined as the ratio of 

ET/latent heat flux (LE) to the available it can be formulated by interpolating the 

albedo- energy (Rn−G). Under the dry and wet conditions, dependent surface 

temperatures as 

H s

H LE

T TEF
T T

−
=

−
              (27) 
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where TH is the max surface temperature at dry conditions and represents the 

max sensible heat flux and min latent heat flux, TLE is the min surface temperature at 

wet conditions and represents the max latent heat flux and min sensible heat flux and Ts 

is the surface temperature. 

 

5.7. Simple Algorithm for Evapotranspiration Retrieving - SAFER 

Simple Algorithm for Evapotranspiration Retrieving (SAFER) is an algorithm 

for estimating large-scale ET formulated by Teixeira (2010) which has the advantage of 

not being mandatory the use of “anchor pixels” nor the use of thermal bands (which can 

also be used in the absence of measured temperature data), different from SEBAL and 

METRIC, and for this reason, is a more operationally application than other methods. 

SAFER model requires agrometeorological data of reference evapotranspiration 

(ETo), global radiation (RG), and mean air temperature (TA) to be integrated with 

radiometric data from digital images. This algorithm has the additional advantage of the 

possibility of using daily weather data from either conventional or automatic 

agrometeorological stations. This is an important characteristic because it allows a 

historical evaluation of the energy balance components on a large scale, as data from 

automatic sensors are results from relatively recent advances in instrumental 

technology. SAFER was recently developed in the semiarid conditions of Brazil, which 

has already been validated with field data from four flux stations involving irrigated 

crops and natural vegetation (TEIXEIRA et al., 2013). 

Initially, it was named as PM2 model (TEIXEIRA et al., 2009) because it was an 

adaptation of the Penman-Monteith equation, and from (TEIXEIRA et al., 2013) 

received the current name. It is an algorithm because it requires as main inputs, surface 

albedo data, NDVI, and surface temperature, which are obtained sequentially from 

equations that relate radiometric data (from multispectral images) and 

agrometeorological data. A flowchart with these relationships is presented in Fig. 1.  

All the regression coefficients of the parameters in Fig. 1 and equations below 

were determined in different areas of Brazil, with digital images from different satellites, 

like Landsat (COAGUILA et al., 2017; DE OLIVEIRA FERREIRA SILVA; 

HERIBERTO DE CASTRO TEIXEIRA; LILLA MANZIONE, 2019; TEIXEIRA et al., 

2017) and MODIS (TEIXEIRA et al., 2015) and field measurements, involving strong 
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contrasting agroecosystems and under different thermohydrological conditions 

throughout several years. 

 

Figure 1 - Flowchart for the large-scale modelling of radiation balances (net radiation, 
RN), evapotranspiration fraction (ETa ET0−1) and actual evapotranspiration (ETA) by 

applying the SAFER algorithm with reflectances from satellite images and 
agrometeorological data (solar radiation, RG, average air temperature, TA, and 

reference evapotranspiration, ET0). 
 

After reviewing the detailed literature related to the estimation techniques of ET fluxes, 

we make a summarization as listed in table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Summary of the satellite-based evapotranspiration (latent heat flux) estimation 
models (surface energy balance based) 
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Name of the models and references Main concepts Advantages Disadvantages 
Surface energy balance index (SEBI) 
(MENENTI; CHOUDHURY, 1993) 

Based on the crop water stress index 
(CWSI) by scaling up the max (dry 
condition) and min (wet condition) 
temperature 

Direct effects of surface temperature 
and resistance on latent heat flux 

Poor accuracy 
Ground based measurement 
is required 

Simplified SEBI (S-SEBI) 
(ROERINK; SU; MENENTI, 2000; 
VERSTRAETEN; 
VEROUSTRAETE; FEYEN, 2005) 

The observation of temperature is 
albedo dependent to determine the 
max (dry condition) and min (wet 
condition) 

Ground based measurement is not 
required 

Extreme temperatures are 
location dependent 

Surface energy balance system 
(SEBS) (AMATYA et al., 2016; 
CHEN et al., 2013; MA et al., 2013; 
SU, 2002) 

Estimate the actual ET and other 
surface fluxes in terms of evaporative 
fraction and atmospheric turbulent 
fluxes 

Good accuracy 
The roughness height for heat transfer 
can be calculated instead of constant 
value 
User friendly with RS and GIS 
software 
The uncertainties can be partially 
solved 

Requires more parameters 
The solution of turbulent 
flux is relatively complex 

Surface energy balance algorithm for 
land (SEBAL) (BASTIAANSSEN et 
al., 2005; BASTIAANSSEN; 
MOLDEN; MAKIN, 2000) 

A moderate approach based on both 
the empirical relationship and 
parameterization scheme 

Requires minimum ground-based 
weather data 
Automatic internal correction of 
atmospheric effects on surface 
temperature 

The user dependent 
specification of anchor 
pixels 

Mapping evapotranspiration at high 
resolution with internalized 
calibration (METRIC) (ALLEN et 
al., 2013; ALLEN; TASUMI; 
TREZZA, 2007; CARRILLO-
ROJAS et al., 2016) 
 

Extended from SEBAL with 
considering slope aspect 

Slope aspect is considered Uncertainties found in the 
determination of anchor 
pixels 
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5.8. Errors and uncertainties associated with satellite estimations 

Several types of errors and uncertainties are found in satellite estimation of SEB 

components due to various problems and limitations in estimation methods and models, 

as well as the uneven characteristics of the atmosphere and Earth’s surface. Some 

important sources of uncertainties and possible ways to reduce them are outlined here. 

a) Uncertainties due to coverage problem of satellite data: Different spatial 

and temporal scale SEB components are needed for several relevant departments at 

global and local scales. The simultaneous acquiring of high spatial and temporal 

resolution imagery is very hard because the satellites with high spatial coverage 

possess lower temporal frequency and vice versa. Also, the cloud covers obscure 

entire or parts of the scene in an image, making it nearly impossible to obtain 

continuous coverage of an area. Hence, the spatio-temporal coverage problem may 

render the satellite estimation method impractical in relevant applications. There 

are some gap-filling procedures (ANDERSON et al., 2007) and coupling models 

(RENZULLO et al., 2008) to resolve this issue. 

b) Uncertainties in net radiation estimation: Net radiation is the key 

parameter of SEB, which-ever, the net radiation estimation may lead to quantifies 

the available energy (Rn −G). How- errors due to the ignorance of diurnal variation 

and phase difference between the diurnal cycles of each individual component 

(short and long waves). In most of the SEB methods, total Rn flux is considered 

without the relative functions of direct and diffuse radiation. It is necessary to 

consider the effects of diffuse radiation than only direct radiation (ROERINK; SU; 

MENENTI, 2000). 

c) Errors associated with surface temperature retrieved from satellite 

measurement: In the case of satellite estimation, most of the methods are using TIR 

radiation data to derive sur- face temperature. The atmospheric correction and 

surface emissivity affect the derivation of surface temperature; hence, the 

uncertainty is associated with the satellite measurement. The surface temperature 

problem can be corrected using two methods, namely, direct and indirect methods, 

where the direct method uses the combination of atmospheric sounding and 

radiative transfer model, but the indirect methods only use the satellite 

observations. The along-track scanning radiometer (ATSR) observation can 

improve the estimation by performing the two nearly simultaneous measurements 
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of brightness temperature from two different view angles. The consideration of both 

the directional radiometric surface temperature and emissivity on high spectral 

resolution (NORMAN; KUSTAS; HUMES, 1995) can reduce the uncertainty to 

some limit. 

d) Inconsistency in satellite estimation models: Different models are useful 

for different land surface types and meteorological conditions. To date, there is no 

universal model, which could be used throughout the world. So, we need the 

modifications/improvements of the model to estimate SEB components at a global 

scale, which leads to uncertainties. 

e) Insufficient near-surface meteorological and flux data: Most of the 

satellite-based estimation models need near-surface meteorological data. Basically, 

the data from meteorological stations are obtained at a satellite pixel by spatial 

interpolation techniques. Different study regions have different climatic and terrain 

conditions with sparse/irregular meteorological and surface flux measurement 

stations. Therefore, the accuracy of the interpolation methods should be improved, 

as well as the ground-based meteorological and flux measurement networks also 

need further development. 

6. CONCLUSIONS 

In the last three decades, satellite remote sensing technologies have developed 

significantly, and the wide availability of satellite data products has enabled researchers 

to develop a wide spectrum of satellite-based estimation methods and models. From this 

review work, we have observed that each method and model have its own advantages 

and disadvantages relative to other approaches, and there is no consensus on which one 

is the best. These are the important tools for estimating the SEB components at regional 

and global scales. 

Among other methods and parameterization schemes, the use of the hybrid 

method may achieve a better generalization, which is highly expected for universal 

applications. Most of the SEB-based models are estimating latent heat or sensible heat 

fluxes as the residual of SEB by using satellite data and some additional ground-based 

meteorological data. 

However, the accuracy of surface flux estimation using these methods varies 

from one model to another, one study area to another, and one study period to another. 

(SU et al., 2005) reported the accuracy of ET value estimated from SEBS was 10–15% 
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with respect to ground-based measurement, where the EF ranged from 0.5 to 0.9 mm. A 

maximum relative difference of 8% between measured and estimated EF was observed 

in the S-SEBI model (ROERINK; SU; MENENTI, 2000). The typical accuracy of 

SEBAL was tested under several climatic conditions at field scale and it was found to 

be 85% and 95% at daily and seasonal scales, respectively (BASTIAANSSEN, 2000; 

BASTIAANSSEN et al., 2005). The SEBAL and SEBS have some limitations over 

mountainous areas (ALLEN et al., 2011a; CHEN et al., 2013). These limitations can be 

solved using METRIC and TESEBS models as they consider the slope aspect (ALLEN 

et al., 2007; AMATYA et al., 2016). 

The reviewed methods and models had enough capability for surface flux 

estimations, there still were some limitations that lead to errors and uncertainties. 

Therefore, future research can be focused on several directions. Newly developed 

methods in the acquisition of satellite and ground data are needed to solve the addressed 

uncertainties and limitations.  

Hybrid methods or integration of some methods can be used to take the 

advantage of their respective merits and limitation compensating. The use of data fusion 

and data assimilation techniques can be highly useful for integrated estimations. The 

satellite estimation methods also have a large area to be improved for using the recent 

high-resolution satellite data as relevant satellite data are rapidly growing. 
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REMOTE EVAPOTRANSPIRATION ESTIMATION IN COFFEE CROP 

UNDER DIFFERENT IRRIGATION MANAGEMENT USING THE METRIC 

ALGORITHM 

 

Marcus Andre Braido Pinheiro, Marcelo de Carvalho Alves, João Marcos Louzada 

 

ABSTRACT 

Brazil is the world's largest producer of coffee, with a share of 32% of world 

production, with Arabica coffee responsible for the majority of production. In order to 

keep on top of production, the monitoring of several variables assumes importance for a 

continuous production gain, we have the highlight of evapotranspiration (ET), important 

for managing different crops. This work aimed to apply the METRIC algorithm to 

quantify the actual evapotranspiration (ETa) in three different irrigation management 

and to validate the accuracy of the algorithm in coffee plantations in the municipality of 

Carmo do Rio Claro, MG, Brazil. METRIC methodology was applied for the 

calculation of ETa in different coffee irrigation systems, Dryland, Central Pivot, Self-

propelled and Dripping. NDVI and NDWI maps were generated. After the calculation, 

the results were evaluated by performance measurement criteria, Nash-Sutcliffe 

Efficiency (EF), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and 

Coefficient of Determination (R2), there was also spatialization of the values of ETa, 

Latent Heat Flux (LE), Land Surface Temperature (LST), albedo, NDVI and NDWI for 

the management. Based on the results, a good accuracy of the METRIC algorithm was 

observed in the estimation of evapotranspiration when compared to the meteorological 

station ET method, thus providing important information for data entry in the water 

balance for the determination of irrigation projects. It was also observed a good 

correspondence between the studied variables, showing a relationship between ETa, 

NDVI, and NDWI. 

 

KEYWORDS: Energy Balance, Landsat 8, Irrigation Management, Coffea Arabica L. 

 



 

42 
 

1. INTRODUCTION 

Brazil in 2018, according to estimates by the Companhia Nacional de 

Abastecimento (CONAB, 2019), obtained 61.66 million bags of coffee, distributed over 

an area of 1.86 million hectares. Irrigated agriculture can be a crucial factor in 

maintaining high levels of productivity under water stress situations and due to climatic 

anomalies. 

Thus, with the increased application of irrigation in agriculture, there is a need to 

improve irrigation management and to develop the adoption of sustainable irrigation 

management practices. So, when it comes to coffee cultivation, irrigation is an 

important tool that helps increase productivity. 

In irrigation management, evapotranspiration (ET) is of great importance in the 

management of water resources. The calculation of ET is performed empirically through 

the standard FAO Penman-Monteith equation (ALLEN et al., 1998) and experimentally 

with high accuracy using the Eddy correlation method (KIZER; ELLIOTT, 1991), 

Bowen 's ratio, and weighing lysimeters (GEBLER et al., 2015; WRIGHTL, 1991) and 

by a variety of methods. 

ET is a vital component for describing the hydrological cycle in ecological 

systems, estimating water balance, agricultural zoning, and design of irrigation and 

drainage systems (BERTI et al., 2014; BORGES JÚNIOR et al., 2017). The term 

evapotranspiration is understood as a process comprising the loss of water to the 

atmosphere by evaporation of water present in the soil and transpiration of plants 

(ALENCAR et al., 2011; MELO; FERNANDES, 2012). 

However, the methods can only determine the ET rate at a single point or a small 

area and may not extend to large areas. Therefore, there are ET estimation models that 

can be used to overcome such limitations. Among these estimation models, satellite 

images can be used to determine ET in large areas, promoting the spatialization of the 

parameter. More broadly, models for estimating ET from satellite imagery provide an 

accurate estimate of ET in large areas using minimal weather data and applying various 

algorithms (ALLEN; TASUMI; TREZZA, 2007; ANDERSON et al., 2012; 

BASTIAANSSEN; CHANDRAPALA, 2003). 

Among the several algorithms that perform the estimation of evapotranspiration 

using remote sensing, stands out the Mapping Evapotranspiration at high Resolution 

and with Internalized Calibration (METRIC) (ALLEN; TASUMI; TREZZA, 2007). 

The model has been successfully implemented in several homogeneous ecosystems 
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around the world, with different levels of accuracy (ALLEN et al., 2013; BHATTARAI 

et al., 2017; CHOI et al., 2011; FRENCH; HUNSAKER; THORP, 2015; 

LOSGEDARAGH; RAHIMZADEGAN, 2018; MADUGUNDU et al., 2017; PÔÇAS et 

al., 2014; TREZZA; ALLEN; TASUMI, 2013). However, the best and most appropriate 

choice of a method for monitoring and quantifying ET is still a challenge, as there is a 

shortage of spatially validated data, especially for irrigation schemes in developing 

countries. 

Considering that there are rapid changes in atmospheric environmental 

conditions and based on the hypothesis that evapotranspiration (ET) can be spatialized 

in coffee plantations for better crop management, this work aimed to apply the 

METRIC algorithm to quantify ET in four different irrigation management and validate 

the accuracy of the algorithm in the municipality of Carmo do Rio Claro, Minas Gerais, 

Brazil. 

 

2. MATERIAL AND METHODS 

2.1. Study area 

The study area is located in the municipality of Carmo do Rio Claro, in the state 

of Minas Gerais, Brazil, with an altitude of 798 m, latitude 20°58'17'' S and longitude 

46°7'57'' W (Figure 1). The climate of the municipality is classified as subtropical 

mesothermic (Cwa), according to the Köppen-Geiger classification, and characterized 

by dry winters and humid summers (PEEL; FINLAYSON; MCMAHON, 2007). 

The coffee cultivated in the study areas is Coffea arabica L., cultivar Acaiá 

474/19, and cultivated under different irrigation systems. 

In 2012, the area under a dryland system had 30 hectares, 6 years, 3.6 m per 0.7 

m spacing, and density of 3,968 plants.ha-1, was cut into the ground in September 2013. 

The area under the self-propelled irrigation system had 2.6 ha, 7 years, spacing of 3.5 m 

per 0.7 m, and density of 4,081 plants.ha-1. The area under the drip irrigation system had 

11 ha, 2.5 years, the spacing of 3.6 m per 0.7 m and density of 3,968 plants.ha-1. The 

area under the central pivot irrigation had 17 ha, 10 years, 4.0 m per 0.5 m spacing, and 

density of 5,000 plants.ha-1. 

Irrigation was performed throughout the year according to the water requirement 

of the plants, calculated based on the measurement of tensiometers. 
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Figure 1 - Region of Carmo do Rio Claro, Minas Gerais State, with different irrigation 

management. 

 

2.2. Data Used 

2.2.1. Orbital Data 
For the development of the study, 10 images acquired from the Landsat 8 

satellite (OLI-/-TIRS) were used during the grain filling period of coffee beans from 

2013 to 2019 (Table 1), according (CAMARGO; CAMARGO, 2001; PEREIRA; 

CAMARGO; CAMARGO, 2008). The images were acquired from the United States 

Geological Survey (USGS, 2013) through the Earth Explorer platform. The criteria for 

image selection was no cloud presence in the study areas. All the images were in path 

219 and rows 74 and 75. Level 1 and Level 2 images were acquired, without 

atmospheric correction with the digital numbers of pixels and already with the LaSRC 

atmospheric correction (VERMOTE et al., 2018), respectively. 

Images of the Shuttle Radar Topography Mission (SRTM), Arc-Second Global 

1, were acquired from the grids: S21W046V3, S21W047V3, S22W046V3, and 

S22W047V3, also acquired from USGS, through the Earth Explorer platform. 
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Table 1 - Satellite images used to calculate METRIC. 

Image number Date 
Day of 

the Year 
(DOY) 

1 20/11/2013 324 
2 15/05/2014 135 
3 07/11/2014 311 
4 10/01/2015 10 
5 04/05/2016 125 
6 30/12/2016 365 
7 08/06/2017 159 
8 10/05/2018 130 
9 10/03/2019 69 
10 14/06/2019 165 

 

2.2.2. In situ measurements 
The meteorological data used in the study were obtained from an automatic 

weather station present in the municipal district of Passos, Minas Gerais, Brazil. The 

data were provided by the Instituto Nacional de Meteorologia - INMET. The station is 

located at latitude coordinates 20º44’42.853'' S and longitude 46º 38' 2.098'' W, with an 

altitude of 782 meters and 67 kilometers away from the study area (Figure 2). 

 
Figure 2 - Description of Meteorological Station in municipality of Passos – MG. 

 

2.3. METRIC Methodology 

After the acquisition of Landsat 8 images, SRTM, and meteorological station 

data. We used the Water package (OLMEDO et al., 2016) present in the software R for 
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the application of the METRIC algorithm. When the data were read by the software, the 

methodology proposed by (ALLEN; TASUMI; TREZZA, 2007) was started. 

METRIC is a model that has been gaining scientific recognition in recent years. 

The model is based on principles and techniques used by the SEBAL model 

(BASTIAANSSEN et al., 1998). In particular, METRIC is automatically calibrated for 

each image using a soil-based calculation and reference evapotranspiration (ET0), which 

is obtained based on hourly weather data. The METRIC algorithm was developed 

exclusively to estimate ET from Landsat data (ALLEN; TASUMI; TREZZA, 2007). 

During the calculation of ET by the METRIC algorithm, surface characteristics 

such as albedo, vegetation indices, emissivity, and surface temperature were estimated 

as intermediate products. Anchor pixels (hot and cold) were selected and energy 

components such as net radiation (Rn), soil heat flux (G), and sensible heat flux (H) 

were also estimated. 

Finally, the latent heat flux (LE) (Equation 1) was predicted as a residue of the 

surface radiation balance (ALLEN et al., 2007; ALLEN; TASUMI; TREZZA, 2007). 

Consequently, the instant ET (ETinst) for each pixel was calculated. In addition, the leaf 

area index (LAI) was obtained and the reference evapotranspiration (ET0) was used as a 

factor for METRIC-based ET (ETMETRIC) estimation. 

      nLE R G H= − −                 (1) 

The first step in the METRIC model was to calculate the net radiation (Rn) using 

the surface radiation balance (Equation 2). The Rn estimation was performed in a series 

of steps, adding short-wave liquid radiation and long-wave liquid radiation (ALLEN; 

TASUMI; TREZZA, 2007; BRUNSELL; GILLIES, 2002; HIPPS, 1989). 

( )1n os s L L LR R R R R Rα ε↓ ↓ ↓ ↑ ↓= − − − − −               (2) 

Where RS↓ is the short-wave input radiation (W.m-2), α is the broadband surface 

albedo (dimensionless), and RL↓ and RL↑ are the long-wave radiation entering and 

exiting the atmosphere (W.m-2), respectively. εo is the thermal emissivity of the wide-

band surface (dimensionless). The term (1-εo) RL↓ represents the fraction of the 

received long-wave radiation reflected from the surface. 

The received bandwidth and the short-wave radiation (RS↓), which represents the 

main energy source for ET, are calculated for the Landsat-8 image over time as a 

constant for the whole image, assuming clear sky conditions as Equation 3. 
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2

cosSC ref SW
S

G
R

d
θ τ

↓ =                 (3) 

Where GSC is the solar constant (1367 W.m-2), θref is the angle of solar incidence, 

τsw is the broadband atmospheric transmissivity, and d2 is the square of the relative of 

the Earth-Sun distance. 

The τsw is calculated using Equation 4, which was elaborated on (ALLEN et al., 

2005). 
0,40,001460,35 0,627exp 0,075

cos cosSW
t

P W
K Z Z

τ
 −  = + −  

   
            (4) 

Where P is the atmospheric pressure (kPa), W is the amount of water present in 

the atmosphere (mm), Z is the zenith solar angle (extracted from the image metadata) 

and Kt is the air turbidity coefficient (Kt = 1.0 for clean air and 0.5 for extremely 

polluted air, in this study Kt = 1.0). 

P and W are calculated using the vapor pressure measured or estimated near the 

surface, according to Equations 5 and 6, according to (ALLEN et al., 2005; 

GARRISON; ADLER, 1990), respectively. 
5,26293 0,0065101,3

293
zP − =  

 
               (5) 

0,14 2,1a airW e P= +                  (6) 

Where the constant 293 is the standard air temperature (K), z is the elevation 

above sea level (m), and ea is the vapor pressure near the surface (kPa). 

The parameter d2 was calculated from Equation 7, as a function of the DOY, as 

described in (DUFFIE; BECKMAN, 2013). 

2 1
21 0,033cos

365

d
DOY π

=
 +  
 

               (7) 

The broadband surface albedo (α), however, is calculated using Equation 8 as 

described in (BASTIAANSSEN et al., 1998; ZHONG; YINHAI, 1988). 

( )
2

toa atm

SW

α α
α

τ
−

=                  (8) 

Where αtoa is the planetary albedo of each pixel; The atmospheric albedo of αatm 

and τsw are obtained from equation 4, following (SILVA et al., 2016). 
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The Long-wave Radiation Output (RL↑) radiation emitted from the surface is 

driven by surface temperature and surface emissivity. The RL↑ is calculated using the 

Stefan-Boltzmann equation (Equation 9). 
4

o sLR Tε σ↑ =                   (9) 

Where εo is the broadband emissivity (dimensionless), σ is the Stefan-Boltzmann 

constant (5,67 × 10-8 W.m-2 K-4) and Ts is the surface temperature (K). 

In this study, Ts was counted as LST and obtained from Equation 10. 

( ) ( ) ( )
( ) ( )

2
10 1 10 11 2 10 11 0 3 4

5 61

LST TB C TB TB C TB TB C C C W

C C Wε ε

= + − + − + + +

− + + ∆
        (10) 

Where LST is the surface temperature of the earth (K), C0=-0,268; C1=1,378; 

C2=0,183; C3=54,3; C4=-2,238; C5=-129,2; C6=16,4, TB10, and TB11 are the brightness 

temperatures of bands 10 and 11 of Landsat 8 (K), ε is the average LSE of TIRS bands, 

W is the atmospheric water vapor content, and Δε is the difference in LSE. 

The brightness temperature (TB) was calculated using Equation 11. 

2

1 1

KTB
KLn
Lλ

=
 

+ 
 

               (11) 

Where K1 = 1321,08 e 1201,14 for bands 10 and 11 respectively, and K2= 

777,89 e 480,89 for bands 10 and 11 respectively, and Lλ is the spectral radiance of the 

top of the atmosphere. 

This spectral radiance at the top of the atmosphere was determined by 

multiplying the multiplicative scaling factors of Equation 12. 

L cal LL M Q Aλ = × +                (12) 

Where ML= 0,000342, Qcal is the image of band 10 or 11, and AL = 0,1 

Subsequently, the Land Surface Emissivity (LSE) was calculated using Equation 

13. The εs = 0,971; 0,977 and εv = 0,987; 0,989 are values of soil and vegetation 

emissivity of bands 10 and 11, respectively. 

( )1s vLSE FVC FVCε ε= − +              (13) 

Where Fractional plant cover (FVC) was estimated based on the Normalized 

Difference Vegetation Index (NDVI) obtained in the experimental area by Equation 14. 

s

v s

NDVI NDVIFVC
NDVI NDVI

−
=

−
              (14) 
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Where the NDVIs and NDVIv are the NDVI reclassified to the areas of soil and 

vegetation, respectively. 

After generating LSE for both TIRS bands, the mean and difference of LSE 

were obtained according to Equations 15 and 16. 

10 11

2
ε εε −

=                 (15) 

10 11ε ε ε∆ = −                 (16) 

Surface emissivity was calculated using Equation 17 after (TASUMI; ALLEN; 

TREZZA, 2008) based on vegetative and ground thermal emissivity. The LAI was 

calculated according to Equation 18 proposed by (BASTIAANSSEN et al., 1998). 

0 0,95 0,01LAIε = +   para LAI ≤ 3             (17) 

( )0,69
ln

0,59
0,91

SAVI

LAI

− 
−  

 =               (18) 

Soil adjusted vegetation index (SAVI) was calculated based on the TOA 

reflectance of bands 4 and 5 according to (HUETE, 1988). 

The arriving long-wave radiation (RL↓), through the descending thermal 

radiation of the atmosphere (W.m-2), was estimated using the equation of Stefan-

Boltzmann, Equation 19, described in (ALLEN; TASUMI; TREZZA, 2007). 
4

a aLR Tε σ↓ =                 (19) 

Where εa is the broadband surface emissivity (dimensionless), σ is the constant 

of Stefan-Boltzmann (5,67 × 10-8 W.m-2 K-4) and Ta is the temperature of the air near 

the surface replaced by a cold pixel temperature (Tcold). 

The εa was calculated using Equation 20, as described in (BASTIAANSSEN, 

1995). 

( )0,090,85 lna SWε τ= −               (20) 

Where τsw is the broadband atmospheric transmissivity calculated from Equation 

4. 

For the estimation of soil heat flux (G), this study adopted the empirical model 

described by (BASTIAANSSEN; MOLDEN; MAKIN, 2000) which represent values 

near midday for the estimation with Landsat 8, as a G / Rn ratio based on the NDVI, 

according to Equation 21. 
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( )( )( )4273,15 0,0038 0,0074 1 0,98s
n

G T NDVI
R

α= − + −           (21) 

Where Ts is the surface temperature (K) and α is the surface albedo. 

Subsequently, the GMETRIC was obtained by multiplying G/Rn by Rn. 

The sensible heat flux (HMETRIC) was estimated from an aerodynamic function 

expressed in Equation 22. In calculating the rah, the wind speed measurements were 

used. 

air p
ah

TH C
r

ρ ∆
=                (22) 

Where ρ is the density of the air (kg.m-3), Cp is the specific heat capacity of the 

air (J.kg-1 .K); ΔT is the temperature gradient of the air near the surface and rah is the 

aerodynamic resistance to heat transfer (S.m-1) between two heights near the surface as 

(ALLEN; TASUMI; TREZZA, 2007). 

After the establishment of Rn, G, and H from the Landsat 8 image processing, 

the LE was calculated as a residue of the Energy Balance equation. The LE obtained is 

equivalent to ETinst at the time of passage of the Landsat 8 satellite, according to 

Equation 23. 

3600inst
LEET

ωλρ
=                (23) 

Where ETinst is the instantaneous evapotranspiration (mm.h-1), 3600 converts 

from seconds to hours, ρω is the density of water (∼1000 kg.m-3) and λ is the latent heat 

of vaporization (J.kg-1) representing the heat absorbed when a kilogram of water 

evaporates. 

The λ component was calculated according to Equation 24. 

( ) 62,501 0,00236 273,15 10sTλ = − − ×               (24) 

Finally, as shown in Equation 25, the reference ET fraction (ETrF) was 

calculated as the ratio between the computed ETinst of each pixel and the reference ET 

(ET0) calculated from the meteorological station data. 

0

inst
r

ETET F
ET

=                (25) 

The ETrF obtained was later extrapolated to daily values. In the processes, ET24 

was calculated assuming that the instantaneous ETrF computed at the time of satellite 
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passage is the same as the mean ETrF over the 24 h mean (ALLEN et al., 2007), 

according to Equation 26. 

( )( )24 24rad rET C EF ET=               (26) 

Where Crad is a correction term used to correct the variation over 24 hours versus 

the instantaneous availability of energy (ALLEN; TASUMI; TREZZA, 2007). 

 

2.4. Calculation of NDVI and NDWI 

After the estimation of Evapotranspiration by Landsat 8 images, the calculation 

of the NDVI (ROUSE et al., 1974) and NDWI (GAO, 1996) was performed for the 

different irrigation managements evaluated, according to Equations 27 and 28. The 

calculation was performed using the RStoolbox R package (LEUTNER; HORNING; 

SCHWALB-WILLMANN, 2019). 

NIR REDNDVI
NIR RED

−
=

+
               (27) 

2
2

NIR SWIRNDWI
NIR SWIR

−
=

+
              (28) 

Where RED = Band 4 of Landsat 8, referring to the wavelength of red (0.636 a 

0.673 µm); NIR = Band 5 of Landsat 8, referring to the near-infrared wavelength (0.851 

a 0.879 µm) and SWIR2 = Band 7 of Landsat 8, referring to the short-wave infrared 

wavelength (2.11 a 2.29 µm). 

 

2.5. METRIC model evaluation 

The validation of the evapotranspiration estimation by the METRIC model was 

performed by applying different performance meters, among them are the Root Mean 

Square Errors (RMSE), Mean Absolute Error (MAE), Nash-Sutcliffe efficiency (EF), 

and Determination coefficient (R2). 

O RMSE (WILLMOTT; MATSUURA, 2005) is the root square of the residue 

variance. Indicates the absolute fit of the model to the data. Indicates the proximity of 

the ETMETRIC values to the ETr values. The RMSE was calculated according to Equation 

29. 

( )2

1

n
r METRICi

ET ET
RMSE

n
=

−
= ∑              (29) 
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The MAE (WILLMOTT et al., 2015) indicates how much the predicted values 

are distanced from the calculated value of the standard equation, and was calculated 

according to Equation 30. 

1

n
r METRICi

ET ET
MAE

n
=

−
= ∑              (30) 

where ETr é a ET calculada pela equação padrão FAO Penman Montheith e 

ETMETRIC é a evapotranspiração estimada por imagem de satélite. 

EF efficiency, proposed by Nash and Sutcliffe (MORIASI et al., 2007; NASH; 

SUTCLIFFE, 1970; WILLMOTT et al., 2015), is defined as one minus the sum of the 

absolute quadratic differences between the ETMETRIC and ETr values normalized by the 

variance of the ETr values during the period under investigation. EF values range from -

∞ to 1, with 1 being a perfect fit. High EF values are indicative of a more efficient 

model, however, EF values in the range of (-∞ to 0) indicate the unacceptable 

performance of the tested model. EF was calculated using Equation 31. 

( )
( )

2

1
2

1

1
n

r METRICi
n

r ri

ET ET
EF

ET ET
=

=

 − = −  −  

∑
∑

             (31) 

where rET  is the mean Evapotranspiration calculated by the standard method. 

The coefficient of determination, R2 was calculated using Equation 32. It 

indicates the relative adjustment between the ETMETRIC and ETr values (HEIJ et al., 

2004). 

( )
( )

2
2 1

2

1

1
n

r METRICi
n

ri

ET ET
R

ET
=

=

−
= − ∑

∑
             (32) 

 

3. RESULTS AND DISCUSSION 

In order to better evaluate the results, the mean values and standard deviation of 

LST, albedo, Rn, G, and H for each irrigation management studied (Tables 2 to 6) were 

calculated for all dates evaluated. NDVI, NDWI, albedo, LST, LE, and ETMETRIC maps 

were also generated. Finally, the performance of the METRIC algorithm against the 

calculation of the real evapotranspiration by the meteorological station was evaluated. 

In addition, Figure 3 shows the precipitation and mean temperature in the 

studied period. The variable with the greatest variation was precipitation. Between 
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October and March of all year evaluated, there were high-intensity precipitations 

followed by long dry periods. DOY 10/2015 and 365/2016 occurred in a period of 

intense precipitation rate and high mean temperature. However DOY 159/2017 and 

165/2019 occurred in days of low rainfall and low mean temperature, while the DOY 

135/2014 followed days of low intensity rain, which occurs in all summer of 2013/2014. 

 

 

Figure 3 - Precipitation and Mean Temperature at a daily scale between 01 January 
2013 and 23 October 2019 in the municipality of Carmo do Rio Claro – MG. The 

temporal location of the DOYs of the present research is indicated by the dotted line 
(DOY = day of year). 

 

3.1. Land Surface Temperature (LST) and albedo evaluation 

It was observed that, for dryland management, the surface temperature ranged 

from 21.82 to 41.45 ºC, with the highest values in the dates present in the rainy periods 

(close to summer), with a reduction in dry seasons (close to winter). The same pattern 

occurs for different irrigation management, but with lower LST variations (Table 2). 

This pattern may be related to the irrigation that was applied in the area, maintaining the 

surface with fewer variations of humidity, which can be seen in Figure 6. It’s important 

to highlight that the surface temperature is largely dependent mainly on the solar 

radiation that is absorbed, being converted into thermal energy by the transfer of 

longwave radiation from the surfaces to the lower part of the atmosphere. 

Allen et al. (2013), studying agricultural areas in the state of Idaho, USA, 

concluded that high LST values are associated with low values of latent heat flux, which 

occurs on less vegetated surfaces. The authors found large peak LST (43.85 to 56.85 ° 

C) in a large number of pixels present in the desert image area. This phenomenon was 
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observed in the study area, in which areas with higher values of LE (Figure LE), have a 

lower temperature. 

 

Table 2 Mean values and standard deviation of Land surface temperature (ºC), 
estimated by the METRIC algorithm in the different dates of the study. 

 

DOY LST (ºC) 
Dryland Central Pivot Self-Propelled Dripping 

324/2013 37.47 ± 1.20 36.31 ± 1.30 32.99 ± 0.47 36.31 ± 0.73 
135/2014 24.45 ± 0.74 25.69 ± 0.85 26.71 ± 0.44 28.43 ± 0.65 
205/2014 41,45 ± 1.85 39.85 ± 1.11 39.06 ± 3.15 41.01 ± 1.21 
10/2015 38.12 ± 0.84 35.35 ± 0.60 33.92 ± 0.69 38.85 ± 0.72 
145/2016 23.55 ± 0.59 25.94 ± 1.24 26.10 ± 1.11 26.33 ± 0.56 
365/2016 34.89 ± 1.02 37.47 ± 2.24 34.67 ± 0.93 35.31 ± 0.97 
159/2017 24.69 ± 0.54 26.47 ± 0.70 26.17 ± 1.25 25.95 ± 0.51 
130/2018 23.97 ± 0.66 28.26 ± 1.40 26.50 ± 0.76 24.92 ± 0.60 
69/2019 31.13 ± 1.09 34.72 ± 1.56 32.74 ± 1.48 31.08 ± 0.71 
165/2019 21.82 ± 0.68 23.85 ± 0.72 25.25 ± 0.28 23.47 ± 0.52 

 

Albedo presented small spatial variation and is strongly associated with land use 

and the presence of heterogeneous vegetation cover. When it is evaluated in the time 

series, the albedo was affected by environmental characteristics throughout the year, 

besides the presence of anthropic action by the management of adjacent agricultural 

areas (Figure 4).  



 

55 
 

 

Figure 4 - Albedo at Dryland, Central Pivot, Self-Propelled and Dripping irrigation 
management in different evaluated dates. 

 
In addition, it was found that the higher the NDVI (Figure 5), the lower the value 

of albedo estimated by METRIC in dryland management (Table 3). This means that the 

lower the NDVI, the more exposed soil there is, consequently promoting an increase in 

the albedo value, which was also observed by (RAHIMZADEGAN; JANANI, 2019). 

However, again, as in the LST, the greatest discrepancy of the values occurred in the 

management of the crop in the dryland. 
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Table 3 Mean values and standard deviation of Albedo, estimated by the METRIC 
algorithm in the different dates of the study. 

DOY albedo 
Dryland Central Pivot Self-Propelled Dripping 

324/2013 0.17 ± 0.004 0.17 ± 0.008 0.15 ± 0.002 0.16 ± 0.003 
135/2014 0.11 ± 0.006 0.14 ± 0.008 0.15 ± 0.004 0.15 ± 0.004 
205/2014 0.16 ± 0.004 0.16 ± 0.005 0.15 ± 0.006 0.16 ± 0.005 
10/2015 0.15 ± 0.004 0.16 ± 0.011 0.14 ± 0.006 0.16 ± 0.004 
145/2016 0.13 ± 0.005 0.14 ± 0.010 0.14 ± 0.005 0.14 ± 0.003 
365/2016 0.16 ± 0.004 0.17 ± 0.009 0.15 ± 0.007 0.14 ± 0.005 
159/2017 0.12 ± 0.005 0.13 ± 0.008 0.17 ± 0.008 0.13 ± 0.004 
130/2018 0.12 ± 0.009 0.15 ± 0.010 0.16 ± 0.005 0.13 ± 0.004 
69/2019 0.13 ± 0.004 0.17 ± 0.006 0.15 ± 0.004 0.13 ± 0.005 
165/2019 0.11 ± 0.010 0.13 ± 0.010 0.14 ± 0.004 0.12 ± 0.004 

 

A fact to be highlighted is that with the increase of the albedo, the absorption of 

solar energy decreases and as a result, the LST also reduces. (ALLEN et al., 2007; 

RAHIMZADEGAN; JANANI, 2019) observed these events in beet crops in Idaho, 

USA, and pistachio in Iran, respectively. The fact was also observed in the present 

study. 

Another factor that contributes to seasonal albedo variations is the surface 

humidity during the rainy season or the management of irrigation. Many authors (LI et 

al., 2006; LOBELL; ASNER, 2002; TEIXEIRA et al., 2014, 2008) have found linear 

relationships between albedo and surface moisture. 

 

3.2. Evaluation of the net radiation (Rn) and the soil heat flux (G) 

The mean values of Rn ranged from 404.92 to 731.48 W among the different 

irrigation management systems (Table 4), with the highest values observed during the 

rainy season. The values were within the predicted by (ALLEN et al., 2002), in which it 

inferred that the values should be between 100 to near 700 W.m-2.  

Net radiation is directly related to the entry of longwave and shortwave 

radiation. As these two parameters are directly related to surface temperature, in areas 

with higher surface temperatures, the net radiation is higher (ALLEN et al., 2011). 

He et al. (2017), studied almond orchards in California, USA, found that Rn, ET, 

and NDVI obtained close spatial patterns in which, the lower the vigor of the almond 
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crop, the lower the values. However, in this work, it was observed that only Rn and ET 

have close spatial patterns. 

 

Table 4 Mean values and standard deviation of net radiation (Rn) estimated by the 
METRIC algorithm in the different dates of the study. 

DOY Rn (W) 
Dryland Central Pivot Self-Propelled Dripping 

324/2013 692.17 ± 8.7 673.55 ± 16.9 731.48 ± 9.4 692.69 ± 14.2 
135/2014 469.14 ± 14.4 489.22 ± 8.5 494.25 ± 15.3 456.36 ± 14.3 
205/2014 684.90 ± 9.3 676.32 ± 14.0 716.46 ± 12.7 679.08 ± 12.7 
10/2015 676.52 ± 11.0 645.51 ± 19.7 704.06 ± 12.2 652.32 ± 16.7 
145/2016 479.42 ± 13.9 499.61 ± 9.2 520.58 ± 13.1 483.05 ± 14.9 
365/2016 689.40 ± 9.9 642.48 ± 17.9 699.02 ± 12.3 680.76 ± 18.1 
159/2017 404.92 ± 13.9 439.34 ± 10.3 426.11 ± 16.4 421.40 ± 15.7 
130/2018 474.63 ± 15.2 486.89 ± 9.9 497.71 ± 14.4 481.87 ± 15.6 
69/2019 618.37 ± 12.0 581.84 ± 14.1 636.05 ± 12.3 614.21 ± 19.1 
165/2019 405.55 ± 18.7 436.71 ± 9.6 442.88 ± 16.6 420.04 ± 14.3 

 

When analyzing the heat flux in the soil (G) (Table 5), it was verified that the 

mean values were between 32,84 to 74,20 W. With the largest discrepancies between 

the dates in the Self-propelled system. (MADUGUNDU et al., 2017) found values 

ranging from 28.6 to 143.73 W.m-2 for irrigated alfalfa fields during the year 2013. 

Close values to G were also found by (HAM; HEILMAN; LASCANO, 1991) in the 

study of the latent heat flux in the cotton crop in Lubbock, Texas, USA. 

 

Table 5 Mean values and standard deviation of soil heat flux (G) estimated by the 
METRIC algorithm in the different dates of the study. 

 

DOY G (W) 
Dryland Central Pivot Self-Propelled Dripping 

324/2013 74.20 ± 10.6 49.48 ± 1.5 45.39 ± 2.6 62.59 ± 5.0 
135/2014 52.83 ± 4.4 44.38 ± 2.8 46.52 ± 4.1 57.64 ± 6.2 
205/2014 52.06 ± 9.5 42.98 ± 0.7 45.91 ± 13.5 52.95 ± 7.0 
10/2015 45.61 ± 7.9 48.41 ± 3.2 42.47 ± 3.1 56.86 ± 4.6 
145/2016 41.81 ± 4.8 44.53 ± 5.5 50.52 ± 8.9 56.57 ± 3.5 
365/2016 41.98 ± 5.3 49.36 ± 11.9 71.16 ± 4.6 48.91 ± 8.4 
159/2017 40.91 ± 5.0 46.01 ± 4.3 32.84 ± 9.4 50.34 ± 3.5 
130/2018 52.82 ± 5.2 50.95 ± 9.1 41.37 ± 3.9 51.53 ± 5.4 
69/2019 46.07 ± 5.6 44.68 ± 4.5 45.20 ± 9.3 47.08 ± 3.3 
165/2019 44.14 ± 6.7 46.59 ± 3.9 50.95 ± 3.7 51.61 ± 3.8 
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3.3. Analysis of the sensible heat flux (H) 

The evaluation of H shows that the values estimated by METRIC ranged from 

83.34 to 344.25 W in different irrigation management systems (Table 6). However, the 

greatest variation between the analyzed dates was observed for the dryland crop, in 

which the lowest value was obtained and one of the highest values estimated in the 

studied period. Sensible heat flux (H) is the form of thermal energy that is released or is 

absorbed by the earth's surface into the atmosphere by convection and conduction, and 

there have always been difficulties in estimating it on a large scale using orbital data 

information (LIAQAT; CHOI, 2015). 

It was observed that in the rainy season, the values of H were higher than in 

periods with more scarce rains. This pattern was also observed by (CARRASCO-

BENAVIDES et al., 2014), in which the authors evaluated the application of METRIC 

to irrigated vines in the Talca Valley, Chile. (CHOI et al., 2011), evaluating the 

METRIC algorithm in a river basin in Korea, verified that high H values occur in areas 

without vegetation, as in urban areas, and low values of sensible heat flux are found in 

vegetated areas. 

 

Table 6 Average values of sensible heat flux (H), estimated by the METRIC algorithm 
in the different dates of the study. 

 

DOY H (W) 
Dryland Central Pivot Self-Propelled Dripping 

324/2013 340.23 ± 8.8 344.25 ± 11.9 322.07 ± 5.4 333.69 ± 7.4 
135/2014 201.65 ± 3.5 211.84 ± 4.7 217.75 ± 2.8 221.73 ± 3.2 
205/2014 279.54 ± 4.9 283.09 ± 2.2 285.81 ± 6.9 275.54 ± 5.4 
10/2015 217.75 ± 8.5 191.20 ± 5.4 179.07 ± 6.5 225.82 ± 7.2 
145/2016 144.28 ± 4.7 159.74 ± 9.2 160.97 ± 9.7 166.98 ± 3.9 
365/2016 205.89 ± 10.3 233.09 ± 23.6 201.70 ± 9.4 209.51 ± 9.9 
159/2017 95.53 ± 5.4 115.92 ± 8.2 114.82 ± 14.0 109.18 ± 5.5 
130/2018 103.09 ± 7.7 162.02 ± 16.6 142.70 ± 9.9 116.14 ± 7.0 
69/2019 148.28 ± 13.2 197.99 ± 19.0 173.43 ± 18.2 147.09 ± 8.6 
165/2019 83.34 ± 7.5 110.62 ± 10.0 128.42 ± 4.0 103.26 ± 6.0 

 

3.4. Analysis of NDVI and NDWI 

After analyzing the NDVI values, it was found that the values were relatively 

high in the areas of irrigation management studied (Figure 5). From the comparison of 

the NDVI behavior in the coffee plants, it was verified that higher values occurred in 
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November and December when the plants showed higher vigor (ALLEN; TASUMI; 

TREZZA, 2006) (Figure 5).  

Al Zayed et al. (2016), infer that NDVI is strongly related to the ET value, 

demonstrating reasonable compliance between values, a fact confirmed by R² values of 

0.69; 0.62; 0.81 for SEBAL, METRIC, and SSEB, respectively. 

Another important fact to emphasize in relation to NDVI is the annual variation, 

that is, how the values change with each observed image, can be indicative of vegetation 

stress, which may be caused by climate change (LIU; MASSAMBANI; NOBRE, 1994). 

The NDWI pattern follows what was found for the NDVI values since, in the 

places where the highest vigor occurred, a higher value of moisture was also observed 

in the crop (Figure 6). Thus, in general, in the periods between November and January, 

NDWI values were higher than winter dates. 

 
Figure 5 - NDVI at Dryland, Central Pivot, Self-Propelled and Dripping irrigation 

management, in the different evaluated dates. 
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Thus, NDWI can be a good alternative to verify through orbital sensors how the 

coffee crop is when it is desired to evaluate the humidity present in the use of different 

irrigation methods. Since NDWI has shown good results to estimate the variation in 

vegetation moisture condition, drought monitoring and water budget management 

(BAJGAIN et al., 2015). 

Emphasizing the importance of the index in culture, (NOGUEIRA; MOREIRA; 

VOLPATO, 2018; PICINI et al., 1999), show that coffee cultivation was highly 

dependent on water availability, which was a factor that affected coffee productivity. 

 

 
Figure 6 - NDWI at Dryland, Central Pivot, Self-Propelled and Dripping irrigation 

management, in the different evaluated dates. 
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3.5. Evaluation of the evapotranspiration estimation performed by 

METRIC algorithm 

It was observed that the ET values were very varied in the different dates. When 

the variation between the irrigation management was evaluated, it was verified that the 

management with the self-propelled promoted higher ETr values (Figure 7 and 8). 

This fact may be related to the type of irrigation, which is administered in large 

quantities by means of a powerful cannon on the crop, which may cause an increase in 

humidity in the studied area, increasing Etr values. 

 



 

62 
 

 
Figure 7 - Violin and boxplot chart for different irrigation management and each DOY. 
 

Figure 7 shows how the density of probability of ETr. In addition, a boxplot was 

generated, demonstrating the median, dispersion, symmetry, and outliers of ETr in 

different dates and irrigation management. 

It is possible to verify that when the values of ETr is low (DOY 145/2016, 

59/2017, 130/2018, 069/2019 and 165/2019) the behavior of data is almost the same. 

However, in high values of ETr, the distribution varies in different DOY and irrigation 

management. 

Another fact to be observed is that in the November, December, and January 

periods ET values were higher (close to 6 mm per day) than those found in the periods 

close to winter, such as March, May, and June (between 2 to 4 mm daily). This fact 

occurs because the plants were more photosynthetically active in the rainy periods, 

since the temperature in that period was also higher (CAMARGO; CAMARGO, 2001; 

RAHIMZADEGAN; JANANI, 2019). 

In Figure 8, it is possible to highlight the DOY 135/2014, in which the lowest 

ET values of all studied series were observed, this fact is due to the drought period that 

occurred during the year 2014 (Figure 3), and the collection of information made in the 

month next to the winter (May), where ET values are usually lower, this characteristic 
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corroborates the lower values of NDVI and NDWI found in Figures 5 and 6, 

respectively. 

 
Figure 8 - ETMETRIC at Dryland, Central Pivot, Self-propelled and Dripping irrigation 

management, in the different evaluated dates. 
 

Another fact to be highlighted in the ETMETRIC analysis is the fact that the values 

of NDVI and NDWI are related to the behavior of how the culture loses water to the 

atmosphere. Although not a direct relation, the variations occurred in the indexes 

impacted on variations observed in ETMETRIC maps, as in the image of November 20, 

2013. 

Finally, in the evaluation of the accuracy and precision of the METRIC 

algorithm in the study region (Figure 9), METRIC has a satisfactory performance in the 

region. The calculated ET value on the pixel at which the weather station was present 

was compared to the ETr value calculated by the meteorological station. 
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From the comparison of ETr, the values of R, RMSE, MAE, and EF calculated 

between ETMETRIC and ETr are shown in Figure 9, and the meteorological station 

method is considered the standard method. 

An important fact to note regarding the METRIC model applied in the study 

region is that, when applied in the months close to winter (May, June, and July), the 

error associated to these values was lower than when the model was applied in the 

months close to summer (November, December, and January). 

y = 0.6065x + 0.6151
R² = 0.6786

RMSE = 1.96 mm
MAE = 1.11 mm
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Figure 9 - Regression between evapotranspiration calculated by METRIC (ET 
METRIC) and ETr calculated by the meteorological station (ET Meteorological 

Station). 
 

In addition, the median R2 values (Figure 9) indicate that the fit was not perfect, 

but acceptable among the methods of obtaining the ETr. 

The EF values found in the study were 0.43 for the METRIC model. This result 

indicates that the ETMETRIC model has satisfactorily adjusted to the ETr by the 

meteorological station method. (ELNMER et al., 2019) evaluating evapotranspiration 

on the Nile Delta under different remote sensing methodologies, found EF values for 

the METRIC model close to 0.9, demonstrating a good fit of the model. (DU et al., 

2013; SANTOS; SILVA, 2010) also found satisfactory values evaluating methodologies 

for calculating ETr by Remote Sensing. 

The MAE showed that the ETMETRIC was 1.11 mm.d-1 distant from ETr. 

However, when RMSE showed that the ETMETRIC was a little distant from the values 

found by the meteorological station ETr calculation method, with a value of 1.96 mm² 

per day of error. (ELNMER et al., 2019), found values of 0.499 mm.d-1 in a study in 
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Egypt. (WELIGEPOLAGE, 2005) verified differences of 0.4 mm.d-1 in a study with 

seven dates in Hupselse Beek - The Netherlands. 

 

4. CONCLUSIONS 

In order to have effective use of irrigation water management, it is necessary to 

have accuracy in the determination of the essential parameters to use in irrigated 

agriculture. Since the rational use of water is gaining importance in the current scenario, 

knowing how much water is required to be applied in the crop is a mandatory factor to 

have coffee plantations with high yields. 

NDWI can be a good alternative to verify through orbital sensors how the coffee 

crop is, when it is desired to evaluate the humidity present in the use of different 

irrigation methods. 

Good accuracy of the METRIC model was found in the estimation of 

evapotranspiration, thus providing important information for data entry in the water 

balance for the determination of irrigation projects. The results of this study improve the 

understanding of the performance and reliability of the model used to estimate ET, 

especially in relation to its application in coffee crops, as well as in different irrigation 

management along the space and time, eliminating problems of ET estimation in only 

one station fixed in the area. 
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ACTUAL EVAPOTRANSPIRATION ESTIMATION OF ROBUSTA COFFEE 

FIELD USING SAFER ALGORITHM 

 

Marcus Andre Braido Pinheiro; Marcelo de Carvalho Alves 

 

ABSTRACT 

Agriculture is the most important land use activity in the world. Agriculture not only 

affects the change of land cover but also has a profound impact on the sustainable 

development of social economy, food security, water and environment, ecosystem 

services, climate change, and carbon cycles. Against this background, robusta coffee is 

the most important culture in the State of Espírito Santo, Brazil. The aim of this study 

was to estimate evapotranspiration using the SAFER algorithm in an irrigated Robusta 

coffee crop. In addition to map the actual ET (ETSAFER) estimated by the algorithm, 

in order to observe the behavior of evapotranspiration within the field. In order to apply 

the SAFER algorithm, we use the Agriwater R package, we use 15 Sentinel 2 satellite 

images from 2019 to 2021 and meteorological station data to input the information’s in 

the R software. Boxplots were used to compare the different data through the dates. By 

the application of the package, we could generate kc values, Land Surface Temperature 

(LST), NDVI, and Evapotranspiration data from the 15 dates. The application of the 

SAFER algorithm allowed understand the variation of ET in the coffee drip-irrigated 

field with high spatial (10 m) and temporal (5 days) resolution, and from this variation 

in ET, understand how to best manage irrigation in this crop. Therefore, water 

management of agricultural crops can be performed with free satellite imagery and 

simple weather data. 

 

KEYWORDS: Land Surface Temperature, Sentinel 2, Irrigation Management, Coffea 

canephora 

 

1. INTRODUCTION 

Coffee is one of the most important agricultural commodities in international 

trade, playing a crucial role in the economy of several African, American, and Asian 

countries (INTERNATIONAL COFFEE ORGANIZATION, 2019; LEWIN; 
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GIOVANNUCCI; VARANGIS, 2004; MAFUSIRE et al., 2010). The total world 

production was estimated to be more than 150 million 60-kg bags of coffee beans over 

the past five years, of which 80 to 85% were exported (INTERNATIONAL COFFEE 

ORGANIZATION, 2020). Current coffee bean production is dominated by arabica 

coffee (Coffea arabica L.), which represents roughly 60%; the remaining 40% being for 

Robusta coffee (C. canephora Pierre ex A. Froehner) (INTERNATIONAL COFFEE 

ORGANIZATION, 2020). Brazil has a planted area of 2.2 million hectares, which 

corresponds to 48.8 million bags. Of this amount, Robusta coffee contributes 15.4 

million bags in an area of 410.3 thousand hectares (CONAB, 2021). 

Coffee production is strongly influenced by environmental conditions and is thus 

threatened by the increasing variability and changes in climate patterns across several 

major producing regions worldwide (BUNN et al., 2015; DAMATTA et al., 2019). 

Extreme weather events associated with the El Niño Southern Oscillation 

(ENSO) (e.g, droughts, and frosts) can influence substantially both arabica and robusta 

coffee commodity markets (CASHIN; MOHADDES; RAISSI, 2017; SEPHTON, 2019; 

UBILAVA, 2012). It is therefore vital to develop decision support tools for increasing 

the preparedness of the various stakeholders of the coffee industry, from smallholder 

farmers to agribusinesses to governments. 

Thus, evapotranspiration (ET) is an important process in the terrestrial water and 

energy cycles. As such, quantifying ET improves understanding of the water cycle and 

hydrological processes in terrestrial ecosystems (STOCKER; RAIBLE, 2005). The 

implementation of highly efficient agricultural water-saving measures undoubtedly has 

a significant effect on the water cycle in agricultural regions. Compared to other 

hydrological processes in the land-surface water cycle, the relationship between ET and 

agricultural water-saving measures is arguably more sensitive and direct (MCCABE; 

WOOD, 2006). 

Site-specific irrigation management requires knowing crop ET for each 

management zone. Conventional ET estimation techniques, such as Bowen ratio, eddy 

covariance, surface renewal, weighing lysimeter, soil water balance, and scintillometer, 

can provide relatively accurate estimates of ET at field scale but are not spatially 

explicit and some are expensive and not readily available to growers (WANG; 

DICKINSON, 2012). 

ET algorithms based on remote sensing data is widely used because these one 

allows estimating ET for larger and more heterogeneous areas (ALLEN et al., 2011; 
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BASTIAANSSEN et al., 1998; HSSAINE et al., 2018; SUN et al., 2011; TEIXEIRA et 

al., 2013c) and provide knowledge about the spatial-temporal distribution of ET (CAO 

et al., 2021; LIAQAT; CHOI; AWAN, 2015). Furthermore, operational costs are 

relatively lower. 

Among the existing models, the Simple Algorithm for Evapotranspiration 

Retrieving (SAFER) stands out because it was developed for use in irrigated areas of 

semiarid regions (TEIXEIRA, 2010). SAFER is a biophysically realistic model of 

simple operation that is efficient in the spatial mapping of surface evapotranspiration 

estimates (COAGUILA et al., 2017; TEIXEIRA et al., 2013a, 2016).  

According to (TEIXEIRA, 2010), SAFER requires information on images 

obtained from remote sensors, such as the Normalized Difference Vegetation Index 

(NDVI) (ROUSE et al., 1974), albedo (α) and surface temperature (Ts). Such 

information can be used to obtain the evapotranspiration fraction of the surface, which, 

when associated with the reference evapotranspiration (ET0) proposed by Penman-

Monteith (ALLEN et al., 1998), enables the mapping of surface evapotranspiration 

(ETSAFER). 

The aim of this study was to estimate evapotranspiration using the SAFER 

algorithm in an irrigated Robusta coffee crop and map the actual ET (ETSAFER) 

estimated by the algorithm, in order to observe the behavior of evapotranspiration 

within the field. 

 

2. MATERIAL AND METHODS 

2.1. Study Area 

The study was conducted on a commercial coffee field in the municipality of 

Marilândia, located in the northwest region of the state of Espírito Santo, Brazil (Figure 

1). The site is in the rectangle bounded by geographic coordinate pairs (Datum SIRGAS 

2000): -40.541; -19.407; -40.532, -19.402, with an average altitude of 95 m. The 

climate of the region is Aw, that is, tropical with rainy summers and dry winters, with 

annual precipitation of 1134.0 mm (DA SILVA et al., 2010). The cultivated field covers 

an area of 10.36 ha, the entire cultivated area is irrigated by dripping, the harvest 

happens between May and July, was present in a sloped area, the highlighted area is 

shown in Figure 1. 
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Figure 1 - Location of study site. Meteorological station is in red. 

 

2.2. Meteorological data 

Weather freely available 60-minute data from one agrometeorological station 

from Instituto Nacional de Meteorologia (INMET) installed at 300 m from the 

experimental area was used in this study. 

Data of wind speed at 2m height (U2, m/s), maximum and minimum temperature 

(Tmax Tmin, ºC), solar radiation (Ra, MJ m2 d–1), relative humidity (RH, %), and 

rainfall (mm) were used, during the years 2019 to 2021. These data were used to 

determine daily reference evapotranspiration (ET0) and SAFER coffee 

evapotranspiration (ETSAFER). 

 

2.3. Orbital data 

Satellite images (spectral bands) obtained free of charge from the Google Earth 

Engine (GEE) (GORELICK et al., 2017) Cloud computing platform was used for 
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mapping the evapotranspiration. 15 images from 2019 (02/25, 03/17, 06/20, 07/05, 

07/15 and 08/19), 2020 (01/11, 02/10, 06/09, 06/24, 07/09, 07/14, 09/27 and 10/02) and 

2021 (03/06) were used. These dates were chosen because there were no clouds in the 

areas of interest. 

The images come from the MultiSpectral Instrument (MSI) sensor aboard the 

Sentinel 2 satellite. The Sentinel 2 mission is a constellation with two twin satellites. 

The MSI sensor have 13 bands, in this study, we use the bands with a spatial resolution 

of 10 m, a temporal resolution of 5 days and a radiometric resolution of 12 bits. 

The bands used have wavelengths referring to the spectral ranges of blue 

B2(0.46 – 0.52 µm), green B3(0.53-0.59 µm), red B4(0.63-0.69µm) and near-infrared 

B8(0.797-0.887 µm). 

 

2.4. Actual crop evapotranspiration (ET) estimation 

Meteorological data were obtained by the INMET automatic meteorological 

station (CITAR). The data collected were temperature, relative air humidity, solar 

radiation and wind speed. The estimation of reference evapotranspiration (ET0) by the 

Penman-Monteith method FAO-56 (Equation 1) is according to Allen et al. (1998): 

( ) ( )

( )
0 2
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= − + −
+

+ + ,
            (1) 

where ET0 is the reference evapotranspiration, mm d−1; Rn is the net radiation on the 

surface, MJ m-2 d−1; G is the soil heat flux, MJ m-2 d−1; t is the average air temperature, 

°C; U2 is the wind speed at a height of 2 m, m s−1; es is the saturation vapor pressure, 

kPa; ea is the partial vapor pressure, kPa; s is the slope of the saturation vapor pressure 

curve, kPa ºC−1; and γ is the psychrometric coefficient, kPa ºC−1. 

Evapotranspiration mapping was performed using SAFER, as described by 

(TEIXEIRA, 2010). To obtain SAFER evapotranspiration, it is necessary to have 

information of monochromatic reflectance for the bands corresponding to the blue (B2), 

green (B3), red (B4) and near-infrared (B8) wavelengths. These data are necessary to 

calculate the planetary albedo, surface albedo, brightness temperature, surface 

temperature, and NDVI. Subsequently, the evapotranspiration fraction (ET/ET0) is 

estimated, as described by (TEIXEIRA; TONIETTO; LEIVAS, 2016), and 

demonstrated in the flowchart of Figure 2. 
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Figure 2 – Flowchart of ET0 and ETSAFER measurement. 

 

For the Land Surface Temperature (LST) calculation, was used air temperature 

together with satellite measurements by applying the residual method. According to 

(SILVA; MANZIONE; ALBUQUERQUE FILHO, 2018), the daily LST values can be 

estimated by Equation (2). 
4

4 A A L sw

S

TLST ε σ α τ
ε σ
+

=                (2) 

where sw is the shortwave atmosphere transmissivity defined as 44% of RG to 

the incident solar radiation at the top of atmosphere , values ɛA and ɛS are respectively 

the atmospheric and surface emissivity’s, σ is the Stefan-Boltzmann constant (5.67x108 

W m2 K4) and αL coefficient can be explained by daily variations (SILVA; 

MANZIONE; ALBUQUERQUE FILHO, 2018; TEIXEIRA et al., 2014a) by Equation 

(3). 

L AcT dα = −                  (3) 

where TA is the daily average air temperature from agrometeorological station 

inside the study area with leaf area index (LAI) of 2.88 and estimated albedo of 0.23, 

RG is the 24-h values of global solar radiation and c and d are regression coefficients 

equal to 6.99 and 39.93 (TEIXEIRA et al., 2014a). 

Following (TEIXEIRA et al., 2008, 2014b), ɛA and ɛS were calculated as 

Equation (4 and 5): 

( )ln Ab
A A swε α τ= −                 (4) 
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lnS S SNDVI bε α= +                 (5) 

where αA, bA, αS and bS are regression which, from (TEIXEIRA, 2010), were 

considered, respectively, 0.94, 0.10, 0.06 and 1.00. Teixeira et al. (2009) calibrated ɛA 

and ɛS with R2 of 0.75 and 0.90 respectively. 

Albedo is defined as the ratio between reflected and incident sunlight and is an 

important parameter in the study of climate change, desertification, fires, and 

environmental impacts (SILVA et al., 2005). For estimating surface albedo, first, top-

of-atmosphere albedo (αTOA) data were obtained by Equation (6).  

( )TOA P λα ω ρ=∑                 (6) 

where: ωP is the weight coefficient for each band and ρλ is the surface 

reflectance of bands 2, 3, 4 and 8 (MSI). The weights for the different bands were 

computed as the ratio of the amount of the incoming shortwave radiation from the sum 

in each band and the sum of incoming shortwave radiation for the bands at the top of the 

atmosphere (TOA). 

Then, αTOA was transformed to surface albedo data (TEIXEIRA, 2010) using 

Equation (7). 

0 TOAb cα α= +                 (7) 

where b and c are regression coefficients, which for a 24-h period was 

considered as 1.70 and 0.13, obtained from field and satellite measurements 

(TEIXEIRA et al., 2009, 2013b, 2014b) and was calibrated with an R2 = 0.96 

(TEIXEIRA, 2010). 

The NDVI is an indicator related to the land cover and vegetation stages 

(ROUSE et al., 1974) obtained from satellite image as Equation (8): 

NIR RED

NIR RED

NDVI ρ ρ
ρ ρ

−
=

+
                (8) 

where: ρNIR and ρRED refer to the reflectance of the near infrared band and the red 

band, respectively.  

Applying the SAFER algorithm, the ratio of the actual (ET) to the reference 

(ET0) evapotranspiration, ETf, was modeled at the satellite overpass time (TEIXEIRA, 

2010; TEIXEIRA et al., 2013c, 2017) as follows Equation (9): 

0

0

expf
TET a b

NDVIα
  

= +  
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              (9) 
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where: a and b are regression coefficients, 1.8 and –0.008, respectively, 

applicable for the Brazilian semiarid conditions, according to (TEIXEIRA et al., 2013c). 

This equation (ETf) was established for Brazilian semiarid conditions involving 

irrigated crops and natural vegetation under different meteorological and hydrological 

conditions, based on simultaneous field data from four flux towers and Landsat images 

(TEIXEIRA, 2010). Following the technical formalism, the term ETr also could be 

called “crop coefficient” when modeling is performed on irrigated areas, respecting the 

nomenclature from the FAO-56 manual (ALLEN et al., 1998), and “evapotranspiration 

fraction” in areas without irrigation, as natural vegetation and rainfed crops, because it 

is a less restricted term. 

Amazirh et al. (2017), estimated T0 using Landsat images and the Planck 

equation for irrigated wheat crops and compared the results with in situ measurements. 

The authors found RMSE values ranging from 0.91 to 2.36 °C. Oliveira-Guerra et al. 

(2018) and Rahimzadegan & Janani (2019) used the same procedures to calculate ET0 

to obtain evapotranspiration in their respective research. 

In this way, SAFER evapotranspiration (ETSAFER) was calculated using Equation 

(10): 

0SAFER fET ET ET=               (10) 

where ETf is the evapotranspiration fraction, and ET0 is the reference 

evapotranspiration calculated by the Penman-Monteith (PM) equation. 

ETSAFER is composed of soil evaporation and plant transpiration and depends 

primarily on energy supply, the vapor pressure gradient between surface and 

atmosphere, and wind speed (aggregates in reference evapotranspiration). Evaporation 

in soil, specifically, is directly dependent on soil moisture. Soil water content and its 

ability to conduct water to the roots should be considered (ALLEN et al., 1998). 

 

2.5. Statistical analysis 

In this study, we use the boxplot to better understand the data distribution among 

the dates studied. For the data analysis, the R software (R CORE TEAM, 2021) was 

used to work with meteorological and satellite data. We used Agriwater R package to 

perform ETSAFER estimation. 
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3. RESULTS AND DISCUSSION 

Figure 3 shows the daily temperature (Maximum and Minimum) and 

precipitation during the entire period studied. As seen, 2019 was an atypical year, with 

scarce rainfall (656.0 mm). However, 2020 has already started with high rainfall 

(1381.4 mm), a characteristic that lasted until the end of March, with a dry winter and 

more concentrated rainfall in November. Corroborating the local climatic classification. 

The volume of precipitation on 03/02/2020 (151.4 mm) stands out. 

Evaluating historical data, da Silva et al. (2010) states that the municipality of 

Marilândia has two distinct periods, a rainy period in which the monthly average 

precipitation is 150 mm, ranging between 80 and 205 mm (October to March) and a dry 

period in which the monthly average precipitation is 39 mm, ranging between 28 and 60 

mm. Information consistent with those found in our study. 

The temperature (maximum and minimum) had standard characteristics for the 

local climatic classification, with hot summers and cooler winters. 

 
Figure 3 – Meteorological characterization of the area. 

 

Figure 4 shows a boxplot of kc values. Pixel values ranged from 0 to 1.83, with 

25 % of the data (third quartiles) normally between 0.76 and 1.83, with an mean value 

of 0.566. In 2020, between Day of the Year (DOY) 161 to 196 shows the high median 

values of kc, most likely due to the large volume of rain that occurred on earlier dates, 

making the coffee crop more vigorous. NDVI data (Figure 6) on the same dates 

corroborate the kc data analyzed, however the kc did not show any outliers.  



 

80 
 

 
Figure 4 - Boxplot of kc values for different dates of irrigated coffee field. 

 

Costa et al. (2019), evaluating evapotranspiration using the SEBAL algorithm in 

coffee plantations, found a mean Kc value of 0.6 for young coffee plants, with a 

standard deviation of 0.43, on mean. Already in adult plants, the mean Kc value was 

0.85, with a mean standard deviation of 0.48. 

Silva, Manzione, and Albuquerque Filho (2018), applied SAFER in sugarcane 

crops in the central-western part of São Paulo State, Brazil, and reported that some ETf 

(also called kc) values were close to zero, as observed in our study. Teixeira et al. 

(2015) verified some pixels with ETf values close to 1.40, with values normally ranging 

between 0.2 and 1.2. 

Figure 5 shows a boxplot of LST values for the coffee field in the different 

seasons of 2019, 2020, and 2021. LST ranged from 20.77 to 43.87 °C. The different 

dates had different LST values. However, there is little variation within the same date. 

The mean LST was approximately 32.2 °C. Maximum LST values were observed 

during the summer season when there is the highest air temperature (T0) and radiation. 



 

81 
 

 
Figure 5 - Boxplot of (LST) values for different dates of irrigated coffee field. 

 

The LST is indirectly related to the latent heat flux (LE) through the energy 

balance equation (Seguin et al., 1983). It provides important information on surface 

moisture conditions (LAOUNIA et al., 2017). 

Thus, variability of these parameters within the same field is more influenced by 

the different crop phenological stages, unlike natural vegetation, where the variability of 

these parameters can primarily be attributed to variations in global solar radiation and 

surface moisture conditions (TEIXEIRA et al., 2017). According to (TEIXEIRA et al., 

2013c), the large dispersion of values also depends on the coincidence between the 

imaging days and the presence of irrigation in the field. 

NDVI values followed the climatic season, with winter with lower values and 

summer with higher values (Figure 6). Maximum NDVI values were approximately 0.9, 

while minimum values were close to 0.15, with a mean value of approximately 0.7. The 

minimum value, approximately 0.15, was commonly observed in bare soil (probably in 

the crop streets), while the maximum value was observed after the period of massive 

raining season. 

Costa et al. (2019), found the NDVI with a maximum value of 0.87 in a coffee 

field when analyzing the evapotranspiration on coffee plants in center pivots in the 

Northwestern region of the state of Minas Gerais. 
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Figure 6 - Boxplot of NDVI values for different dates of irrigated coffee field. 

 

Figure 7 shows a boxplot of evapotranspiration values. Pixel values ranged from 

0 to 5.55 mm, with a mean value of 2.0 mm. In 2020, the DOY 176 shows 

approximately the high values of ET. In 2021, the DOY 065 also shows the high values 

of evapotranspiration, corresponding to the climatic behavior of the region (rainy 

summer and dry winter). The values follow the same pattern as the values found in the 

calculation of NDVI and kc (Figures 4 and 6) and inverse of the LST (Figure 5). 

Silva, Teixeira, and Manzione (2019), show this behavior when they developed 

the modeling of the SAFER algorithm, in which, higher values of ET occur with lower 

values of LST, higher values of NDVI, and kc. 

The evapotranspiration amplitude of 5.55 mm day-1 (difference between the 

highest and lowest ET), despite the predominance of a high canopy, confirms the high 

heterogeneity of the system regarding land use and dependence on the rainfall regime 

for the economic development of the cropland, and results close to the values in the dry 

season were reported in Northwestern São Paulo by (COAGUILA et al., 2017). 

Filgueiras et al. (2019) and Purevdorj et al. (1998), studied direct relationships between 

vegetation cover and satellite indexes including NDVI. (RIBEIRO et al., 2017) 

concluded that NDVI was efficient in differentiating phenological stages of the corn and 

soybean crop respectively. 
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Figure 7 - Boxplot of Evapotranspiration values for different dates of irrigated coffee 

field. 

 

The different images acquired during the coffee crop cycle can demonstrate the 

spatial and temporal distribution of the evapotranspiration calculated by the SAFER 

algorithm (Figure 8), which is a great advantage of the method for irrigation 

management.  

Also in Figure 8, we can conclude that within the same area, there are different 

evapotranspiration behaviors. This can occur due to poor management of the method. 

Thus, with the images, one can identify possible failures and correct the management to 

avoid water and productivity losses. 

Seeking the best irrigation management, the interpretation of the irrigated area 

can happen pixel by pixel, making the analysis very detailed. However different 

analyzes of the ET can be performed. Producers who do not have detailed control of 

irrigation, as is the situation in the studied area, an advance is to subdivide the area and 

larger plots. The subdivision makes decision-making more adapted to the reality of each 

type of management, whether with high technology or not. 
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Figure 8 – spatial data of ETSAFER calculated with ET0 estimated by standard PM 

 

4. CONCLUSIONS 

The joint applications of the SAFER algorithm and the FAO Penman-Monteith 

method allowed understand the variation of ET in the coffee drip-irrigated field with 

high spatial (10 m) and temporal (5 days) resolution, and from this variation in ET, 

understand how to best manage irrigation in this crop. 

The present study is unprecedented, but future research should be conducted 

considering other regions and a larger number of irrigated fields, with different 

irrigation management. Even so, the results found in this research are promising and can 

serve as a basis for future studies and can assist farmers and technicians in obtaining 

surface evapotranspiration with a high spatial and temporal resolution. 

Therefore, water management of agricultural crops can be performed with free 

satellite imagery and simple weather data. 
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