

MARIANA DE LIMA SANTOS

IDENTIFICATION, CHARACTERIZATION AND COMPARATIVE ANALYSIS OF PATTERN RECOGNITION RECEPTORS (PRR) AND NUCLEOTIDE BINDING SITE-LEUCINE RICH REPEAT (NBS-LRR) IN Coffea spp. GENOME

LAVRAS - MG 2021

MARIANA DE LIMA SANTOS

IDENTIFICATION, CHARACTERIZATION AND COMPARATIVE ANALYSIS OF PATTERN RECOGNITION RECEPTORS (PRR) AND NUCLEOTIDE BINDING SITE-LEUCINE RICH REPEAT (NBS-LRR) IN Coffea spp. GENOME

Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Biotecnologia Vegetal, área de concentração em Biotecnologia Vegetal, para a obtenção do título de Doutor.

Dr. Mário Lúcio Vilela de Resende Orientador

> LAVRAS – MG 2021

Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a).

Santos, Mariana de Lima.

Identification, characterization and comparative analysis of pattern recognition receptors (PRR) and nucleotide binding siteleucine rich repeat (NBS-LRR) in *Coffea* spp.Genome / Mariana de Lima Santos. - 2021.

123 p.

Orientador(a): Mario Lúcio Vilela de Resende.

Tese (doutorado) - Universidade Federal de Lavras, 2021. Bibliografia.

1. PRR. 2. NBS-LRR. 3. Coffea. I. de Resende, Mario Lúcio Vilela. II. Título.

MARIANA DE LIMA SANTOS

IDENTIFICATION, CHARACTERIZATION AND COMPARATIVE ANALYSIS OF PATTERN RECOGNITION RECEPTORS (PRR) AND NUCLEOTIDE BINDING SITE-LEUCINE RICH REPEAT (NBS-LRR) IN Coffea spp. GENOME

IDENTIFICAÇÃO, CARACTERIZAÇÃO E ANÁLISE COMPARATIVA DE RECEPTORES DE RECONHECIMENTO DE PADRÕES (PRR) E SÍTIO DE LIGAÇÃO DE NUCLEOTÍDEO-REPETIÇÕES RICAS EM LEUCINA (NBS-LRR) NO GENOMA DE Coffea spp.

APROVADA em 28 de outubro de 2021.

Dr. Mario Lúcio Vilela de Resende UFLA/INCT-Café Dra. Leonor Guerra-Guimarães ULisboa/CIFC Dra. Eveline Teixeira Caixeta EMBRAPA Café /UFV Dr. Márcio Fernando Ribeiro de Resende Júnior UF Dr. Jose Carlos Huguet-Tapia UF

> Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Biotecnologia Vegetal, área de concentração em Biotecnologia Vegetal, para a obtenção do título de Doutor.

Dr. Mário Lúcio Vilela de Resende Orientador

> LAVRAS – MG 2021

Para aqueles que tiveram medo, mas foram com medo mesmo, Ofereço!

Para os meus avós, **Maria Lindaura** e **Euclides** (in memoriam), que formaram a minha essência, **Dedico!**

AGRADECIMENTOS

À minha família, em especial ao meu pai Almir, minha mãe Cleunice, meu irmão João Luiz, minha irmãzinha Júlia, vovó Lindaura e vovô Euclides (*in memoriam*), que estão presentes em todas as minhas conquistas.

Ao meu "namorido" Antonio Carlos (Tony) por todo amor e companheirismo nessa longa jornada, desde a iniciação científica, sempre me incentivando na busca de novos desafios.

À minha gatinha Joana Bosca (Bosquinha), por alegrar todos os meus dias desde que chegou, sempre dormindo ao lado do computador (rs) enquanto eu trabalhava na tese.

A todos do laboratório de Fisiologia do Parasitismo, por me aceitarem como parte do grupo e pelo convívio e amizade, em especial para Dra. Deila (Deiloca, Deiloca querida!) por ser minha mãezona e amiga em lavras, por todas as conversas, idas ao supermercado, açaís, bolos e presentes de aniversário. Agradeço também a Bárbara, Matheus, Natália e Tharyn por toda ajuda e orientação para a condução do primeiro artigo da tese.

Ao meu orientador, Prof. Dr. Mário Lúcio por aceitar me orientar, confiar no meu trabalho e me proporcionar oportunidades para meu crescimento profissional.

À Dra. Sandra Mathioni por ser a idealizadora do projeto base do primeiro artigo da tese, o que foi essencial para a obtenção de recursos e desenvolvimento do artigo.

Ao Dr. Márcio Resende por ter me dado a oportunidade de passar um período do doutorado como Visiting Research na University of Florida, trabalhar com bioinformática e conhecer o Dr. Jose Carlos Huguet-Tapia e o Dr. Jeremy Brawner. Experiência que me trouxe enorme aprendizado profissional e principalmente pessoal.

Ao Dr. Jose Carlos Huguet-Tapia por me acompanhar durante o desenvolvimento do segundo artigo da tese, sempre disposto a tirar minhas dúvidas e me ensinar novas possibilidades.

Ao Dr. Gabriel, pela parceria desde o mestrado, parceria esta que me fez enxergar um gap que resultou no segundo artigo da tese.

À toda comunidade científica de bioinformática pelos vídeos e tutoriais, aos quais recorri por inúmeras vezes.

À Universidade Federal de Lavras e ao programa de Biotecnologia Vegetal, pela oportunidade de realização do doutorado.

À FAPEMIG e INCT do Café pelo apoio financeiro, uso de equipamentos científicos e utilização das cultivares de café para coleta de frutos e inóculo de ferrugem para a condução do primeiro artigo da tese.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Código de financiamento 001, pela bolsa de estudo concedida.

Muito Obrigada!

"O que é muito difícil é você vencer a injustiça secular que dilacera o Brasil em dois países distintos: o país dos privilegiados e o país dos despossuídos."

Ariano Suassuna

RESUMO

O café apresenta destaque no agronegócio mundial, especialmente no Brasil. Entretanto, a produção desta commodity tem sido afetada devido à ocorrência de diversas doenças, dentre elas a ferrugem, cujo agente etiológico é o fungo biotrófico Hemileia vastatrix. Uma estratégia promissora para o controle de doenças é o estudo dos receptores que desencadeiam a sinalização para o mecanismo de resistência em plantas. Portanto, os objetivos deste trabalho foram identificar e caracterizar receptores de reconhecimento de padrões (PRRs) no genoma de Coffea arabica e analisar a expressão gênica destes receptores em cultivares contrastantes de C. arabica inoculada com H. vastatrix. Além de identificar loci NLR (nucleotide-binding site leucine-rich repeat - NBS-LRR) em genomas de C. arabica, C. canephora e C. eugenioides usando o NLR-annotator; caracterizar a distribuição destes loci nos genomas de Coffea spp. e compreender a contribuição de C. canephora e C. eugenioides para o repertório de NLRs em C. arabica. Foram utilizadas abordagens baseadas no princípio de similaridade de sequência, conservação de motivos e domínios, análises filogenéticas, modulação da expressão gênica e análise de grupos ortólogos. Os resultados demostram que os PRRs candidatos em C. arabica (Cal-LYP, Ca2-LYP, Cal-CERK1, Ca2-CERK1, Ca-LYK4, Cal-LYK5 e Ca2-LYK5) apresentam alta similaridade com PRRs de referência usados: Os-CEBiP, At-CERK1, At-LYK4 e At-LYK5. Os ectodomínios destes receptores apresentaram alta identidade ou similaridade com as sequências de referência, indicando conservação estrutural e funcional. Os PRRs candidatos são filogeneticamente relacionadas aos PRRs de referência (em Arabidopsis e arroz) e aqueles descritos em outras espécies de plantas. Todos os receptores candidatos tiveram sua expressão induzida após a inoculação com H. vastatrix, desde o primeiro tempo avaliado, às 6 horas pós-inoculação (hpi). Houve um aumento significativo às 24 hpi para a maioria dos receptores avaliados e uma supressão às 48 hpi. Um total de 1311 loci NLR não redundantes foram identificados em C. arabica, 927 em C. canephora e 1079 em C. eugenioides, dos quais 809, 562 e 695 são loci completos, respectivamente. O NLR-annotator apresentou alta sensibilidades e especificidades (acima de 99%) para identificar loci NLRs em café, além de aumentar a capacidade de detecção de NLR putativos nos genomas estudados. Os loci NLRs no café são distribuídos em todos os cromossomos e são organizados principalmente em clusters. O genoma de C. arabica apresenta um número menor de loci NLR quando comparado à soma dos genomas parentais (C. canephora e C. eugenioides). Existem NLRs ortólogos (ortogrupos) compartilhados entre café, tomate, batata e NLRs de referência e aqueles que são compartilhados apenas entre espécies de café. A análise filogenética demonstrou NLRs ortólogos compartilhados entre C. arabica e os genomas parentais e aqueles que foram possivelmente perdidos. Os membros da família NLR no café são subdivididos em dois grupos principais: TIR-NLR (TNL) e não-TNL. Os não-TNLs parecem representar um importante repertório de genes de resistência em café. Esses resultados podem subsidiar estudos funcionais de PRRs e NLRs e contribuir para o uso destes receptores no melhoramento genético do café visando o desenvolvimento de cultivares resistentes.

Palavras-chave: Resistência de amplo espectro. Receptores de reconhecimento de padrões. Ferrugem do café. Coffea. Genes de resistência NBS-LRR.

ABSTRACT

Coffee stands out in world agribusiness, especially in Brazil. However, the production of this commodity has been affected due to the occurrence of several diseases, including rust, whose etiologic agent is the biotrophic fungus Hemileia vastatrix. A promising strategy for disease control is the identification and study of receptors that trigger the signaling for the resistance mechanism in plants. Therefore, the objectives of this work were to identify and characterize pattern recognition receptors (PRRs) in the Coffea arabica genome and analyze the gene expression of these receptors in contrasting cultivars of C. arabica inoculated with H. vastatrix. Besides identifying NLR loci (nucleotide-binding leucine-rich repeat site - NBS-LRR) in C. arabica, C. canephora and C. eugenioides genomes using the NLR-annotator; characterize the distribution of these loci in *Coffea spp.* and understand the contribution of *C. canephora* and *C.* eugenioides to the NLR repertoire of C. arabica. Approaches based on the principle of sequence similarity, motif and domain conservation, phylogenetic analysis, gene expression modulation and ortholog group analysis were used. The results demonstrate that the candidate PRRs in C. arabica (Cal-LYP, Ca2-LYP, Cal-CERK1, Ca2-CERK1, Ca-LYK4, Cal-LYK5 and Ca2-LYK5) have high similarity with the reference PRRs used: Os-CEBiP, At-CERK1, At-LYK4 and At-LYK5. The ectodomains of these receptors showed high identity or similarity with the reference sequences, indicating structural and functional conservation. The candidate PRRs are phylogenetically related to reference PRRs (in Arabidopsis and rice) and those described in other plant species. All candidate receptors had their expression induced after the inoculation with *H. vastatrix*, since the first time of sampling at 6 hours post-inoculation (hpi). There was a significant increase at 24 hpi for most receptors evaluated and a suppression at 48 hpi. A total of 1311 non-redundant NLR loci were identified in C. arabica, 927 in C. canephora and 1079 in C. eugenioides, of which 809, 562 and 695 are complete loci, respectively. The NLRannotator showed extremely high sensitivities and specificities (over 99%) for identifying NLR loci in coffee, besides to increasing the detection capability of putative NLRs in the studied genomes. The NLR loci in coffee are distributed among all chromosomes and are organized mostly in clusters. The C. arabica genome present a smaller number of NLR loci when compared to the sum of the parental genomes (C. canephora and C. eugenioides). There are orthologous NLRs (orthogroups) shared between coffee, tomato, potato and reference NLRs and those that are shared only between coffee species. Phylogenetic analysis demonstrated orthologs NLRs shared between C. arabica and the parental genomes and those that were possibly lost. The NLR family members in coffee are subdivided into two main groups: TIR-NLR (TNL) and non-TNL. The Non-TNLs seem to represent an important repertoire of resistance genes in coffee. These results can support functional studies of PRRs and NLRs and contribute to the use of these receptors in the coffee breeding, aiming at the development of resistant cultivars.

Keywords: Broad-spectrum resistance. Pattern Recognition Receptor. Coffee rust. Coffea. NBS-LRR Resistance Genes.

SUMÁRIO

PRIMEIRA PARTE
1. INTRODUÇÃO GERAL
REFERÊNCIAS16
SEGUNDA PARTE – ARTIGOS20
ARTIGO 1 - LysM RECEPTORS IN Coffea arabica: IDENTIFICATION CHARACTERIZATION, AND GENE EXPRESSION IN RESPONSE TO <i>Hemileia</i> <i>vastatrix</i>
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
CONCLUSION
ACKNOWLEDGMENTS 48
REFERENCES
SUPPORTING INFORMATION 60
FIGURES
SUPPORTING INFORMATION – FIGURES AND TABLE
ARTIGO 2 - GENOME-WIDE IDENTIFICATION, CHARACTERIZATION, AND COMPARATIVE ANALYSIS OF NLR RESISTANCE GENES IN <i>Coffea</i> spp
INTRODUTION
MATERIALS AND METHODS80
RESULTS
DISCUSSION
ACKNOWLEDGMENTS90
REFERENCES
TABLE AND FIGURES 99
SUPPLEMENTARY MATERIAL 104

PRIMEIRA PARTE

1 INTRODUÇÃO GERAL

O café pertence ao gênero *Coffea*, o qual é constituído por mais de 100 espécies botânicas (DAVIS *et al.*, 2006), entretanto as espécies mais cultivadas são *Coffea canephora e Coffea arabica. C. canephora* é diploide (2n = 2x = 22 cromossomos) enquanto *C. arabica* é tetraploide (2n = 4x = 44 cromossomos), originada da hibridização natural entre *C. canephora* e *C. eugenidoides* (BAWIN *et al.*, 2020; DENOEUD *et al.*, 2014). O café é uma bebida apreciada em todo o mundo, o que movimenta economias locais e o mercado internacional. Para 2020/2021 o consumo mundial de café é estimado em 167 milhões de sacas de 60kg, o que representa um aumento de 1,9%, mesmo com as restrições impostas pela pandemia do Covid-19. Neste mesmo período, a estimativa é que o volume total de produção aumente 0,4%, passando de 168,94 milhões de sacas para 169,60 milhões (ICO, 2021).

Dentre os países produtores de café, o Brasil se destaca como maior produtor mundial, sendo também um dos maiores consumidores. Em 2020, ano de bienalidade positiva e safra recorde, a produção brasileira foi de aproximadamente 63,08 milhões de sacas (48,77 de *C. arabica* e 14,31 de *C. canephora*) e o consumo interno foi estimado em 21,2 milhões de sacas (ABIC, 2020; CONAB, 2020). Entre os meses de janeiro a abril de 2020, a exportação de café solúvel também teve um desempenho positivo no país. Oitenta e sete países compraram café solúvel do Brasil, o equivalente a 1,3 milhão de sacas, aumento de 7,3% em relação ao mesmo período do ano de 2019 (EMBRAPA, 2020). Neste mesmo ano, a receita bruta das lavouras de café brasileiras ficou em torno de R\$25,00 bilhões, sendo que só o estado de Minas Gerais contribuiu com R\$15,43 bilhões (EMBRAPA, 2020a). Neste estado foram produzidas aproximadamente 35 mil sacas de café beneficiadas, com um aumento de 41,1% em relação a 2019 (CONAB, 2020). Em 2021, ano de bienalidade negativa, as exportações seguiram em alta. Apesar da queda de produtividade, os preços internacionais atrativos mantiveram o estímulo às vendas externas. Entre janeiro e abril deste ano, o Brasil já exportou para mais de 120 países, o que corresponde a 15,8 milhões de sacas vendidas e receita de US\$ 2 bilhões (CONAB, 2021).

Os dados expostos mostram que o café é uma das principais *commodities* mundiais, apresentando grande importância para o Brasil, especialmente para o estado de Minas Gerais. Entretanto, os custos de produção são afetados devido a ocorrência de várias doenças. Entre os exemplos de doenças frequentemente associadas à cultura cafeeira encontram-se a

cercosporiose, mancha aureolada, antracnose e a ferrugem alaranjada. Além disso, a *Coffee Berry Disease* (CBD), afeta severamente plantações no Quênia (GIMASE *et al.*, 2020) e é uma doença potencial para os cafés brasileiros. Esta doença tem sido alvo de estudos preventivos para evitar devastações das lavouras, assim como ocorreu com a chegada da ferrugem, que era inexistente no Brasil até a década de 70 (ALKIMIM *et al.*, 2017; MCCOOK; VANDERMEER, 2015; ZAMBOLIM; CAIXETA, 2021).

A ferrugem alaranjada, causada pelo agente etiológico Hemileia vastatrix é uma das principais doenças e que pode levar a uma queda na produtividade de até 50%, principalmente em C. arabica, (ZAMBOLIM, 2016). A infecção deste patógeno inicia-se na parte abaxial da folha com a adesão e germinação dos urediniósporos, alongamento do tubo germinativo até o estômato e formação do apressório. A hifa produzida pelo apressório se diferencia e forma a célula-mãe do haustório e haustórios primários nas células subsidiárias e adjacentes do estômato, onde, posteriormente, se diferenciam em uma vesícula em formato de âncora na câmara subestomática. Haustórios secundários são produzidos a partir dessa vesícula nas células do mesófilo em genótipos suscetíveis (SILVA et al., 2002). Na face abaxial da folha infectada, a ferrugem é inicialmente caracterizada por pequenas manchas cloróticas, translúcidas de cor amarelo pálido e que em pouco tempo se expandem. Nesta região formamse os urediniósporos, um caraterístico "pó" de cor laranja-amarelado, produzidos repetidamente durante o ciclo da cultura e que são os responsáveis pelo início e manutenção da doença nas lavouras (AVELINO et al., 2015; RAMIRO et al., 2009; ZAMBOLIM, 2016). O fenótipo resultante é a desfolha, em consequência de lesões foliares que afetam a fotossíntese, secagem dos ramos ou morte prematura dos ramos com frutos, antes da colheita, o que consequentemente leva a redução da produtividade (SILVA et al., 2006; TALHINHAS et al., 2017).

Para que a produção cafeeira continue avançando no Brasil e no mundo, é de grande importância o manejo adequado desta cultura, buscando estratégias de curto a longo prazo e que permitam lidar com problemas fitossanitários atuais e os que podem ocorrer futuramente. Uma maneira de construir estratégias eficientes é compreender os mecanismos vegetais de reconhecimento dos fitopatógenos. Neste sentido, a identificação e estudo dos receptores que desencadeiam a sinalização para o mecanismo de defesa em plantas, seja ele de amplo espectro ou específico, vêm sendo alvo de pesquisas em diversas culturas (ALMEIDA *et al.*, 2020; BARKA *et al.*, 2020; CHEN *et al.*, 2020; JUPE *et al.*, 2012; LOZANO *et al.*, 2015; WANG *et al.*, 2021).

A percepção dos fitopatógenos pelas plantas é didaticamente dividida em duas etapas de reconhecimento e sinalização (JONES; DANGL, 2006). A primeira etapa baseia-se no

reconhecimento de moléculas microbianas conservadas, denominadas de padrões moleculares associados a patógenos (PAMPs). Exemplos de PAMPS são a flagelina ou fator de elongação (EF-Tu) em bactérias, além da quitina presente na parede celular de fungos (FURUKAWA *et al.*, 2014; GÓMEZ-GÓMEZ; BOLLER, 2000; KUNZE, 2004; LIU *et al.*, 2012). Os PAMPs são reconhecidos por receptores de reconhecimento de padrões (PRRs) que ativam a imunidade disparada por PAMP (PTI- PAMP Triggered immunity) (COUTO; ZIPFEL, 2016). Estes receptores são proteínas de membranas e estão envolvidos em um mecanismo de defesa de amplo espectro, pois reconhecem grupos de organismos, não diferenciando espécies (RANF, 2017).

Os patógenos adaptados podem inibir essa primeira linha de defesa por meio da secreção de efetores específicos, codificados pelos genes de avirulência (avr), e que levam a suscetibilidade disparada por efetores (ETS - effector-triggered susceptibility). Em resposta a esta supressão, as proteínas de resistência vegetais, codificadas pelos genes de resistência (R), reconhecem direta ou indiretamente estes efetores, disparando assim a imunidade desencadeada por efetores (ETI- Effector - Triggered immunity) (BOYD *et al.*, 2013; JONES; DANGL, 2006; KOURELIS; VAN DER HOORN, 2018). Os genes R, em sua maioria, codificam proteínas intracelulares que pertencem à família NBS-LRR ou NLR (nucleotide binding site-leucine-rich repeat ou NOD-like receptors) e ativam um mecanismos de reconhecimento espécie-específica, geralmente mais forte e que caracteriza a segunda etapa de percepção (BENTHAM *et al.*, 2017; DANGL; JONES, 2001). Em um contexto evolutivo, isolados de patógenos são selecionados para perder ou ganhar novos efetores que suprimem a ETI. Em resposta, a seleção também favorece novos alelos de genes R que podem reconhecer efetores recém-adquiridos, resultando novamente em ETI (JONES; DANGL, 2006).

Entende-se que essa divisão tem um caráter didático para representar o tipo de moléculas reconhecidas e os tipos de receptores vegetais, além do modelo evolutivo cíclico em que planta e patógeno estão envolvidos. Isso é constatado com dados atuais que demonstram que ambos os tipos de reconhecimento ocorrem de forma dinâmica e contínua, convergindo em vias de sinalização para a resposta de defesa. Atualmente já se sabe que falhas na sinalização em PTI podem comprometer a robustez da ETI, especialmente na resposta de hipersensibilidade (HR), produção de ROS (espécies reativas de oxigênio) e ativação da cascata MAPK (mitogenactivated protein kinase). A PTI também co-regula múltiplas respostas em ETI, atuando de diferentes formas, a depender do tipo de NLR ativado (LU; TSUDA, 2021; YUAN *et al.*, 2021, 2021a). Descobertas recentes sugerem que a sinalização de ETI retroalimenta as respostas de PTI, formando um *continuum* que é necessário para uma resposta de defesa eficiente (NGOU

et al., 2021; THOMMA; NÜRNBERGER; JOOSTEN, 2011). Os novos dados também demonstram que ETI não desencadeia uma via imunológica separada, mas sim uma amplificação que depende da maquinaria de PTI para funcionar efetivamente (YUAN *et al.*, 2021a). Desta forma, estratégias que buscam a resistência a doenças com foco no aumento da capacidade do próprio sistema de defesa vegetal, agregando conhecimentos das respostas PTI e ETI parecem promissoras para obtenção de cultivares resistentes.

Um aspecto relevante da caracterização dos PRR entre as espécies vegetais é permitir a reengenharia do reconhecimento de PAMPs, o que pode ser um aspecto a ser explorado para o melhoramento genético (BENT; MACKEY, 2007; BOUTROT; ZIPFEL, 2017; LEE; WHITAKER; HUTTON, 2016). Além disso, o aumento da resistência de amplo espectro conferida por estes receptores, pode reduzir o impacto dos fitopatógenos, permitindo potencialmente uma resistência mais duradoura e sustentável no campo. As proteínas NLRs, por sua vez, ativam um segundo pico de resposta mais eficiente. A HR, por exemplo, é uma resposta importante na interação específica ativada por NLRs, especialmente contra patógenos biotróficos, como a ferrugem do café. Esta resposta caracteriza-se pela morte celular rápida e localizada, evitando que o patógeno se espalhe e colonize o tecido, além de poder desencadear uma resistência Sistêmica Adquirida (SAR) (LACOMBE *et al.*, 2010; ZIPFEL *et al.*, 2006).

Muitas ferramentas de bioinformática têm sido desenvolvidas ou aperfeiçoadas com o objetivo de identificar e caracterizar de forma mais precisa os receptores envolvidos na ativação da resposta de defesa em plantas. Estudos de expressão gênica em resposta a inoculação de também auxiliam nesta caracterização (FERNANDEZ-GUTIERREZ; fitopatógenos GUTIERREZ-GONZALEZ, 2021; REICHEL et al., 2021; ZHOU et al., 2018). Pipelines de bioinformática específicos para anotação de NLRs, por exemplo, estão sendo desenvolvidos com o objetivo de aumentar a capacidade de detecção de genes R desta família em genomas de plantas (KUSHWAHA et al., 2016; STEUERNAGEL et al., 2020; TODA et al., 2020). Além disso, abordagens que utilizam o Modelo de Markov Oculto (Hidden Markov Models - HMM) para análise de domínios e motivos conservados por meio de bancos de dados como o Pfam (The protein families database), SMART (Simple Modular Architecture Research Tool) ou o CDD (NCBI Conserved Domain Database) auxiliam na caracterização das proteínas codificadas por estes receptores (CHEN et al., 2021; INTURRISI et al., 2020; ZHOU et al., 2018). Agrupamentos de genes ortólogos, análises filogenéticas ou de BLAST (Basic Local Alignment Search Tool) também são úteis para classificar e indicar possíveis funções de genes R ou PRRs identificados nos genomas alvos (SEO et al., 2016; TOMBULOGLU et al., 2019).

No melhoramento genético do cafeeiro, até então, não se fez uso direcionado da resistência condicionada por PRRs. Uma das limitações para o uso destes receptores é a ausência de informações sobre o repertório de PRR no café, além da modulação da expressão gênica destes receptores em resposta a diferentes patógenos. Adicionalmente, estudos de identificação em todo o genoma e caracterização dos genes R da família NLR é escasso nesta cultura, sobretudo em *C. arabica*. Desta forma, o presente estudo teve como objetivos identificar receptores PRR no genoma de *C. arabica* e caracterizá-lo quanto a expressão gênica no patossistema ferrugem-cafeeiro. Além disso, identificar e caracterizar genes R da família NLR (ou NBS-LRR) nos genomas de *C. arabica, C. canephora* e *C. eugeniodes*, e por fim, de posse dos resultados, obter subsídios para a utilização de PRRs e NLRs nos programas de melhoramento do café.

REFERÊNCIAS

ABIC. **Evolução do consumo interno de café no Brasil**. 2020. Disponível em: https://www.abic.com.br/estatisticas/indicadores-da-industria/. Acesso em: 23 jun. 2021.

ALKIMIM, E. R.; CAIXETA, E. T.; SOUSA, T. V.; PEREIRA, A. A.; OLIVEIRA, A. C. B. DE; ZAMBOLIM, L.; SAKIYAMA, N. S. Marker-assisted selection provides arabica coffee with genes from other Coffea species targeting on multiple resistance to rust and coffee berry disease. **Molecular Breeding**, v. 37, n. 1, p. 6, 2017.

ALMEIDA, D. P. DE; CASTRO, I. S. L.; MENDES, T. A. DE O.; ALVES, D. R.; BARKA, G. D.; BARREIROS, P. R. R. M.; ZAMBOLIM, L.; SAKIYAMA, N. S.; CAIXETA, E. T. Receptor-Like Kinase (RLK) as a candidate gene conferring resistance to *Hemileia vastatrix* in coffee. **Scientia Agricola**, v. 78, n. 6, p. 1–9, 2020.

AVELINO, J.; CRISTANCHO, M.; GEORGIOU, S.; IMBACH, P.; AGUILAR, L.; BORNEMANN, G.; LÄDERACH, P.; ANZUETO, F.; HRUSKA, A. J.; MORALES, C. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. **Food Security**, v. 7, n. 2, p. 303–321, 2015.

BARKA, G. D.; CAIXETA, E. T.; FERREIRA, S. S.; ZAMBOLIM, L. In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach. **PLoS ONE**, v. 15, n. 7, p. 1–22, 2020.

BAWIN, Y.; RUTTINK, T.; STAELENS, A.; HAEGEMAN, A.; STOFFELEN, P.; MWANGA MWANGA, J. C. I.; ROLDÁN-RUIZ, I.; HONNAY, O.; JANSSENS, S. B. Phylogenomic analysis clarifies the evolutionary origin of Coffea arabica. **Journal of Systematics and Evolution**, 2020.

BENT, A. F.; MACKEY, D. Elicitors, Effectors, and R Genes: The New Paradigm and a Lifetime Supply of Questions. **Annual Review of Phytopathology**, v. 45, n. 1, p. 399–436, 2007.

BENTHAM, A.; BURDETT, H.; ANDERSON, P. A.; WILLIAMS, S. J.; KOBE, B. Animal NLRs provide structural insights into plant NLR function. **Annals of Botany**, v. 119, n. 5, p. 689–702, 2017.

BOUTROT, F.; ZIPFEL, C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. **Annual Review of Phytopathology**, v. 55, n. 1, p. 257–286, 2017.

BOYD, L. A.; RIDOUT, C.; O'SULLIVAN, D. M.; LEACH, J. E.; LEUNG, H. Plantpathogen interactions: Disease resistance in modern agriculture. **Trends in Genetics**, v. 29, n. 4, p. 233–240, 2013.

CHEN, Q.; DONG, C.; SUN, X.; ZHANG, Y.; DAI, H.; BAI, S. Overexpression of an apple LysM-containing protein gene, MdCERK1-2, confers improved resistance to the pathogenic fungus, *Alternaria alternata*, in Nicotiana benthamiana. **BMC Plant Biology**, v. 20, n. 1, p. 1–13, 2020.

CHEN, Z.; SHEN, Z.; ZHAO, D.; XU, L.; ZHANG, L.; ZOU, Q. Genome-wide analysis of lysm-containing gene family in wheat: Structural and phylogenetic analysis during development and defense. **Genes**, v. 12, n. 1, p. 1–18, 2021.

CONAB. **Safra Brasileira de Café - Boletim Café dezembro 2020**. 2020. Disponível em: https://www.conab.gov.br/info-agro/safras/cafe>. Acesso em: 19 jun. 2021.

CONAB. **Safra Brasileira de Café - Boletim de Café Maio de 2021**. 2021. Disponível em: https://www.conab.gov.br/info-agro/safras/cafe. Acesso em: 22 jun. 2021.

COUTO, D.; ZIPFEL, C. Regulation of pattern recognition receptor signalling in plants. **Nature Reviews Immunology**, v. 16, n. 9, p. 537–552, 2016.

DANGL, J. L.; JONES, J. D. G. Plant pathogens and integrated defence responses to infection. **Nature**, v. 411, n. 6839, p. 826–833, 2001.

DAVIS, A. P.; GOVAERTS, R.; BRIDSON, D. M.; STOFFELEN, P. An annotated taxonomic of the genus coffea (Rubiaceae). **Botanical Journal of the Linnean Society**, v. 152, n. 4, p. 465–512, 2006.

DENOEUD, F. *et al.* The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. **Science**, v. 345, n. 6201, p. 1181–1184, 2014.

EMBRAPA. Exportações de café solúvel do Brasil mantêm crescimento apesar da pandemia de COVID-19. 2020. Disponível em: https://www.embrapa.br/busca-de-noticias/-/noticia/53048005/exportacoes-de-cafe-soluvel-do-brasil-mantem-crescimento-apesar-da-pandemia-de-covid-19>. Acesso em: 15 jun. 2021.

EMBRAPA. **Receita bruta da lavoura dos Cafés do Brasil prevista para 2020 tem aumento de 25% em comparação com 2019**. 2020a. Disponível em: https://www.embrapa.br/busca-de-noticias/-/noticia/50684374/receita-bruta-da-lavoura-dos-cafes-do-brasil-prevista-para-2020-tem-aumento-de-25-em-comparacao-com-2019. Acesso em: 10 jun. 2021.

FERNANDEZ-GUTIERREZ, A.; GUTIERREZ-GONZALEZ, J. J. Bioinformatic-Based Approaches for Disease-Resistance Gene Discovery in Plants. **Agronomy**, v. 11, n. 11, p. 2259, 2021.

FURUKAWA, T.; INAGAKI, H.; TAKAI, R.; HIRAI, H.; CHE, F.-S. Two Distinct EF-Tu Epitopes Induce Immune Responses in Rice and *Arabidopsis*. **Molecular Plant-Microbe Interactions**, v. 27, n. 2, p. 113–124, 2014.

GIMASE, J. M.; THAGANA, W. M.; OMONDI, C. O.; CHESEREK, J. J.; GICHIMU, B. M.; GICHURU, E. K.; ZIYOMO, C.; SNELLER, C. H. Genome-Wide Association Study identify the genetic loci conferring resistance to Coffee Berry Disease (*Colletotrichum kahawae*) in *Coffea arabica* var. Rume Sudan. **Euphytica**, v. 216, n. 6, 2020.

GÓMEZ-GÓMEZ, L.; BOLLER, T. FLS2: An LRR Receptor-like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis. **Molecular Cell**, v. 5, n. 6, p. 1003–1011, 2000.

ICO. International Coffee Organization - What's New. 2021. Disponível em: https://www.ico.org/. Acesso em: 22 jun. 2021.

INTURRISI, F.; BAYER, P. E.; YANG, H.; TIRNAZ, S.; EDWARDS, D.; BATLEY, J. Genome-wide identification and comparative analysis of resistance genes in *Brassica juncea*. **Molecular Breeding**, v. 40, n. 8, p. 1–14, 2020.

JONES, J. D. G.; DANGL, J. L. The plant immune system. **Nature**, v. 444, n. 7117, p. 323–329, 2006.

JUPE, F.; PRITCHARD, L.; ETHERINGTON, G. J.; MACKENZIE, K.; COCK, P. J. A.; WRIGHT, F.; SHARMA, S. K.; BOLSER, D.; BRYAN, G. J.; JONES, J. D. G.; HEIN, I. Identification and localisation of the NB-LRR gene family within the potato genome. **BMC Genomics**, v. 13, n. 1, p. 1–14, 2012.

KOURELIS, J.; HOORN, R. A. VAN DER. Defended to the Nines: 25 years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. **The Plant Cell**, v. 30, n. 2, p. 285–299, 2018.

KUNZE, G. The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants. **the Plant Cell Online**, v. 16, n. 12, p. 3496–3507, 2004.

KUSHWAHA, S. K.; CHAUHAN, P.; HEDLUND, K.; AHREN, D. NBSPred: A support vector machine-based high-throughput pipeline for plant resistance protein NBSLRR prediction. **Bioinformatics**, v. 32, n. 8, p. 1223–1225, 2016.

LACOMBE, S. *et al.* Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. **Nature Biotechnology**, v. 28, n. 4, p. 365–369, 2010.

LEE, S.; WHITAKER, V. M.; HUTTON, S. F. Potential applications of non-host resistance for crop improvement. **Frontiers in Plant Science**, v. 7, p. 1–6, 2016.

LIU, T. *et al.* Chitin-induced dimerization activates a plant immune receptor. **Science**, v. 336, n. 6085, p. 1160–1164, 2012.

LOZANO, R.; HAMBLIN, M. T.; PROCHNIK, S.; JANNINK, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. **BMC Genomics**, v. 16, n. 1, p. 1–14, 2015.

LU, Y.; TSUDA, K. Intimate Association of PRR- and NLR-Mediated Signaling in Plant Immunity. **Molecular Plant-Microbe Interactions**, v. 34, n. 1, p. 3–14, 2021.

MCCOOK, S.; VANDERMEER, J. The Big Rust and the Red Queen: Long-Term Perspectives on Coffee Rust Research. **Phytopathology**, v. 105, n. 9, p. 1164–1173, 2015.

NGOU, B. P. M.; AHN, H. K.; DING, P.; JONES, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. **Nature**, v. 592, n. 7852, p. 110–115, 2021.

RAMIRO, D. A.; ESCOUTE, J.; PETITOT, A. S.; NICOLE, M.; MALUF, M. P.; FERNANDEZ, D. Biphasic haustorial differentiation of coffee rust (*Hemileia vastatrix* race II) associated with defence responses in resistant and susceptible coffee cultivars. **Plant Pathology**, v. 58, n. 5, p. 944–955, 2009.

RANF, S. Sensing of molecular patterns through cell surface immune receptors. **Current Opinion in Plant Biology**, v. 38, p. 68–77, 2017.

REICHEL, T.; RESENDE, M. L. V.; MONTEIRO, A. C. A.; FREITAS, N. C.; BOTELHO, D. M. S. Constitutive Defense Strategy of Coffee Under Field Conditions : A Comparative Assessment of Resistant and Susceptible Cultivars to Rust. **Molecular Biotechnology**, p. 1–15, 2021.

SEO, E.; KIM, S.; YEOM, S. I.; CHOI, D. Genome-wide comparative analyses reveal the dynamic evolution of nucleotide-binding leucine-rich repeat gene family among solanaceae plants. **Frontiers in Plant Science**, v. 7, p. 1205, 2016.

SILVA, M. C.; NICOLE, M.; GUERRA-GUIMARÃES, L.; RODRIGUES, C. J.

Hypersensitive cell death and post-haustorial defence responses arrest the orange rust (*Hemileia vastatrix*) growth in resistant coffee leaves. **Physiological and Molecular Plant Pathology**, v. 60, n. 4, p. 169–183, 2002.

SILVA, M. D. C.; VÁRZEA, V.; GUERRA-GUIMARÃES, L.; AZINHEIRA, H. G.; FERNANDEZ, D.; PETITOT, A. S.; BERTRAND, B.; LASHERMES, P.; NICOLE, M. Coffee resistance to the main diseases: Leaf rust and coffee berry disease. **Brazilian Journal of Plant Physiology**, v. 18, n. 1, p. 119–147, 2006.

STEUERNAGEL, B. *et al.* The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. **Plant Physiology**, v. 183, n. 2, p. 468–482, 2020.

TALHINHAS, P. *et al.* The coffee leaf rust pathogen *Hemileia vastatrix*: one and a half centuries around the tropics. **Molecular Plant Pathology**, v. 18, n. 8, p. 1039–1051, 2017.

THOMMA, B. P. H. J.; NÜRNBERGER, T.; JOOSTEN, M. H. A. J. Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. **The Plant Cell**, v. 23, n. 1, p. 4–15, 2011.

TODA, N.; RUSTENHOLZ, C.; BAUD, A.; PASLIER, M. C. LE; AMSELEM, J.; MERDINOGLU, D.; FAIVRE-RAMPANT, P. NLGenomeSweeper: A tool for genome-wide NBS-LRR resistance gene identification. **Genes**, v. 11, n. 3, p. 333, 2020.

TOMBULOGLU, G.; TOMBULOGLU, H.; CEVIK, E.; SABIT, H. Genome-wide identification of Lysin-Motif Receptor-Like Kinase (LysM-RLK) gene family in Brachypodium distachyon and docking analysis of chitin/LYK binding. **Physiological and Molecular Plant Pathology**, v. 106, p. 217–225, 2019.

WANG, Z.; XU, F.; REN, H.; LU, G.; QUE, Y.; XU, L. Genome-Wide Characterization of NLRs in Saccharum spontaneum L. and Their Responses to Leaf Blight in Saccharum. **Agronomy**, v. 11, n. 1, p. 153, 2021.

YUAN, M.; JIANG, Z.; BI, G.; NOMURA, K.; LIU, M.; HE, S. Y.; ZHOU, J. M.; XIN, X. F. Pattern-recognition receptors are required for NLR-mediated plant immunity. **Nature**, p. 1–5, 2021.

YUAN, M.; NGOU, B. P. M.; DING, P.; XIN, X. F. PTI-ETI crosstalk: an integrative view of plant immunity. **Current Opinion in Plant Biology**, v. 62, p. 102030, 2021a.

ZAMBOLIM, L. Current status and management of coffee leaf rust in Brazil. **Tropical Plant Pathology**, v. 41, n. 1, p. 1–8, 2016.

ZAMBOLIM, L.; CAIXETA, E. T. An overview of physiological specialization ofcoffee leaf rust – new designation of Pathotypes. **International Journal of Current Research**, v. 13, n. 1, p. 15564–15575, 2021.

ZHOU, Z.; TIAN, Y.; CONG, P.; ZHU, Y. Functional characterization of an apple (Malus x domestica) LysM domain receptor encoding gene for its role in defense response. **Plant Science**, v. 269, p. 56–65, 2018.

ZIPFEL, C.; KUNZE, G.; CHINCHILLA, D.; CANIARD, A.; JONES, J. D. G.; BOLLER, T.; FELIX, G. Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation. **Cell**, v. 125, n. 4, p. 749–760, 2006.

1	SEGUNDA PARTE – ARTIGOS
2	ARTIGO 1
3	
4	LysM receptors in Coffea arabica: identification, characterization, and gene expression
5	in response to Hemileia vastatrix
6	
7	(Artigo redigido de acordo com as normas e submetido ao periódico PLOS ONE)
8	
9	Mariana de Lima Santos ^{1*} , Mário Lúcio Vilela de Resende ^{2*} , Bárbara Alves dos Santos
10	Ciscon ^{2#a,} Natália Chagas Freitas ² , Matheus Henrique de Brito Pereira ^{2#a} , Tharyn Reichel ² ,
11	Sandra Marisa Mathioni ^{2#b}
12	
13	¹ Programa de Pós-graduação em Biotecnologia Vegetal, Universidade Federal de Lavras,
14	Lavras, Minas Gerais, Brazil,
15	² Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil,
16	^{#a} Current Address: BASF Corporation, Brazil
17	#bCurrent Address: Syngenta Crop Protection, Uberlândia, Minas Gerais, Brazil
18	
19	* Corresponding authors
20 21 22 23	E-mail: <u>santos-ml@outlook.com</u> (MLS) E-mail: <u>mlucio@dfp.ufla.br</u> (MLVR)

25 Abstract

of this species.

46

26 Pathogen-associated molecular patterns (PAMPs) are recognized by pattern recognition receptors (PRRs) localized on the host plasma membrane. These receptors activate a broad-27 spectrum and durable defense, which are desired characteristics for disease resistance in plant 28 29 breeding programs. In this study, candidate sequences for PRRs with lysin motifs (LysM) were investigated in the Coffea arabica genome. For this, approaches based on the principle of 30 sequence similarity, conservation of motifs and domains, phylogenetic analysis, and 31 32 modulation of gene expression in response to Hemileia vastatrix were used. The candidate sequences for PRRs in C. arabica (Cal-LYP, Ca2-LYP, Cal-CERK1, Ca2-CERK1, Ca-LYK4, 33 34 *Cal-LYK5* and *Ca2-LYK5*) showed high similarity with the reference PRRs used: *Os-CEBiP*, At-CERK1, At-LYK4 and At-LYK5. Moreover, the ectodomains of these sequences showed high 35 identity or similarity with the reference sequences, indicating structural and functional 36 37 conservation. The studied sequences are also phylogenetically related to the reference PRRs described in Arabidopsis, rice, and other plant species. All candidates for receptors had their 38 expression induced after the inoculation with *H. vastatrix*, since the first time of sampling at 6 39 40 hours post-inoculation (hpi). At 24 hpi, there was a significant increase in expression, for most of the receptors evaluated, and at 48 hpi, a suppression. The results showed that the candidate 41 sequences for PRRs in the C. arabica genome display high homology with fungal PRRs already 42 described in the literature. Besides, they respond to pathogen inoculation and seem to be 43 involved in the perception or signaling of fungal chitin, acting as receptors or coreceptors of 44 45 this molecule. These findings represent an advance in the understanding of the basal immunity

47 Introduction

48 The interaction between plants and pathogens can be understood as a co-evolutionary "molecular war," in which each opponent uses their biological weapons as necessary, causing 49 a successful infection by the pathogen or resistance in the host [1]. Currently, the study of 50 pathogen perception by plants is divided into two lines. The first line is based on the recognition 51 52 of conserved microbial molecules, called pathogen-associated molecular patterns (PAMPs), activating PAMP-triggered immunity (PTI). The second, on the other hand, recognizes the 53 54 pathogen effectors by resistance proteins (R proteins), leading to effector-triggered immunity (ETI) [2,3]. 55

The PAMPs recognition is performed by pattern recognition receptors (PRRs). These 56 57 receptors are membrane proteins that usually have an extracellular domain involved in the perception of the ligand, the transmembrane or glycosylphosphatidylinositol (GPI) anchor 58 domain that anchors the protein in the plasma membrane, and an intracellular kinase domain 59 60 that is involved in the defense response signaling [4]. Adapted pathogens can suppress this first 61 line of defense by secreting specific effectors. In response to this suppression, R proteins, encoded by resistance genes, recognize these effectors triggering ETI [5]. In spite of identifying 62 different ligands, ETI and PTI lead to similar signaling pathways [6]. This signaling involves 63 changes in calcium levels in the cytoplasm, production of reactive oxygen species (ROS) and 64 signaling cascades involving protein kinases, MAPKs (mitogen-activated protein kinases) and 65 66 CDPKs (calcium-dependent protein kinases) [7–10].

67 Comparing these two lines of defense, many studies indicate that the responses from the 68 ETI occur more quickly and are more efficient than those from the PTI [6,11] since the former 69 is associated with a hypersensitive response (HR), which involves programmed cell death and 70 also systemic acquired response (SAR). For these reasons, the resistance conditioned by one or 71 a few resistance genes has been the focus of breeding programs for several cultivated species. Nonetheless, the PTI is effective against pathogens, insects and parasitic plants and constitutes an important factor in non-host resistance [12,13]. In addition, it leads to a durable and broadspectrum resistance [14,15]. The ETI, on the other hand, being characterized as a resistance against specific pathogens is quickly overcome, due to the emergence of new races of the pathogen [16].

77 Given that the PRRs are involved in a broad-spectrum and durable defense, currently they have been the target of studies aiming at a greater use in plant breeding [15,17]. These 78 79 studies focus on the possibility of combining (pyramiding) PRRs and increasing resistance to a broad spectrum of pathogens. The best characterized PRRs are the leucine-rich repeat receptor 80 81 kinases (LRR-RKs). These receptors are involved in the recognition of bacterial structures. An example of this is FLS2 (Flagellin sensing 2), which detects a conserved epitope of 22 amino 82 83 acids, flg22, existing in the N-terminal region of the flagellin protein [17,18] and EFR (EF-Tu 84 receptor), which detects the elf18 epitope, corresponding to the 18 conserved residues in the Nterminal region of the elongation factor Tu (EF-Tu) [19]. For fungi, well-described receptors 85 are those that recognize chitin and have in common extracellular domains with lysin residues 86 87 (Lys) [4,20], such as CERK1 (chitin elicitor receptor kinase 1) [21], CEBiP (chitin elicitor binding protein) [22], LYK4, LYK5 (LysM-containing receptor-like kinase 4 and 5) [23,24], 88 89 LYP4 and LYP6 (LysM domain-containing protein 4 and 6) [25].

Genetic alterations in the PRRs that recognize both fungal and bacterial PAMPs reduce the plant ability to properly perceive and defend against pathogens. Gene knockouts such as *Os-CERK1* [20,21] and mutations in *At-LYK5* [23] lead to a loss of ability to respond to chitin and initiate defense responses to adapted pathogens. In addition, it allows some degree of disease progression by non-adapted pathogens, displaying failures in non-host resistance [14]. These studies demonstrate that the PTI and ETI form a continuum, which is necessary for a durable and efficient defense response [11]. Therefore, programs that seek to enable resistance to phytopathogens, with a focus on increasing the capacity of the recognition system, are
successful by adding the PTI and ETI as the main strategy for obtaining resistant cultivars
[14,26].

Few non-model plants, such as barley [27], apple [28,29] and mulberry [30], had PRRs characterized. *Coffea arabica* is an important coffee species cultivated in countries such as Brazil, Vietnam, Colombia, and Indonesia and is consumed around the world [31]. PAMP receptors have been scarcely studied in *Coffea spp.*, therefore, it is crucial to identify the receptors that are present in their genome, and whether there is a response induced by the inoculation of pathogens, thus allowing the use of PRRs in coffee breeding programs.

106 The rust is the main coffee disease, causing severe losses in productivity in all regions 107 where coffee is cultivated [32,33]. In Brazil, the biotrophic fungus Hemileia vastatrix Berk. & 108 Br, the etiological agent of coffee rust, has caused damage since the 1970s [34,35]. In regions 109 with favorable conditions for the pathogen, the decline in productivity can reach 50% [35]. To circumvent such damage, chemical control has been used, however, the use of tolerant or 110 resistant cultivars is a viable alternative to reduce costs and possible environmental damage 111 112 [32,36,37]. Therefore, the goals of this study were (i) to identify the pattern recognition receptors (PRRs) for fungi in the C. arabica genome, (ii) to characterize these sequences for 113 protein domains and motifs and (iii) to analyze the gene expression of these PRRs in cultivars 114 of C. arabica contrasting to rust resistance inoculated with H. vastatrix. The data obtained 115 116 suggested that C. arabica has LysM receptors that act as fungal PAMP receptors, and that the expression of these receptors is stimulated after *H. vastatrix* inoculation. Our results contribute 117 118 to the understanding and future employment of PRRs in coffee breeding programs.

Materials and Methods

120 Identification and characterization of specific PRRs for fungi in

121 the C. arabica genome

122	The reference PRRs described in the literature for fungal PAMPs recognition in							
123	Arabidopsis thaliana and in Oryza sativa were selected: At-CERK1, At-LYK4, At-LYK5 and Os-							
124	CEBiP (Table 1). To identify these receptors, the C. arabica genome (accession UCG-17,							
125	variety Geisha) sequenced by the University of California (UC Davis Coffee Genome Project)							
126	and partially available in the Phytozome database							
127	(https://phytozome.jgi.doe.gov/pz/portal.html) was used. The search was based on sequence							
128	similarity and domain conservation. For this, a BLASTp (Align Sequences Protein BLAST)							
129	9 with default parameters was performed in Phytozome. The <i>C. arabica</i> sequences returned by							
130	0 BLASTp were selected based on the following criteria: e-value $\leq 10^{-5}$, extracellular domain							
131	corresponding to the reference sequence used (Lysin motifs -LysM), and transmembrane or							
132	GPI anchor domain. The domains were analyzed using the SMART (http://smart.embl-							
133	heidelberg.de/), the TMHMM2.0 (http://www.cbs.dtu.dk/services/TMHMM/) and the PredGPI							
134	(http://gpcr.biocomp.unibo.it/predgpi/pred.htm).							

Table 1. Reference PRRs and homologues.

Name	Туре	ID*	Botanical species	PAMP	References
OsCEBiP*	RLP	XP_015630176.1	Oryza sativa	chitin	Kaku et al. (2006)
AtLYP1 (LYM2)	RPL	AT2G17120.1	Arabidopsis thaliana	chitin	Shinya et al. (2012)
MtLYM2	RLP	-	Medicago truncatula	chitin	Fliegmann et al. (2011)
MmLYP1	RLP	AXQ60477.1	Morus multicaulis	chitin	Lv et al. (2018)
HvCEBiP	RLP	BAJ92081.1	Hordeum vulgare	chitin	Tanaka et al. (2010)
AtLYP2 (LYM1)	RPL	AT1G21880.2	Arabidopsis thaliana	PGN	Willmann et al. (2011)
AtLYP3 (LYM3)	RPL	AT1G77630.1	Arabidopsis thaliana	PGN	Willmann et al. (2011)
OSLYP4	RPL	XP_015610852.1	Oryza sativa	chitin/ PGN	Liu et al. (2012)
OsLYP6	RPL	XP_015641500.1	Oryza sativa	chitin/ PGN	Liu et al. (2012)
AtCERK1*	RLK	AT3G21630.1	Arabidopsis thaliana	chitin	Miya et al. (2007)
OsCERK1	RLK	BAJ09794.1	Oryza sativa	chitin	Shimizu et al. (2010)
SILYK1(Bti9)	RLK	Solyc07g049180	Solanum lycopersicum	-	Zeng et al. (2012)
VvLYK1-1	RLK	XP_010657225.1	Vitis vinifera	chitin	Brulé et al. (2019)
VvLYK1-2	RLK	XP_010655366.1	Vitis vinifera	chitin	Brulé et al. (2019)
MdCERK1	RLK	ATD50586.1	Malus domestica	chitin	Zhou et al. (2018)
MdCERK1-2	RLK	MD17G1102100	Malus. domestica	chitin	Chen et al. (2020)

MmLYK2	RLK	AXQ60478.1	Morus multicaulis	chitin	Lv et al. (2018)
PsLYK9	RLK	-	Pisum sativum	chitin	Leppyanen et. (2018)
AtLYK4*	RLK	AT2G23770.1	Arabidopsis thaliana	chitin	Wan et al. (2012)
VvLYK4-1	RLK	XP_002269408.1	Vitis vinifera	chitin	Brulé et al. (2019)
VvLYK4-2	RLK	XP_010649202.1	Vitis vinifera	chitin	Brulé et al. (2019)
BdLYK4	RLK	Bradi3g06770.1	Brachypodium distachyon	chitin	Tombuloglu et al. (2019)
AtLYK5*	RLK	AT2G33580.1	Arabidopsis thaliana	chitin	Cao et al. (2014)
VvLYK5-1	RLK	XP_002277331.3	Vitis vinifera	chitin	Brulé et al (2019)

136 RLP: Receptor like protein, RLK: Receptor like kinase, PGN: Peptidoglycan. *Reference137 sequences.

138

After selecting the sequences of C. arabica, they were again compared to the reference 139 140 sequences by phylogenetic analysis. This analysis enabled to identify which peptide sequences 141 had the greatest phylogenetic similarity to the reference PRRs, thus allowing the selection of candidate sequences. Additionally, considering that these PRRs present protein domains very 142 143 close, a joint phylogenetic tree, with the candidate sequences in C. arabica, the reference PRRs and homologs (Table 1), was also created to confirm the separation of these groups and the 144 145 homology of these sequences. The databases used to retrieve the reference sequences were: the 146 GenBank from the National Center for Biotechnology Information (NCBI) sequence database, 147 the Arabidopsis Information Resource (TAIR), the Sol Genomics Network, the Apple Genome 148 and Epigenome, and Phytozome. The complete amino acid sequences were aligned by the CLC 149 Genomics Workbench software version 11.0.1 (QIAGEN) (default parameters with very accurate) and the phylogenetic tree was generated by the Mega software version 10.1.8 [38] 150 using the Maximum Likelihood method with a bootstrap of 1000 replications. 151

To characterize the extracellular regions of the candidate sequences, the lysin motifs (LysM) were used for multiple alignments between the candidate and reference sequences. The LysM motifs of each sequence were predicted by SMART using the extracellular region and aligned by the MAFFT program online version (<u>https://mafft.cbrc.jp/alignment/server/</u>) [39]. After the alignment, the visualization and calculation of the identity and similarity of each of
the candidate sequences against the reference sequences were obtained by BioEdit version 7.2.5
[40].

Considering the fact that C. arabica is an allotetraploid (2n = 4x = 44 chromosomes), 159 160 originated from natural hybridization between C. canephora and C. eugenioides [41,42], the sequences selected as PRR candidates for the arabica coffee (variety Geisha from Phytozome) 161 162 were also analyzed by BLASTp in the database of the NCBI (https://www.ncbi.nlm.nih.gov/) against the genome of C. arabica, Red Caturra cultivar (Cara_1.0, GenBank assembly 163 accession: GCA 003713225.1). This genome was deposited after the beginning of this study 164 165 and presents the scaffolds anchored to the chromosomes of each ancestral subgenomes. This 166 analysis aimed to verify the possible genomic origin of the studied PRRs.

167 **Primer design**

168 The C. arabica sequences selected as candidates by the phylogenetic analysis were used 169 for primer design. The primers were designed using the Primer Quest software and their quality 170 was analyzed using the Oligo Analyzer software, both available online by IDT (Integrated DNA 171 Technologies, USA). After the primers were designed, they were blasted (BLASTn - Standard NCBI BLAST) 172 Nucleotide against the and Phytozome database 173 (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to attest their specificity through the identification of non-complementarity with nonspecific sequences. 174

175

Fungal inoculum preparation

The inoculum used was obtained from leaves of *C. arabica* naturally infected with *H. vastatrix*. The pustules of these leaves were scraped and placed in microtubes, were frozen in liquid nitrogen, and stored in a freezer at -80°C. To prepare the inoculum, the stored spores were submitted a 40°C thermal shock for 10 min, added in sterile distilled water and the

suspension was calibrated at $1 \ge 10^6$ urediniospores/ml. The viability of inoculum was verified by observing the spore germination in glass cavity slides. After preparing the suspension for plant inoculation, three drops were transferred to glass cavity slides, which were incubated at 25° C for 48 hours. After the incubation, the spores were visualized under an optical microscope, so their germination could be observed (S1 Fig).

185 Plant materials, experimental design, and inoculation

Aiming to analyze the gene expression of the PRR selected candidates, seedlings of four 186 cultivars of C. arabica were used, being two rust susceptible cultivars, Catuaí Vermelho IAC 187 144 (CV) and Mundo Novo IAC 367-4 (MN), and two rust resistant, Aranãs RV (AR) and 188 Iapar-59 (IP). The experiment was conducted in a randomized complete block design (RCBD) 189 190 with three replicates and an experimental plot consisting of three plants. The treatments were 191 arranged in a 2 x 3 x 4 factorial scheme, the factors being: condition (inoculated and not inoculated); evaluation times (06, 24 and 48 hours post-inoculation - hpi) and cultivars (Catuaí 192 193 Vermelho IAC 144, Mundo Novo, Aranãs RV, and Iapar-59). The experiment was repeated 194 twice independently.

195 Young plants (3-4 pairs of leaves) were inoculated in a growth chamber with a controlled environment (temperature of $22 \pm 2^{\circ}$ C, relative humidity of 90%) favoring the 196 197 disease development. The suspension was sprayed on abaxial leaf surfaces and the inoculated plants were kept in the dark in a humid chamber according to a previously published 198 methodology [43]. The control plants (sprayed with pure water only) were also sampled at all 199 200 the evaluated time points. All the leaves collected were immediately frozen in liquid nitrogen 201 and subsequently stored in a freezer at -80°C. After the treatment and sampling, the plants were 202 kept in a greenhouse until the first symptoms and signs of the pathogen were seen to make sure 203 the inoculation was effective (S2 Fig).

RNA extraction and quantification 204

The leaf samples were ground with liquid nitrogen until a fine powder was obtained. 205 The ground material was stored in a ultrafreezer at -80°C until the RNA extraction was 206 performed. The extraction was performed using the Plant RNA Purification Reagent (Thermo 207 208 Fisher). Subsequently, the RNA was treated with DNase (RQ1 RNase-Free DNase, Promega) to remove any residual DNA in the sample. These procedures were performed according to 209 210 manufacturer's instructions. The integrity of the RNA was verified on 1% agarose gel and quantified on the NanoDrop One spectrophotometer (Thermo Fisher). All samples used showed 211 a ratio reading 1.8-2.0 of absorbance at 260/280 nm and 260/230 nm for high-quality RNA. 212

213

cDNA synthesis and RT-qPCR

An aliquot containing 1 µg of total RNA (treated with DNase) was used for cDNA 214 synthesis using the High-Capacity cDNA Reverse Transcription Kit with RNase Inhibitor 215 (Thermo Fisher). After the synthesis, the cDNA was diluted 5x and stored at -20 °C. The RT-216 qPCR were performed in the QuantStudio® 3 Real-Time PCR System (Applied Biosystems) 217 using the SYBR® Green detection system. The amplification conditions were: 50°C for 2 min 218 219 and 95°C for 10 min, 40 cycles: 95°C for 15 s, 60°C for 1 min and a final step of 95°C for 15 s 220 (melting curve). The final reaction volume was 10µL contained the following components: 1.0 μ L of cDNA (~ 10 ng), 0.4 μ L of each primer (forward and reverse) at a concentration of 10 221 µM (400 nM in the reaction), except for the Ca2-CERK1 (Scaffold 2193.164 and 476.38), 222 223 which used 0.2 µL (200 nM in the reaction), 5.0 µL of Platinum SYBR Green qPCR SuperMix-UDG with ROX (Thermo Fisher), and 3.4 µL of ultrapure water (free of nucleases). 224

225 For each of the three biological samples, technical triplicates were used and for each 226 plate an inter-assay sample was used to ensure the reproducibility of the technique. The relative 227 quantification was calculated according to the formula by Pfaffl, 2001 [44]. Referring to the 228 data normalization, the expression stability of four reference genes was analyzed: protein 14-3-3 (14-3-3), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein 24S (24S) 229 230 and factor elongation 1α (*EF1-a*) [45–48]. The efficiency correction of these genes in Cq values was performed by the GenEx Enterprise program (version 7.0) and the stability was verified by 231 232 the RefFinder tool [49]. The two most stable genes were 14-3-3 and GAPDH (S3 Fig), which were used to normalize the transcription levels of the target genes. The samples with the lowest 233 234 expression were used as calibrators. The MN 48 hpi was used as calibrator sample, except for 235 the Cal-CERK1 (experiment 2), which was used the IP 48 hpi sample. The PCR amplification 236 efficiencies and linear regression coefficients were determined using the LinRegPCR software version 2018.0 (Table 2) [50]. The average expression was obtained by the ratio of the sample 237 238 inoculated with H. vastatrix compared to the average of the control treatment (without inoculation). 239

Table 2. Sequence of primers used for candidate sequences of *C. arabica* PRRs and
reference genes.

Gene	Target sequence	Primer	Amplicon length (bp)	Amplification efficiency	R ²
IVVA	612.376 and 952.320-1	AAAGGCCACAAACAGATGCGACAG (F)	168	Exp1 - 1,855	0,929
LIN4	(<i>Ca-LYK4</i>)	AGGTGGGATGGATCAGCTGCTAAG (R)		Exp2 - 1,866	0,961
	628.522	TTTGGTTCCTGCGGTATAGG (F)	112	Exp1 - 2,056	0,974
I VK5	(Ca1-LYK5)	TCTGGCAAAGCCCTGTAAAC (R)		Exp2 - 2,095	0,988
LIKJ	1841.91	TTGCAGCATGCCACAGGTTCTTTC (F)	237	Exp1 - 1,920	0,961
	(<i>Ca2-LYK5</i>)	ATCACTCAGGCCACCTTTCTCTGC (R)		Exp2 - 1,898	0,952
	1805.113 and 539.592	CGAGACATTAAGCCAGCTAAC (F)	139	Exp1 - 1,881	0,990
CFRK1	(Cal-CERK)	GCATGTAACCGAAAGTACCC (R)		Exp2 - 1,887	0,965
CLINN	2193.164 and 476.38	CAGTTCCAGTTAGCTGCTCCA (F)	83	Exp1 - 1,899	0,999
	(Ca2-CERK)	GGAGAAGTTCCTTCAGCAACAC (R)		Exp2 - 1,885	0,992
T UD	439.212	ACCACCGCCGATGTTCTGTTGC (F)	82	Exp1 - 1,898	0,992
LYP	(Ca1-LYP)	GAGGAACATCGAGAATAGCGCCGG (R)		Exp2 - 1,887	0,994
(CEDII Blace)	1196.90	TCCAGACCCTCTTCAACGTC (F)	121	Exp1 - 1,824	0,983
-IIKe)	(Ca2-LYP)	CAGGCGAAAGGAATCTTGAG (R)		Exp2 - 1,829	0,997
		TGTGCTCTTTAGCTTCCAAACG (F)	75	Exp1 - 1,983	0,943
14-3-3	SGN-U347734	GN-U347734 CTTCACGAGACATATTGTCTTACTCAAA (R)		Exp2 - 2,001	0,933

GAPD	SCN 11256404	TTGAAGGGCGGTGCAAA (F)	59	Exp1- 2,007	0,993
Н	SGIN-0550404	AACATGGGTGCATCCTTGCT (R)		Exp2 - 2,060	0,995
24S	GR986263.1	ACGGCATCAAAGGAGACAAT (F)	114	Exp1 - 1,893	0,998
		ATGCAGAACATCGATCACGA(R)		Exp2 - 1,902	0,994
EF1-a	GW466696.1	CTCTCTCGCCTCCTGTCTTC (F)	105	Exp1 - 1,912	0,983
		CAGAGTCGACGTGACCAATG (R)		Exp2 - 1,932	0,972

The candidate sequences and reference genes (Target sequence) were obtained from Phytozome and SOL Genomics Network. The primer sequences for the reference genes *14-3-3 and GAPDH* were obtained from Barsalobres-Cavallari et al. 2009 [45] and *24S* and *EF1-* α from Reichel 2021 [48]. Exp1: experiment 1, Exp2: experiment 2.

246

Statistical analysis

The relative expression data of the two experiments were subjected to analysis ofvariance, using the following model:

249
$$y = \mu + R/E_{b(k)} + E_k + C_i + T_w + (EC)_{ki} + (ET)_{kw} + (CT)_{iw} + (ECT)_{kiw} + e_{kiw}$$

in which $R/E_{b(k)}$ is the effect of block b within experiment k; E_k is the effect of experiment k, C_i is the effect of cultivar i, T_w is the effect of time w, $(EC)_{ki}$ is the effect of the interaction between experiment k and cultivar i, $(ET)_{kw}$ is the effect of the interaction between experiment k and time w; $(CT)_{iw}$ is the effect of the interaction between cultivar i and time w; $(ECT)_{kiw}$ it is the effect of the interaction between experiment k cultivar i and time w; e_{kiw} is the effect of the experimental error, $\cap N(0, \sigma_e^2)$. Checks for outliers and of the assumptions of residuals from models were accomplished using diagnostic plots within the R software [51].

The interaction between cultivar and time was decomposed and the means between the levels of the factors were analyzed by Tukey's test at 5% of probability. Data analysis was performed using the R software [51]. 260 **Results**

Identification and characterization of specific fungal PRR in the *C. arabica* genome

The BLASTp analysis in Phytozome with the reference PRRs resulted in 4, 10, 12 and 263 264 14 sequences in the C. arabica genome for Os-CEBiP, At-LYK5, At-CERK1 and At-LYK4, 265 respectively (Fig 1 and S1 Table). These sequences were selected because they have e-value \leq 10^{-5,} extracellular region containing lysin motif (LysM) and transmembrane domain or GPI-266 267 anchor. After the phylogenetic analysis, two candidate sequences were selected for LYK4 (Scaffold 612.376 and 952.320) and LYK5 (Scaffold 628.522 and 1841.91) (Fig 1B and 1D and 268 269 S1Table) and four ones for CERK1 (Scaffold 539.592, 1805.113, 2193.164 and 476.38) (Fig. 270 1A and S1 Table). As the phylogenetic analysis for candidate sequences to the *CEBiP* protein did not result in a significant bootstrap (Fig 1C), other proteins belonging to the LYP clade 271 272 (CEBiP-like) described in Arabidopsis and rice were included in a new analysis: At-LYP1 (At-CEBiP / LYM2), At-LYP2 (LYM1), At-LYP3 (LYM3), Os-LYP4 and Os-LYP6 (Table 1). 273

274

Fig 1. Phylogenetic analysis of the selected sequences for *C. arabica* by comparison with the reference PRRs. (A) *CERK1*, (B) *LYK4*, (C) *CEBiP*, (D) *LYK5*, (E) *CEBiP* and reference proteins belonging to the *LYP* (*CEBiP*-like) group. The phylogenetic trees were constructed with complete amino acid sequence alignments using the Maximum Likelihood method with a bootstrap of 1000 replications. The cluster clade of candidate sequences for *C. arabica* and reference sequences are highlighted in blue.

281

The new phylogenetic analysis for *CEBiP* (Fig 1E) showed two distinct clades. The clade one formed by the sequences Scaffold 506.17 and 1856.2, *At-LYP2*, *At-LYP3*, *Os-LYP4* and *Os-LYP6*, and the clade two formed by *Os-CEBiP*, *At-LYP1*, Scaffold 439.212 and 1196.90.

As the Scaffold sequences 439.212 and 1196.90 showed greater similarity with the Os-CEBiP 285 homologue in A. thaliana (At-LYP1), they were selected as candidate sequences for the CEBiP-286 like (Fig 1 and S1 Table). Moreover, the At-LYP2 (LYM1) and At-LYP3 (LYM3), belonging to 287 clade one, are described in the literature for their ability to recognize the peptidoglycan, a 288 289 bacterial PAMP [52]. These sequences formed the nearest clade to the Scaffold 506.17 and 1856.2 sequences, substantiating the choice of the two C. arabica sequences belonging to clade 290 291 two. The Os-LYP4 and Os-LYP6 that play a dual role, recognizing peptidoglycan and chitin 292 [25], were not evaluated in this study.

293 All the domains found in the coffee candidate sequences correspond to the characteristic domains of the reference sequences. The description of these sequences such as identity and 294 295 similarity in relation to the reference sequences as well as the gene size, the CDS and the number of exons, are shown in Table 3. The candidate sequences for CERK1, LYK4 and LYK5 296 have an extracellular LysM domain (with three LysM), a transmembrane domain, and an 297 intracellular Ser/Thr kinase domain. The sequences selected as CEBiP-like have two lysin 298 299 motifs and a predicted GPI-anchor. The characterization of these domains, motifs and protein 300 sizes are shown in Fig 2.

301

302 Table 3. BLASTp and nucleotide characterization of candidate sequences in *C. arabica*

Candidate sequence	Identity (%)	Similarity (%)	Gene (pb)	Exons	CDS (pb)
CERK1-Scaffold_539.592	56.109	70.3	6082	13	2511
CERK1-Scaffold_1805.113	55.145	69.0	4186	10	1815
CERK1-Scaffold_2193.164	57.546	73.0	10180	12	1860
CERK1-Scaffold_476.38	57.261	73.1	9921	12	1860
LYK4-Scaffold_612.376	46.154	64.1	1935	1	1935
LYK4-Scaffold_952.320	46.154	64.4	1935	1	1935
LYK5-Scaffold_628.522	58.036	76.5	2031	1	2031
LYK5-Saffold_1841.91	58.631	76.5	2031	1	2031
LYP-Scaffold_1196.90	42.258	56.1	2961	4	1098
LYP-Scaffold_439.212	35.385	49.6	3598	5	954

Percentage of identity and similarity refer to BASTp analysis of candidate sequences against
reference sequences *At-CERK1*, *At-LYK4*, *At-LYK5* e *LYP* (*CEBiP-* like). Candidate sequences
were obtained from Phytozome database.

306

Fig 2. Protein characterization of the candidate sequences for CERK1, LYK4, LYK5, and 307 CEBiP-like in C. arabica. The signal peptide positions, lysin motifs (LysM) and 308 309 transmembrane domains were identified by SMART, and the GPI anchor by PredGPI. The 310 domains positions are represented by numbers at the beginning and end of each domain. Concerning the CEBiP-like candidate sequences, the putative signal sequences for the GPI 311 312 anchor and their specificities are shown. The numbers at the beginning of each sequence 313 represents the scaffold (candidate sequence in C. arabica). The numbers at the end of each 314 sequence represents the size of the proteins in number of amino acids. SP: signal peptide, LysM: 315 lysin motifs identified as 1,2 e 3, TM: transmembrane domain, GPI: GPI-anchor.

316

The extracellular lysin motif regions (LysM1, LysM2 and LysM3) for these sequences 317 318 ranged from 38 to 49 aa. The multiple alignments of these regions with the reference proteins showed high residue conservation but varied among the studied receptors (Fig 3). Out of eleven 319 320 residues described as important for the chitin oligomer binding function in At-CERK1 [53,54], eight ones displayed identity or similarity with the candidate sequences in C. arabica. For Os-321 CEBiP, from nine described [55], only three were present. In At-LYK5, only one of three 322 323 described [23] showed similarity with C. arabica sequences. The tyrosine (Tyr) residue, located 324 at position 128 in At-LYK5, considered as the fourth chitin-binding residue for this receptor, 325 was not analyzed, as it is present between the LysM1 and LysM2 motifs, a region that was not analyzed in the alignment. 326

34

327

Fig 3. Alignment of the LysM motifs between reference sequences and candidate 328 sequences in C. arabica. The LysM motif sequences were aligned using MAFFT and 329 visualized by BioEdit. The numbers at the beginning of each sequence represents the scaffold 330 (candidate sequence in C. arabica). The green line highlights the reference sequence. The 331 332 purple and gray shading represent identical and similar amino acids, respectively. The percentages of identity and similarity between candidate sequences and references are indicated 333 by * and **, respectively. In red are the critical residues that bind to chitin and the green arrows 334 335 indicate residues identical or similar to these regions present in the candidate sequences in C. 336 arabica. The numbers at the end of each sequence represent the size of the LysM motifs in 337 number of amino acids.

Joint phylogenetic analysis and BLASTp against the genome of *C*. *arabica*, *Caturra red cultivar*

A joint phylogenetic tree was created to verify whether the candidate sequences would form distinct clades, including the reference sequences used. This tree was composed of the selected candidate sequences for PRRs in *C. arabica*, the reference sequences used to search for these PRRs in coffee (*At-CERK1*, *At-LYK4*, *At-LYK5* and *Os-CEBiP*) and homologs of these proteins described experimentally in the literature (Table 1). This analysis formed four clades that separated the candidate sequences in coffee with the respective reference proteins used, confirming their phylogenetic relationships (Fig 4).

347

Fig 4. Joint phylogenetic analysis of candidate sequences in *C. arabica*, reference sequences and homologs described experimentally. The phylogenetic tree was constructed with alignments of complete amino acid sequences using the Maximum Likelihood method

353

The clade I was composed of Scaffold 539.592, 1805.113, 2193.164 and 476.38, At-354 355 CERK1 and their homologs Md-CERK1, Md-CERK1-2, Mm-LYK2 (CERK1-like), Ps-LYK9, SI-LYK1 (Bti9), Vv-LYK1-1, Vv-LYK1-2 and Os-CERK1. In this clade, the candidate sequences in 356 357 coffee, Scaffolds 476.38 and 2193.164 are closest to the homologs of At-CERK1 in tomato, SI-358 LYK1 (Bti9), while the Scaffold 539.592 and 1805.113 sequences, formed a more distant subclade. Clades II and III belonging to LYK4 and LYK5 formed closer clades. The coffee 359 sequences were grouped more closely to the LYK4 homologues in grape and for the LYK5 they 360 361 formed a subclade with the reference sequence At-LYK5 and its homolog also in grape (Vv-LYK5-1). In clade IV, belonging to the CEBiP cluster, it was observed that candidate sequences 362 363 in coffee were significantly grouped with the Os-CEBiP homologs.

The BLASTp analysis in the NCBI database against the genome of C. arabica (Red 364 365 Caturra cultivar) showed that six candidate sequences for PRRs in *C. arabica* (variety Geisha) 366 have greater percentage of identity with sequences belonging to the C. eugenioides subgenome 367 and four showing greater identity with the C. canephora subgenome (Table 4). This analysis allowed us to identify that while each of the candidate sequences for LYK5 and LYP, in addition 368 369 to the two sets of sequences for CERK1 (considering subclades I and II, Fig 1), had greater 370 identity with sequences from each of the subgenomes, both candidate sequences for LYK4 had greater identity with a sequence in the C. eugenioides subgenome. 371

372

- 373
- 374
376 (Red Caturra).

Table 4. BLASTp analysis of candidate sequences in C. arabica Geisha) against C. arabica

C. arabica	C. arabica							
(Phytozome - Variety Geisha)	(NCBI - Red Caturra cultivar)							
Candidate sequence	Query Cover	E-value	Identity (%)	ID*	Chr			
CERK1-Scaffold_539.592	98%	0.0	97.73%	XP_027086837.1	9c			
CERK1-Scaffold_1805.113	100%	0.0	97.73%	XP_027086837.1	9c			
CERK1-Scaffold_2193.164	99%	0.0	100.00%	XP_027061585.1	5e			
CERK1-Scaffold_476.38	100%	0.0	96.93%	XP_027061585.1	5e			
LYK4-Scaffold_612.376	99%	0.0	97.52%	XP_027077444.1	7e			
LYK4-Scaffold_952.320	99%	0.0	100.00%	XP_027077444.1	7e			
LYK5-Scaffold 628.522	99%	0.0	100.00%	XP_027092883.1	10c			
LYK5-Saffold 1841.91	99%	0.0	99.85%	XP_027090781.1	10e			
LYP-Scaffold_439.212	94%	0.0	79.37%	XP_027089306.1	9e			
LYP-Scaffold_1196.90	99%	0.0	100.00%	XP_027087432.1	9c			

377

375

*GenBank National Center for Biotechnology Information (NCBI) sequence database. Chr:
chromosome corresponding to the subgenomes of *C. arabica*, being the subgenome of *C. arabica*, being the subgenome of *C. anaphora* represented by the letter c and the subgenome of *C. eugenioides* represented by the
letter e.

382

383 Primer design

The four sequences selected as candidates for *CERK1* in the *C. arabica* genome by phylogenetic analysis formed two distinct subclades (Fig 1A). The subclade I formed by the Scaffold 539.592 and Scaffold 1805.113 sequences and the subclade II formed by the Scaffold 2193.164 and Scaffold 476.38 sequences. The coding sequences (CDS) of subclade I showed an 71.33% identity, with the 1805.113 sequence presenting a smaller CDS (1815bp) and shared almost entirely with the Scaffold 539.592 sequence. The Scaffold 539.592 sequence, on the other hand, presents a larger CDS (2511 bp) with two regions that are not present in 1805.113 (S4 Fig). The Scaffold 2193.164 and 476.38 showed CDS of the same size (1860bp) and an
identity 98.28% (S5 Fig). For the primer design in the gene expression analysis, the formation
of these two subclades was considered, thus using a pair of primers for each of the formed
subclades. They were named *Ca1-CERK1* and *Ca2-CERK1* respectively and are referred to as
such in the gene expression analysis (Table 2).

Concerning the *LYK4* candidate sequences (Scaffold 612.376 and 952.320), a primer pair was also designed for both candidate sequences. These showed a 98.45% identity (S6 Fig) and were named as *Ca-LYK4*. Regarding the candidate sequences *LYK5* (Scaffold 628.522 and Scaffold 1841.91) and *LYP* (*CEBiP*-Like) (Scaffold 439,212 and 1196.90), a primer pair was designed for each sequence separately and they are referred to as *Ca1-LYK5*, *Ca2-LYK5*, *Ca1-LYP*, *Ca2-LYP*, respectively (Table 2).

402 Transcriptional response of candidate receptors in *C. arabica*

To verify the transcriptional responses of the candidate sequences to the PRRs in C. 403 404 arabica, four cultivars with contrasting rust resistance levels were inoculated with H. vastatrix. 405 The inoculum used displayed viability in both tests: the one with the glass cavity slides (S1 Fig) 406 and the other about the ability to cause the disease symptoms and signs in susceptible cultivars CV and MN (S2 Fig). The resistant cultivars AR and IP presented no symptoms or signs of the 407 408 disease. The fungal inoculation induced the expression of all candidate receptors in all cultivars 409 and studied time points. To a greater or lesser degree, there was an increase in expression from 6 hpi (Fig 5), with the peak varying between 6 and 24 hpi, followed by a decrease at 48 hpi. 410

411

```
412 Fig 5. Relative expression of candidate genes for CERK1, LYP (CEBiP-like), LYK5 and
```

413 LYK4 in C. arabica. (A) Cal-CERK1, (B) Ca2-CERK1, (C) Cal-LYP, (D) Ca2-LYP, (E) Cal-

414 LYK5, (F) Ca2-LYK5, (G) Ca-LYK4. Candidate genes were evaluated in C. arabica leaves at 6,

24 and 48 hours post-inoculation (hpi) with *H. vastatrix*. The average of relative expression
was obtained by the ratio between the means of inoculated and control (not inoculated). Capital
letters represent the statistical analysis of the times for each cultivar and lower letters between
cultivars. Means followed by the same letter are not differentiated by Tukey's test at 5%
probability. The data shown represents experiments 1 and 2. MN: Mundo Novo, CV: Catuaí
Vermelho IAC 144, AR: Aranãs RV, IP: IAPAR-59.

421

422 The two groups of candidate sequences for CERK1 showed different expression profiles 423 (Fig 5A and 5B) at 24 hpi. The Cal-CERK1 had higher expression than Ca2-CERK1. Concerning the former, the expression rate was seven times higher than that of the control in 424 425 cultivar MN, regarding the latter, the highest value did not reach twice as much for IP. When the time expression levels were analyzed for each cultivar in the two groups (Fig 5A and 5B), 426 there was a significant difference for 24 hpi, except for CV Ca2-CERK1. For the Ca1-CERK1, 427 the analysis between cultivars (Fig 5A) showed that IP and MN displayed approximately 6- and 428 429 7-fold higher expression levels at 24 hpi, respectively, demonstrating significant differences 430 compared to AR and CV. No significant difference was observed for 6 and 48 hpi. Concerning Ca2-CERK1 (Fig 5B), the analysis between cultivars showed that at 6 hpi it was the most 431 expressed in CV and MN. At 24 hpi, the highest expression was in IP, and at 48 hpi the same 432 433 cultivar showed a reduction in its expression, which was the least expressed among the 434 cultivars.

A similar profile to *CERK1* was observed for the sequences studied as candidates for *LYP* and *LYK5* (Fig 5 C - 5 F). The *Ca1-LYP* and *Ca2-LYK5* obtained cultivars with higher expression levels at 24 hpi than *Ca2-LYP* and *Ca1-LYK5*, however, for these genes, the candidate sequences were studied apart. Considering *Ca1-LYP* and *Ca2-LYP* (Fig 5C and 5D), the expression patterns were different at 6 and 24 hpi. The *Ca1-LYP* expression levels did not reach twice as much compared to the control at 6 hpi, while for *Ca2-LYP* the highest averages
were observed at that time. Moreover, regarding the *Ca1-LYP*, all cultivars showed an
expression above twofold higher at 24 hpi. Therefore, the greatest inductions for *Ca2-LYP*occurred at 6 hpi while for *Ca1-LYP* they happened later at 24 hpi.

444 The expression differences in time for each cultivar considering *Cal-LYP* (Fig 5C) showed that AR and IP have significant differences at 24 hpi, which did not occur in CV and 445 MN. The analysis between cultivars showed that at 6 hpi and 48 hpi there were no differences, 446 but that at 24 hpi, IP was the cultivar that showed the highest expression, reaching 6-fold higher. 447 Considering Ca2-LYP (Fig 5 D), AR and CV showed higher expressions at 6 hpi. For IP and 448 449 MN, the largest expression occurred at 6 and 24 hpi, with no difference between these times. 450 The analysis between cultivars showed that at 6 hpi, AR obtained the highest expression while IP presented the lowest expression. On the other hand, at 24 and 48 hpi, there were no 451 452 differences between cultivars. However, it was found that 48 hpi was the time with the lowest average observed, within and between cultivars. 453

For Cal-LYK5 (Fig 5E), there was a difference between the times for all cultivars, 454 455 except for AR. The MN cultivar had the highest average at 6 hpi, while IP obtained the highest 456 at 24 hpi. For the cultivar CV, there were no differences between these times, only at 48 hpi. Concerning the analysis between cultivars, the MN obtained the highest average at 6 hpi and 457 458 IP at 24 hpi. At 48 hpi, there were no differences between cultivars and this time presented the 459 lowest average for all. Referring to Ca2-LYK5 (Fig 5F), all cultivars showed differences between the evaluated times, except for CV. The AR and IP cultivars showed significant 460 461 differences in averages at 24 hpi compared to the ones at 6 and 48 hpi, coming to express about six and eight times more than the control, respectively. Regarding MN, the highest average was 462 also detected at 24 hpi, but this did not differ statistically from 6 hpi, only from 48 hpi. For the 463

times between cultivars, there were differences only in 24 hpi, with AR and IP having thehighest expression.

The values for *Ca-LYK4* were the result of a single primer pair designed for two candidate sequences. In this receptor, the expression levels at 24 hpi differed within and between the cultivars evaluated. The IP cultivar obtained the highest average expression, reaching almost 19 times higher than that of the control, followed by MN, which expressed ninefold higher. The lowest averages for that time were observed for CV and AR, with an expression seven- and sixfold higher, respectively. For 6 and 48 hpi there was no difference within and between cultivars, the averages for those times reached at most twice as much.

473 **Discussion**

474 **Fungal PRRs in the** *C. arabica* genome

Understanding basal immunity has been the focus of several studies with the purpose of 475 476 identifying the mechanisms governing this line of defense, enabling its use as another tool in the search for plant resistance to pathogens [17]. The description of the reference PRRs and 477 studies of the modulation of their gene expression in response to *H. vastatrix*, one of the most 478 devastating pathogens in coffee trees, presents an advance for understanding this crop basal 479 480 immunity. In the present study, fungal PRR candidate sequences well described in the literature 481 for model plants such as Arabidopsis and rice were studied in C. arabica. We observed that 482 there is more than one candidate sequence for each receptor studied, which may be the result of the ploidy of this species or duplication of these receptors, a common mechanism in plant 483 484 genomes [56].

Each of the candidate sequences for *LYK5* and *LYP* (*CEBiP*-like) presented higher percentages of identity with one of the *C. arabica* subgenomes. Therefore, it is possible to infer that those genes may have come from of each of the parental genomes (Table 4). Referring to

LYK4, both candidate sequences showed greater identity with C. eugenioides subgenome, 488 489 which can indicate duplication events. For CERK1, as two sequences had a higher percentage of identity with a sequence from C. canephora subgenome (subclade I), while the other two 490 (subclade II) with a sequence from C. eugenioides subgenome, we can suggest that both events 491 492 occurred in this case. Besides to having a gene from each of the subgenomes, a duplication event of these genes may also have occurred in C. arabica (Variety Geisha). However, 493 differences in the quality of C. arabica genomes (Geisha and Caturra red) can also interfere 494 495 with this conclusion.

The size of the CDS and the organization of exons demonstrated that the genes encoding 496 497 LYK4 and LYK5 candidate proteins in C. arabica do not have introns, and the coding sequences 498 are the result of a single exon. In fact, when compared to CERK1 or CEBiP, these receptors are 499 closer to each other in phylogenetic analysis. These results (Fig 4) corroborates with others 500 described in the literature [53,57] and shows a greater evolutionary relationship between these receptors. Homologs of the At-LYK4 and At-LYK5 in many plant species have no introns and 501 502 the coding region is the result of a single exon [24,57–60]. For LysM receptors homologous to 503 At-CERK1, the CDS region mostly presents around 1800 bp with ten to twelve exons [28,53,61], which is likewise with the size of the CDS and number of exons found for the 504 505 CERK1 candidate sequences in coffee, except for the Scaffold 539.592, which presents a larger coding region, with 2511bp and 13 exons. However, this number of thirteen exons has also 506 been found in Ps-LYK9, a CERK1-like gene in peas, which is involved in the control of plant 507 508 immunity and symbiosis formation [61].

Regarding the genes LYPs (Receptor-like proteins or RLPs) such as *Os-CEBiP*, the number of exons reported is more variable from two to six [22,57,62]. In *C. arabica*, Scaffold 1196.90 and 439.212 presented four and five, respectively. The structural pattern of genes, such as the distribution of introns or exons in gene families, reinforces the ortholog identification 515

5 Characterization of domains and motifs (LysM)

516 Proteins with LysM domain classified as LYKs (Receptor-like kinases or RLKs) are composed of lysin motifs (LysM)-containing ectodomains, a transmembrane domain and an 517 518 intracellular kinase. LYP proteins (RLPs), on the other hand, present LysM ectodomain, but 519 without intracellular kinase and can be anchored to the plasma membrane by a transmembrane 520 domain or GPI-anchor [57,63]. The At-CERK1, At-LYK4 and At-LYK5 contain three extracellular LysM motifs, a transmembrane domain and intracellular kinase, while Os-CEBiP 521 522 has two extracellular LysM motifs and GPI anchor [21–23]. The SMART and PredGPI analysis 523 predicted that the amino acid sequences of the PRRs studied in C. arabica present a signal 524 peptide, extracellular LysM motifs, a transmembrane domain, or a putative signal sequence for 525 the GPI anchor, besides the presence or absence of intracellular kinase. These characteristics 526 differentiate them into LYKs (Ca1 and 2 CERK1, Ca1 and 2 LYK5 and Ca-LYK4) and LYPs (Ca1 and 2 LYP) (Fig 2) and suggest that they all act as membrane receptors. 527

As a result of the organization of the domains, these proteins have different protein sizes. LYKs are generally larger than LYPs because they have an additional kinase domain. Protein sequences reported for these classes of receptors are around 500 or 600 and 300 or 400 aa respectively [22,57,64]. Candidate sequences in coffee have equivalent sizes, except for Scaffold 539.592 with 836aa, which may be a consequence of the size of the coding region.

The PRR extracellular region varies in plant with sizes from 35 to 50 aa [56,57]. These regions define the type of recognized PAMP and its binding affinity in addition to the interaction between receptors and coreceptors [65]. Differences in the chitin-binding properties between At/Os-CERK1 ectodomains show variation in the performance of these receptors in Arabidopsis and rice. *At-CERK1* and *At-LYK5*, for instance, bind directly to chitin through their ectodomains containing LysM motifs with different affinities to the ligand, while *At-LYK4* appears to be a co-receptor [21,23,66]. In rice, *Os-CERK1* does not bind to chitooligosaccharides and the heterodimerization between *Os-CERK1* and *Os-CEBiP* is necessary for the innate immune response in this species [20,67]. Distinction in the role of these receptors suggests that plants use different chitin binding and signaling strategies [24,68].

In C. arabica, this region varied from 38 to 49 aa and the candidate sequences showed 543 a high degree of identity and/or similarity with the reference LysM sequences used, indicating 544 a conserved extracellular structure [53,55]. For CERK1, eight residues reported as important 545 546 for chitin binding in Arabidopsis are present in the Scaffold 2193.164 and Scaffold 476.38 547 sequences (six identical and two similar), suggesting that they can bind chitin. However, complementary data are still needed to clarify which would be the primary receptor and co-548 receptor of the innate immunity in this species, and further studies of chitin-receptor and 549 receptor-receptor interaction are required. 550

551 Joint phylogenetic analysis

552 PRRs are conserved in several plant species [58]. This conservation indicates a 553 fundamental importance of the PAMP recognition system [25]. The joint phylogenetic analysis showed that the sequences selected as candidates for CERK1 in coffee, were highly related to 554 Md-CERK1, Md-CERK1-2, Ps-LYK9, Mm-LYK2, Vv-LYK1-1, Vv-LYK1-2, Os-CERK1 and At-555 556 CERK (Fig 4). All of these proteins have been described as being involved in the defense against fungal pathogens [20,21,28–30,53,61], suggesting that the studied sequences also participate in 557 558 the defense responses against this group of phytopathogens. Among the species compared, 559 tomato and grape have greater evolutionary proximity to coffee. Bti9 (Sl-LYK1), a CERK1 homolog in tomato, which grouped more closely to the Scaffold 2193.164 and 476.38 sequences 560

561 (*Ca2-CERK1*) in this clade, presents an identity of 58.6% with *At-CERK* [69]. Candidate
562 sequences in coffee, however, showed around 57% of identity (Table 3).

The Bti9 (Sl-LYK1) in tomato interacts with AvrPtoB, effector in Pseudomonas 563 syringae. The kinase region of this protein is the target and this results in blocking the PTI 564 565 signaling [69]. Despite being described as a bacterial effector target, the study by Zeng et al., 2012 [69] or later reports by Xin and He, 2013 [70] did not describe the interaction of this 566 567 protein with chitin or the transcriptional profiles regarding the response to fungal pathogens. 568 Nonetheless, *Bti9* is a membrane receptor with extracellular LysM motifs and high homology to At-CERK1. Furthermore, the At/Os-CERK1, besides playing a role as a receptor for fungal 569 570 PAMPs, also participates as a co-receptor for PRRs in bacterial recognition [52,71], which 571 demonstrates the multiple functions of this receptor and turns it into a possible target of bacterial 572 and fungal effectors that suppress PTI.

The Ca1 and 2 LYK 4 and 5, clades II and III, were grouped to grape receptors Vv-LYK4-573 1/2 and Vv-LYK5-1 (Fig 4). These were shown to be highly expressed during infection by 574 575 Botrytis cinerea in grapevine fruits [53]. The clustering of Bd-LYK4 in this clade corroborates 576 the results presented by Tombuloglu et al., 2019 [57] for this PRR described in the 577 Brachypodium genome, which presented a greater phylogenetic relationship to At-LYK5. In 578 clade IV, the Ca1 and 2 LYP grouped, in addition to other homologs, to Mm-LYP1. The Mm-579 LYP1 is a receptor described in white mulberry, besides having a high affinity for chitin, it 580 displays a significant increase in transcriptional profiles in fruits and leaves of mulberry infested with popcorn disease. The Mm-LYP1 interacts with Mm-LYK2, a homolog of At-CERK1, 581 582 present in clade I and grouped with the candidate sequences for CERK1 in C. arabica. The Mm-LYK2 does not have a high affinity for chitin, but it functions as a co-receptor with intracellular 583 kinase for the PTI signaling [30]. Additionally, in this clade, the Hv-CEBiP in barley, has been 584 described for recognizing chitin oligosaccharides derived from *Magnaporthe oryzae* [27] and 585

Mt-LYM2, in *Medicago truncatula*, demonstrated specific binding to biotinylated Nacetylchitooctaose in a similar way to *CEBiP* in rice [22,62]. Thus, the receptors cited for the phylogenetic groupings of this study reinforces the possible role of candidate sequences in *C. arabica* as PAMP receptors.

590 Transcriptional response of candidate receptors in *C. arabica*

The PAMPS are defined as highly conserved molecules from microorganisms and, 591 592 therefore, have an essential function in their survival or fitness [72,73]. It is suggested that since 593 PAMPs are essential for the viability or lifestyle of microorganisms, it is less likely that they 594 avoid host immunity through mutation or deletion in these regions [14,74]. Chitin is a PAMP present in the fungal cell wall. Fragments of N-acetylquitooligosaccharides are released by the 595 breakdown of this PAMP by plant chitinases during plant-fungus interactions. These fragments 596 597 serve as elicitors for the innate immunity of plants by modifying the transcriptional levels of PRRs [22]. 598

599 In this study, the expression increases were detected from 6 hpi, showing that all 600 candidate PRR were stimulated after the inoculation of *H. vastatrix*. The highest averages of 601 expression were observed at 24 hpi, for most receptors, followed by a decrease at 48 hpi (Fig 5). These results describe an initial stimulus with subsequent suppression. The experiments 602 603 showed that at 24 hpi it is already possible to detect the penetration of the hypha produced by 604 the appressorium of *H. vastatrix* in stomata of coffee leaves, both in resistant and susceptible 605 genotypes and at 48 hpi the presence of haustoria is already observed [75-77]. In addition, a 606 LRR receptor-like kinase described in this pathosystem has a peak expression at 24 hpi in 607 compatible and incompatible interactions [78], thus suggesting that the signal exchange 608 between the two organisms is already occurring in this period.

To inhibit PTI, some fungal pathogens secrete proteins containing LysM motifs that compete with plant receptors [79,80]. These proteins seem to impede the detection of chitin

polymers or interfere with the functioning of essential molecules in the downstream signaling 611 612 of basal immunity. It is assumed that the decrease in PRR expression in C. arabica leaves, observed at 48 hpi, may be related to the suppression of PTI signaling. Fungal effectors such as 613 *Ecp6*, *ChELP1/2* bind to chitin oligosaccharides released by the action of chitinases and prevent 614 615 their recognition by the host PRR [79,81], while effectors like Avr4 protect chitin from fungal cell walls from degradation by host chitinase [82]. In addition, a study of the H. vastatrix 616 617 secretome showed that effector candidates expressed in incompatible interaction (resistance) were more abundant within 24 hours, suggesting that these pre-haustorial effectors could be 618 619 involved in the attempt to suppress PTI [83].

620 The expression results of the candidate receptors did not show difference in profiles 621 between the groups of resistant and susceptible cultivars. Despite the IP showing high levels of 622 expression at 24 hpi for the transcripts Cal-LYP, Ca2-LYK5 and Ca-LYK4, the susceptible cultivar MN showed equivalent levels of expression for Cal-CERK1 and Ca2-LYP or MN and 623 CV showed comparable levels or even larger than the AR resistant cultivar for Ca2-CERK1, 624 625 Ca2-LYP, Ca1-LYK5 and Ca-LYK4 (Fig 5). This result was expected, since the basal immunity 626 is characterized by being broad-spectrum and non-specific [12,17]. The resistance of coffee to 627 rust has been reported as pre-haustorial [77,84], in which resistant genotypes cease the growth 628 of the fungus with mechanisms of pathogen recognition by resistance proteins. Thus, the 629 difference between resistant and susceptible cultivars is generally evidenced in studies of 630 expression of genes involved in pathogen-specific pathways and not in broad-spectrum receptors, such as PRRs [84]. 631

Additionally, the recognition and signaling of PAMPs occurs when PRRs associate and act as part of multiprotein immune complexes on the cell surface [85,86]. Although they share common structural characteristics, these receptors are distinct in terms of recognized expression patterns and epitopes [23,25,52,62]. This shows that the receptors roles appear to have evolved independently in different groups of plants [25,71]. Therefore, considering that all candidate
receptors in coffee, described in this study, increased their expression from 6 hpi in all evaluated
cultivars, each one may have possible roles in the basal immunity of *C. arabica*.

639 **Conclusion**

The results indicate that candidate sequences in *C. arabica* have protein domains and
motifs characteristic of fungal PRRs and are homologous to *At-CERK1*, *At-LYK4*, *At-LYK5* and *Os-CEBiP*. Additionally, the expression of these genes was increased after the inoculation of *H. vastatrix* at all times and cultivars evaluated. Therefore, this study presents an advance in
the understanding of the basal immunity of this species.

645

646 Acknowledgments

647 The authors would like to acknowledge the M.Sc. Antonio Carlos da Mota Porto for his help648 with the statistical analysis.

649 This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
650 Superior – Brasil (CAPES) – Finance Code 001.

651

652 **References**

- 1. Klemptner RL, Sherwood JS, Tugizimana F, Dubery IA, Piater LA. Ergosterol, an
- orphan fungal microbe-associated molecular pattern (MAMP). Mol Plant Pathol.

655 2014;15: 747–761. doi:10.1111/mpp.12127

- 656 2. Boyd LA, Ridout C, O'Sullivan DM, Leach JE, Leung H. Plant-pathogen interactions:
- Disease resistance in modern agriculture. Trends Genet. 2013;29: 233–240.

- doi:10.1016/j.tig.2012.10.011
- Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444: 323–329.
 doi:10.1038/nature05286
- 4. Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T. Immune receptor complexes at
- the plant cell surface. Curr Opin Plant Biol. 2014;20: 47–54.
- 663 doi:10.1016/j.pbi.2014.04.007
- 5. Kourelis J, Van Der Hoorn RA. Defended to the Nines: 25 years of Resistance Gene
- 665 Cloning Identifies Nine Mechanisms for R Protein Function. Plant Cell. 2018;30: 285–
- 666 299. doi:10.1105/tpc.17.00579
- 667 6. Tsuda K, Katagiri F. Comparing signaling mechanisms engaged in pattern-triggered
 668 and effector-triggered immunity. Curr Opin Plant Biol. 2010;13: 459–465.
- 669 doi:10.1016/j.pbi.2010.04.006
- 670 7. Jeworutzki E, Roelfsema MRG, Anschütz U, Krol E, Elzenga JTM, Felix G, et al.
- Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR
- 672 involves Ca2+-associated opening of plasma membrane anion channels. Plant J.
- 673 2010;62: 367–378. doi:10.1111/j.1365-313X.2010.04155.x
- 8. Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, et al. Chloroplastmediated activation of plant immune signalling in Arabidopsis. Nat Commun. 2012;3:
- 676 910–926. doi:10.1038/ncomms1926
- Macho AP, Zipfel C. Plant PRRs and the activation of innate immune signaling. Mol
 Cell. 2014;54: 263–272. doi:10.1016/j.molcel.2014.03.028
- 10. Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D. Interplay between calcium
- 680 signalling and early signalling elements during defence responses to microbe- or

- damage-associated molecular patterns. Plant J. 2011;68: 100–113. doi:10.1111/j.1365313X.2011.04671.x
- 683 11. Thomma BPHJ, Nürnberger T, Joosten MHAJ. Of PAMPs and Effectors: The Blurred
- 684 PTI-ETI Dichotomy. Plant Cell. 2011;23: 4–15. doi:10.1105/tpc.110.082602
- Ranf S. Sensing of molecular patterns through cell surface immune receptors. Curr
 Opin Plant Biol. 2017;38: 68–77. doi:10.1016/j.pbi.2017.04.011
- 13. Hegenauer V, Fürst U, Kaiser B, Smoker M, Zipfel C, Felix G, et al. Detection of the

688 plant parasite *Cuscuta reflexa* by a tomato cell surface receptor. Science. 2016;353:

- 689 478–481. doi:10.1126/science.aaf3919
- 690 14. Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, Van Esse HP, et
- al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum

bacterial resistance. Nat Biotechnol. 2010;28: 365–369. doi:10.1038/nbt.1613

- Lee S, Whitaker VM, Hutton SF. Potential applications of non-host resistance for crop
 improvement. Front Plant Sci. 2016;7: 1–6. doi:10.3389/fpls.2016.00997
- 16. Lee HA, Lee HY, Seo E, Lee J, Kim SB, Oh S, et al. Current understandings on plant
- 696 nonhost resistance. Mol Plant-Microbe Interact. 2016;30: 5–15. doi:10.1094/MPMI-10 697 16-0213-CR
- Boutrot F, Zipfel C. Function, discovery, and exploitation of plant pattern recognition
 receptors for broad-spectrum disease resistance. Annu Rev Phytopathol. 2017;55: 257–
 286. doi:10.1146/annurev-phyto-080614-120106
- 18. Gómez-Gómez L, Boller T. FLS2: An LRR Receptor-like Kinase Involved in the
- 702 Perception of the Bacterial Elicitor Flagellin in Arabidopsis. Mol Cell. 2000;5: 1003–
- 703 1011. doi:10.1016/S1097-2765(00)80265-8

704	19.	Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, et al. Perception of
705		the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated
706		Transformation. Cell. 2006;125: 749-760. doi:10.1016/j.cell.2006.03.037
707	20.	Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, et al.
708		Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin
709		elicitor signaling in rice. Plant J. 2010;64: 204–214. doi:10.1111/j.1365-
710		313X.2010.04324.x
711	21.	Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, et al. CERK1, a LysM
712		receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad
713		Sci. 2007;104: 19613–19618. doi:10.1073/pnas.0705147104
714	22.	Kaku H, Nishizawa Y, Ishii-minami N, Akimoto-tomiyama C, Dohmae N, Takio K, et
715		al. Plant cells recognize chitin fragments for defense signaling through a plasma
716		membrane receptor. Proc Natl Acad Sci. 2006;103: 11086-11091.
717		doi:/10.1073/pnas.0508882103
718	23.	Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, et al. The
719		kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced
720		complex with related kinase CERK1. Elife. 2014;3: 1-19. doi:10.7554/eLife.03766
721	24.	Wan J, Tanaka K, Zhang X-C, Son GH, Brechenmacher L, Nguyen THN, et al. LYK4,
722		a lysin motif receptor-like kinase, is important for chitin signaling and plant innate
723		immunity in Arabidopsis. Plant Physiol. 2012;160: 396–406.
724		doi:10.1104/pp.112.201699
725	25.	Liu B, Li JF, Ao Y, Qu J, Li Z, Su J, et al. Lysin Motif-Containing Proteins LYP4 and
726		LYP6 Play Dual Roles in Peptidoglycan and Chitin Perception in Rice Innate
727		Immunity. Plant Cell. 2012;24: 3406-3419. doi:10.1105/tpc.112.102475

728	26.	Zipfel C, Robatzek S, Navarro L, Oakeley E, al et. Bacterial disease resistance in
729		Arabidopsis through flagellin perception. Nature. 2004;428: 15–18.
730		doi:10.1038/nature02485
731	27.	Tanaka S, Ichikawa A, Yamada K, Tsuji G, Nishiuchi T, Mori M, et al. HvCEBiP, a
732		gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of
733		barley to Magnaporthe oryzae. BMC Plant Biol. 2010;10. doi:10.1186/1471-2229-10-
734		288
735	28.	Zhou Z, Tian Y, Cong P, Zhu Y. Functional characterization of an apple (Malus x
736		domestica) LysM domain receptor encoding gene for its role in defense response. Plant
737		Sci. 2018;269: 56-65. doi:10.1016/j.plantsci.2018.01.006
738	29.	Chen Q, Dong C, Sun X, Zhang Y, Dai H, Bai S. Overexpression of an apple LysM-
739		containing protein gene, MdCERK1-2, confers improved resistance to the pathogenic
740		fungus, Alternaria alternata, in Nicotiana benthamiana. BMC Plant Biol. 2020;20: 1-
741		13. doi:10.1186/s12870-020-02361-z
742	30.	Lv Z, Huang Y, Ma B, Xiang Z, He N. LysM1 in MmLYK2 is a motif required for the
743		interaction of MmLYP1 and MmLYK2 in the chitin signaling. Plant Cell Rep.
744		2018;37: 1101–1112. doi:10.1007/s00299-018-2295-4
745	31.	ICO. Crop year production by country. International Coffee Organization.July 2020
746		[Cited 2020 july 28]. Available from: https://www.ico.org/
747	32.	Cabral PGC, Maciel-Zambolim E, Oliveira SAS, Caixeta ET, Zambolim L. Genetic
748		diversity and structure of Hemileia vastatrix populations on Coffea spp. Plant Pathol.
749		2016;65: 196–204. doi:10.1111/ppa.12411
750	33.	McCook S, Vandermeer J. The Big Rust and the Red Queen: Long-Term Perspectives

- doi:10.1094/PHYTO-04-15-0085-RVW 752
- Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L, Bornemann G, et al. The 753 34.
- 754 coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible
- causes and proposed solutions. Food Secur. 2015;7: 303-321. doi:10.1007/s12571-015-755 0446-9 756
- 757 35. Zambolim L. Current status and management of coffee leaf rust in Brazil. Trop Plant Pathol. 2016;41: 1-8. doi:10.1007/s40858-016-0065-9 758
- Periyannan S, Milne RJ, Figueroa M, Lagudah ES, Dodds PN. An overview of genetic 759 36. rust resistance: From broad to specific mechanisms. PLoS Pathog. 2017;13: 1-6. 760 doi:10.1371/journal.ppat.1006380 761
- 762 37. Talhinhas P, Batista D, Diniz I, Vieira A, Silva DN, Loureiro A, et al. The coffee leaf rust pathogen Hemileia vastatrix: one and a half centuries around the tropics. Mol Plant 763 Pathol. 2017;18: 1039–1051. doi:10.1111/mpp.12512 764
- 765 38. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35: 1547–1549. 766 767 doi:10.1093/molbev/msy096
- 768 39. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: Multiple sequence
- 769 alignment, interactive sequence choice and visualization. Brief Bioinform. 2018;20:
- 770 1160–1166. doi:10.1093/bib/bbx108
- 771 40. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis
- 772 program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41: 95-98.
- 773 doi:10.1039/c7qi00394c

774	41.	Lashermes P, Combes MC, Robert J, Trouslot P, D'Hont A, Anthony F, et al.
775		Molecular characterization and origin of the Coffea arabica L. genome. Mol Gen
776		Genet. 1999;261: 259–266. doi:10.1007/s004380050965
777	42.	Tran HTM, Ramaraj T, Furtado A, Lee LS, Henry RJ. Use of a draft genome of coffee
778		(Coffea arabica) to identify SNPs associated with caffeine content. Plant Biotechnol J.
779		2018;9: 1756–1766. doi:10.1111/pbi.12912
780	43.	Monteiro ACA, de Resende MLV, Valente TCT, Ribeiro Junior PM, Pereira VF, da
781		Costa JR, et al. Manganese phosphite in coffee defence against Hemileia vastatrix, the
782		coffee rust fungus: biochemical and molecular analyses. J Phytopathol. 2016;164:
783		1043–1053. doi:10.1111/jph.12525
784	44.	Pfaffl MW. A new mathematical model for relative quantification in real-time RT-
785		PCR. Mon Not R Astron Soc. 2001;29: e45-e45. doi:10.1111/j.1365-
786		2966.2012.21196.x
787	45.	Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG. Identification of suitable
788		internal control genes for expression studies in Coffea arabica under different
789		experimental conditions. BMC Mol Biol. 2009;10: 1-11. doi:10.1186/1471-2199-10-1
790	46.	De Carvalho K, Bespalhok Filho JC, Dos Santos TB, De Souza SGH, Vieira LGE,
791		Pereira LFP, et al. Nitrogen starvation, salt and heat stress in coffee (Coffea arabica
792		L.): Identification and validation of new genes for qPCR normalization. Mol
793		Biotechnol. 2013;53: 315-325. doi:10.1007/s12033-012-9529-4
794	47.	Fernandes-Brum CN, Garcia B de O, Moreira RO, Ságio SA, Barreto HG, Lima AA, et
795		al. A panel of the most suitable reference genes for RT-qPCR expression studies of
796		coffee: screening their stability under different conditions. Tree Genet Genomes.
797		2017;13: 1–13. doi:10.1007/s11295-017-1213-1

48. Reichel, T, Resende, MLV.; Monteiro, ACA.; Freitas, NC.; Botelho, DMS. 798 Constitutive Defense Strategy of Coffee Under Field Conditions : A Comparative 799 Assessment of Resistant and Susceptible Cultivars to Rust. Mol Biotechnol. 2021; 1-800 15. doi:10.1007/s12033-021-00405-9 801 802 49. Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80: 75-84. 803 804 doi:10.1007/s11103-012-9885-2 Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den hoff MJB, et 805 50. 806 al. Amplification efficiency: Linking baseline and bias in the analysis of quantitative 807 PCR data. Nucleic Acids Res. 2009;37: e45-e45. doi:10.1093/nar/gkp045 51. R Core Team. 2020 [cited 2020 August 30] in: The R Project for Statistical Computing 808 809 [Internet]. Vienna: The R Foundation for Statistical Computing. Available from: 810 https://www.r-project.org/ Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D, Tsuda K, et al. Arabidopsis 811 52. lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing 812 and immunity to bacterial infection. Proc Natl Acad Sci U S A. 2011;108: 19824-813 19829. doi:10.1073/pnas.1112862108 814 815 53. Brulé D, Villano C, Davies LJ, Trdá L, Claverie J, Héloir MC, et al. The grapevine 816 (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. Plant Biotechnol J. 2019;17: 812-825. 817 818 doi:10.1111/pbi.13017 819 54. Liu T, Liu Z, Song C, Hu Y, Han Z, She J, et al. Chitin-induced dimerization activates a plant immune receptor. Science. 2012;336: 1160-1164. doi:10.1126/science.1218867 820

Cell Wall Recognition by Rice Chitin Receptor OsCEBiP. Structure. 2016;24: 1192-822 1200. doi:10.1016/j.str.2016.04.014 823 824 56. Zhang XC, Cannon SB, Stacey G. Evolutionary genomics of LysM genes in land plants. BMC Evol Biol. 2009;9: 1–13. doi:10.1186/1471-2148-9-183 825 57. Tombuloglu G, Tombuloglu H, Cevik E, Sabit H. Genome-wide identification of 826 827 Lysin-Motif Receptor-Like Kinase (LysM-RLK) gene family in Brachypodium distachyon and docking analysis of chitin/LYK binding. Physiol Mol Plant Pathol. 828 2019;106: 217-225. doi:10.1016/j.pmpp.2019.03.002 829 58. Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B. LysM receptor-like kinase and 830 lysM receptor-like protein families: An update on phylogeny and functional 831 832 characterization. Front Plant Sci. 2018;871: 1-25. doi:10.3389/fpls.2018.01531 59. Lohmann GV, Shimoda Y, Nielsen MW, Jorgensen FG, Grossmann C, Sandal N, et al. 833 Evolution and regulation of the Lotus japonicus LysM receptor gene family. Mol Plant-834 Microbe Interact. 2010;23: 510-521. doi:10.1094/MPMI-23-4-0510 835 Zhang XC, Wu X, Findley S, Wan J, Libault M, Nguyen HT, et al. Molecular evolution 836 60. 837 of lysin motif-type receptor-like kinases in plants. Plant Physiol. 2007;144: 623-636. doi:10.1104/pp.107.097097 838 839 61. Leppyanen I V, Shakhnazarova VY, Shtark OY, Vishnevskaya NA, Tikhonovich IA, Dolgikh EA. Receptor-like kinase LYK9 in Pisum sativum L. Is the CERK1-like 840 receptor that controls both plant immunity and AM symbiosis development. Int J Mol 841 842 Sci. 2018;19. doi:10.3390/ijms19010008

Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J. Molecular Mechanism for Fungal

821

55.

62. Fliegmann J, Uhlenbroich S, Shinya T, Martinez Y, Lefebvre B, Shibuya N, et al.

- Biochemical and phylogenetic analysis of CEBiP-like LysM domain-containing
 extracellular proteins in higher plants. Plant Physiol Biochem. 2011;49: 709–720.
 doi:10.1016/j.plaphy.2011.04.004
- Monaghan J, Zipfel C. Plant pattern recognition receptor complexes at the plasma
 membrane. Curr Opin Plant Biol. 2012;15: 349–357. doi:10.1016/j.pbi.2012.05.006
- 849 64. Nazarian-Firouzabadi F, Joshi S, Xue H, Kushalappa AC. Genome-wide in silico
- identification of LysM-RLK genes in potato (*Solanum tuberosum L*.). Mol Biol Rep.
 2019:46: 5005–5017. doi:10.1007/s11033-019-04951-z
- Kue DX, Li CL, Xie ZP, Staehelin C, Napier R. LYK4 is a component of a tripartite
 chitin receptor complex in *Arabidopsis thaliana*. J Exp Bot. 2019;70: 5507–5516.
 doi:10.1093/jxb/erz313
- 855 66. Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, et al. Functional
- 856 Characterization of CEBiP and CERK1 Homologs in Arabidopsis and Rice Reveals the
- 857 Presence of Different Chitin Receptor Systems in Plants. Plant Cell Physiol. 2012;53:
- 858 1696–1706. doi:10.1093/pcp/pcs113
- 859 67. Ao Y, Li Z, Feng D, Xiong F, Liu J, Li JF, et al. OsCERK1 and OsRLCK176 play
- important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J.
- 861 2014;80: 1072–1084. doi:10.1111/tpj.12710
- 862 68. Kaku H, Shibuya N. Molecular mechanisms of chitin recognition and immune
- signaling by LysM-receptors. Physiol Mol Plant Pathol. 2016;95: 60–65.
- doi:10.1016/j.pmpp.2016.02.003
- 865 69. Zeng L, Velásquez AC, Munkvold KR, Zhang J, Martin GB. A tomato LysM receptor-
- like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J.

- 868 70. Xin XF, He SY. Pseudomonas syringae pv. tomato DC3000: A model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol. 869 870 2013;51: 473-498. doi:10.1146/annurev-phyto-082712-102321 71. 871 Desaki Y, Kohari M, Shibuya N, Kaku H. MAMP-triggered plant immunity mediated by the LysM-receptor kinase CERK1. J Gen Plant Pathol. 2019;85: 1-11. 872 873 doi:10.1007/s10327-018-0828-x 874 72. Albert M. Peptides as triggers of plant defence. J Exp Bot. 2013;64: 5269–5279. doi:10.1093/jxb/ert275 875 73. 876 Naito K, Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, et al. Amino Acid Sequence of Bacterial Microbe-Associated Molecular Pattern flg22 Is Required for 877 Virulence. Mol Plant-Microbe Interact. 2008;21: 1165-1174. doi:10.1094/MPMI-21-9-878 1165 879 880 74. Dickman MB, Fluhr R. Centrality of host cell death in plant-microbe interactions. 881 Annu Rev Phytopathol. 2013;51: 543–570. doi:10.1146/annurev-phyto-081211-173027 882 75. Ramiro DA, Escoute J, Petitot AS, Nicole M, Maluf MP, Fernandez D. Biphasic haustorial differentiation of coffee rust (Hemileia vastatrix race II) associated with 883 defence responses in resistant and susceptible coffee cultivars. Plant Pathol. 2009;58: 884 885 944–955. doi:10.1111/j.1365-3059.2009.02122.x Silva MC, Nicole M, Guerra-Guimarães L, Rodrigues CJ. Hypersensitive cell death 886 76. and post-haustorial defence responses arrest the orange rust (Hemileia vastatrix) 887
- growth in resistant coffee leaves. Physiol Mol Plant Pathol. 2002;60: 169–183.
- doi:10.1006/pmpp.2002.0389

890	77.	Silva MC, Guerra-Guimarães L, Loureiro A, Nicole MR. Involvement of peroxidases
891		in the coffee resistance to orange rust (Hemileia vastatrix). Physiol Mol Plant Pathol.
892		2008;72: 29–38. doi:10.1016/j.pmpp.2008.04.004
893	78.	Almeida DP De, Castro ISL, Mendes TA de O, Alves DR, Barka GD, Barreiros
894		PRRM, et al. Receptor-Like Kinase (RLK) as a candidate gene conferring resistance to
895		Hemileia vastatrix in coffee. Sci Agric. 2020;78: 1-9. doi:10.1590/1678-992x-2020-
896		0023
897	79.	Takahara H, Hacquard S, Kombrink A, Hughes HB, Halder V, Robin GP, et al.
898		Colletotrichum higginsianum extracellular LysM proteins play dual roles in
899		appressorial function and suppression of chitin-triggered plant immunity. New Phytol.
900		2016;211: 1323–1337. doi:10.1111/nph.13994
901	80.	Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE,
902		et al. Analysis of two in planta expressed LysM effector homologs from the fungus
903		mycosphaerella graminicola reveals novel functional properties and varying
904		contributions to virulence on wheat. Plant Physiol. 2011;156: 756–769.
905		doi:10.1104/pp.111.176347
906	81.	De Jonge R, Van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, et al.
907		Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants.
908		Science. 2010;329: 953–955. doi:10.1126/science.1190859
909	82.	Van Den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, De Wit PJGM.
910		Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant
911		chitinases accumulating during infection. Mol Plant-Microbe Interact. 2006;19: 1420-
912		1430. doi:10.1094/MPMI-19-1420
913	83.	Porto BN, Caixeta ET, Mathioni SM, Vidigal PMP, Zambolim L, Zambolim EM, et al.

914		Genome sequencing and transcript analysis of Hemileia vastatrix reveal expression
915		dynamics of candidate effectors dependent on host compatibility. PLoS One. 2019;14:
916		1-23. doi:10.1371/journal.pone.0215598
917	84.	Ganesh D, Petitot AS, Silva MC, Alary R, Lecouls AC, Fernandez D. Monitoring of
918		the early molecular resistance responses of coffee (Coffea arabica L.) to the rust fungus
919		(Hemileia vastatrix) using real-time quantitative RT-PCR. Plant Sci. 2006;170: 1045–
920		1051. doi:10.1016/j.plantsci.2005.12.009
921	85.	Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, et al. Structural basis for flg22-
922		induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science.
923		2013;342: 624-628. doi:10.1126/science.1243825
924	86.	Tang D, Wang G, Zhou J-M. Receptor Kinases in Plant-Pathogen Interactions: More
925		Than Pattern Recognition. Plant Cell. 2017;29: 618-637. doi:10.1105/tpc.16.00891

926

927 Supporting information

928 S1 Fig. Germination of *H. vastatrix* spores observed by optical microscope after 48 hours

929 of inoculum preparation.

930

931 S2 Fig. Symptoms and signs of *H. vastatrix* in *C. arabica* seedlings.

- 932 (A, B, C, D) Cultivar Mundo Novo IAC 367-4, (E, F) Catuaí Vermelho. (A) abaxial face 20
- 933 days after inoculation of the pathogen, (B) adaxial face 20 days after inoculation, (C, E) abaxial
- face 35 days after inoculation, (D) adaxial face 35 days after inoculation.

938 (A) Experiments 1, (B) Experiment 2. GM: Geometric mean of the weights from algorithms939 Delta-Ct, BestKeeper, NormFinder e geNorm.

940

941 S4 Fig. Alignments of CDS from candidate sequences to *CERK1* (*Ca1-CERK1*942 Scaffold_539.592 e Scaffold_1805.113). The alignments were obtained by CLC Genomics
943 Workbench software. Gray bars show the conservation level of the positions; red letters, the
944 different nucleotides; and red dashes, the gaps. Identity: 71, 33%.

945

S5 Fig. Alignments of CDS from candidate sequences to *CERK1* (*Ca2-CERK1*(Scaffold_2193.164 e Scaffold_476.38) in *C. arabica*. The alignments were obtained by CLC
Genomics Workbench software. Gray bars show the conservation level of the positions; red
letters, the different nucleotides; and red dashes, the gaps. Identity: 98,28%.

950

S6 Fig. Alignments of CDS from candidate sequences to *LYK4* (Scaffold_612.376 and
Scaffold_952.320) in *C. arabica*. The alignments were obtained by CLC Genomics Workbench
software. Gray bars show the conservation level of the positions; red letters, the different
nucleotides; and red dashes, the gaps. Identity: 98,45%.

S1 Table. BLASTp analysis of the PRR reference sequences against the *C. arabica* genome
in Phytozome.

Figures

Fig1.

CERK1							
At-CERK1 SYYLENGTTLSVINQNLNSSIAPYDQINFDPILRYNS-NIKDKDRIQMGSRVLVP 54 LysM1 539.592 SYYIWEGSNLTYISSIFDQTIP EILRQNP-HVPNQDSIHSGTRINIP 46 *29,63% *53,70% 1805.113 SYYAWNGTNLTFISTVLSTSIS EILRQNP-HVPNQDSIHSGTRINIP 46 *29,63% *59,26% 2193.164 SYDVWRGSNVTLIADLFSVPVS TLLSWNPVTLPDRDTVIAGTRVNIP 47 *21,82% *49,10% 476.38 SFDVWRGSNVTLIAQLFSVPVS TLLSWNPVTLPDTNTVIAGTRINIP 47 *18,18% *49,10%							
At-CERK1 S Y S V R QEDTYE R VA I S NYANLTTME S LQARN P F PATNI PLSATLNVL 47 LysM2 539.592 - Y P L R P G ENLIS S VAN A S GA P A E LLQR F N - PG S N F S AG S G I V F V PAKV 45 *21,57% **35,29% 1805.113 - R V R S ATTYY R R I A H L V Y AN LT T V EMLQR F N S Y P P E N V P AA A Q L N V T 45 *46,81% **57,45% 2193.164 - S V S S G D TY D I V A S Q F Y AN LT S T TWL R F N S Y P ANNI P D T G V L N V T 45 *46,81% **57,45% 476.38 - S V S T G D TY D L V A S R N Y AN LT S T TWL R F N S Y P ANNI PD T G F L N V T 45 *48,94% **59,57%							
At-CERK1TYPLRPEDSLSSIARSSGVSADILQRYNPGVNFNSGNGIVYV - 42LysM3539.592- YPLRSGETISSLANEFDLPEKLLEDYNPRVNFSGGSGLIFV - 41*40,48% **69,05%1805.113- YPLRSGETISSLANEFDLPEKLLEDYNPRVNFSGGSGLIFV - 41*40,48% **69,05%2193.164- WPIAVGDTLQSVASANNLSANLISRYNPTANFTSGSGLLFIP42*37,21% **72,09%476.38- WPIAVGDTLQSVASANNLSANLISRYNPTANFTSGSGLLFIP42*37,21% **72,09%							
LYK4							
At-LYK4VIFRSTPSFSTVTSISSLFSVDPSLVSSLNDASPSTSFPSGQQVIIP47LysM1612.376LTFRSLPPFNSVSSISSLLAADPSHLSQLNKVSQDATFETNRTVLVP47*44,68%**68,08%952.320LTFRSLPPFNSVSSISSLLAADPSHLSQLNKVSQDATFETNRTVLVP47*44,68%**68,08%							
At-LYK4TYTIQPNDSYFAIANDTLQGLSTCQALAKQN - NVSSQSLFPGMRIVVP47LysM2612.376SYVIQHGNTYLSIANSTFQGLSTCQALQAQNANLSTVNLIAGTRIRVP48*56,25% **70,83%952.320SYVIQHGNTYFSIANSTFQGLSTCQALQAQNANLSTGNLIVGTRIRVP48*58,33% **72,92%							
At-LYK4SYTVVFEDTIAIISDRFGVETSKTLKANEMSFENSEVFPFTTILIP46LysM3612.376SYLVTWGQYVAAISSMFGVDTGKTLQANGLSEQNFNIYPFTTLLVP46*50,00%**71,74%952.320SYLVTWGQYVSAISSMFGVDTGKTLQANGLSEQNFNIYPFTTLLVP46*47,83%**71,74%							
LYK5							
At-LYK5 NTADSIAKLLNVSAAEIQSINNLPTATTRIPTRELVVIP 39 LysM1 628.522 NSPVTIAYLLDTDATEIARINNV SDVGRIPSGTLIIVP 38 *41,02% **64,10% 1841.91 NSPVTIAYLLDTDATEIARINNV SDVGRIPSGTLIIVP 38 *41,02% **64,10%							
At-LYK5 RGD - ETYFSVANDTYQALSTCQAMMSQNRYGERQLTPGLNLLVP43LysM2628.522YVLKGTVETYYAVANETYQGLTTCQSLQAQNSYNFRNLKVNMKLNIP47*44,68%**65,96%1841.91YVLKGTVETYYAVANETYQGLTTCQSLQAQNSYNFRNLKVNMKLNIP47*44,68%**65,96%							
At-LYK5 T Y L V AMGD S I S G I A EMFN S T S A A I T E GNELT S DNI F F - F T P V L V P 44 LysM3 628.522 A Y L I T WGD S F E A I A SM F NAD V Q S I YAAN ELS PNHLI H P F N P L L I P 45 *40,00% **60,00% 1841.91 A Y L I T WGD S F E A I A SM F NAD V Q G I YAAN ELS PNHLI H P L N P L L I P 45 *37,78% **55,56%							
CEBiP							
Os-CEBIP I Y V V Q P Q D G L D A I A R N V F N A F V T Y Q E I A A A N N I P D P N K I N V S Q T L W I P 48 LysM1 1196.90 I Y T V V P N D F L Y H I A A E V F S G L V T S Q Q I Q A T N N I S N A N L I Y A G Q K L W I P 48 *52,08% **58,33% 439.212 - Y V L P N S T T L S R I - Q T L F N - V K N L T S I L G A N N L P L S T P Q R T F P A N Q T V K I P 49 *28,85% **40,38%							
Os-CEBIPAYSVGKGENTSAIAAKYGVTESTLLTRNKIDDPTKLQMGQILDVP45LysM21196.90GYAVPARSSVDGIAQQYNTTADVLLRLNGLASPNDLKAGAILDVP45*37,78%**48,88%439.212GYAVPARSSVDGIAQQYNTTADVLLRLNGLASPNDLKAGAILDVP45*37,78%**48,88%							

Fig4.

Fig5.

G

25

- 02 - 15 - 10 - 10 - 5

0-

AR

ΙÞ

сv

MN

Supporting information – Figures and Table

S1fig.

S2fig.

S4fig.

Scaffold_539.592 Scaffold_1805.113 Conservation	ATGAAAATAACGGCATCAAAGAGGAAGAGGCTAATTCTATTGTTGAGCTCTTGTTTAGTACTTGTGTTGTTATGTTTT ATG	78 3
Scaffold_539.592 Scaffold_1805.113	AGCGTTGAGGCCAAGTGTAGAAGTGGCTGTGACCTTGCCTTGGCTTCATACTACATCTGGGAAGGATCAAATCTCACA	156 3
Conservation Scaffold_539.592 Scaffold_1805.113	TACATTAGCTCCATCTTCGATCAAACAATCCCAGAAATTCTTCGACAAAATCCTCATGTTCCAAATCAAGACAGCATC	234 3
Conservation Scaffold_539.592 Scaffold_1805.113	CACAGCGGTACGAGAATCAACATTCCATCCATGTGGTGGTGGTGCTGACTGGATGTTTTTTGGGACATAACTTTGAGTAT	312 3
Conservation Scaffold_539.592 Scaffold_1805.113	CTGACTCAGGGTGGCGATACATATGAGAAGATTGCAAGAATAGCTTTTGCTAATCTGACAAATGGGAACTGGATCCAA	390 3
Conservation Scaffold_539.592 Scaffold_1805.113	BIERRIE SIERE SERVICE SERVI	468 3
Conservation Scaffold_539.592 Scaffold_1805.113	A GCAGAG TATCAGAGGATTATGGATGTTGATAGATGATGATGATGATGATG	546 3
Conservation Scaffold_539.592 Scaffold_1805.113	GCATCAGGGGCTCCAGCTGAGTTGCTGCAAGGTTCAATCCAGGATCTAACTTCAGTGCAGGATCAGGAATAGTGTTT	624 3
Scaffold_539.592 Scaffold_1805.113	GTGCCCGGCAAAAGTGTCGAGAATTATGGATGTGAAGGGAAAGAGAAGCTTTGAGCTGGTATTAGGCTTTTTAACCGTG GATGTGCAGGGAAAGAGAAACTTTGAGCTGGTATTAGGCTTTTTAACCGTG	702 54
Scaffold_539.592 Scaffold_1805.113 Conservation	ATAATCTTATTGGGTAGAGTTGAATCACAGTGCAGTCGAGGATGTGATGCTTTAGCTTCATATTATGCATGGAATGGA ATAATCTTACTGGGTAGAGTTGAATCACAGTGCGGTGGAGGATGTGATGCTTTAGCTTCATATTATGCATGGAATGGA	780 132
Scaffold_539.592 Scaffold_1805.113 Conservation	ACAAATCTTACACTCATATCCACTGTTCTTTCTACCTCTATCAGCCACATTCTTAAATACAATCCTCAAATAACAATACCAATACCAATACCAATCTTACATTCATACCACTGTTCTTACCACTCTATCAGCCACATTCTTAAATACAATCCTCAAATACAATCAACCAAT	858 210
Scaffold_539.592 Scaffold_1805.113 Conservation	CCGGACATTATTCAATTTGGCAGCAGCAATTAGTGTTCCATTCCCATGTGCCTGCTTAAAAGAGGGGATTTATGGGGCAT CCGGACATTATTCAATTTGGCAGCAGCAATTAGTGTTCCATTCCCATGTGGCTGCTTAAAAGAGGGGATTTATGGGGCAT	936 288
Scaffold_539.592 Scaffold_1805.113 Conservation	CAGTITATTTATCGGGTCAGGTCTGCTACTTACTATCGAAGGATTGCTCACCTTGTTTATGCAAATCTTACCACGGTT CAGTITATTTATCGGGTCAGGTCTGCTACTTACTATCGAAGGATTGCTCACCTTGTTTATGCAAATCTTACCACGGTT	1014 366
Scaffold_539.592 Scaffold_1805.113 Conservation	GAGATGTTACAAAGGTTTAATAGTTATCCTCCCGAGAATGTTCCTGCCACTGCACAGTTGAATGTTACTGTCAATTGT GAGATGTTACAAAGGTTTAATAGTTATCCTCCCGAGAATGTTCCCGCCGCGCACAGTTGAATGTTACTGTCAATTGT	1092 444
Scaffold_539.592 Scaffold_1805.113 Conservation	TCTTGCGGGAATAGTAAAGTGTCGAAGGATTATGGTTTATTCATAACCTATCCTCTTCGATCAGGGGAGACTATTTCT TCTTGCGGGAATAGTAAAGTGTCGAAGGATTATGGTTTATTCATAACCTATCCTCTTCGATCAGGGAGACTATTTCT	1170 522
Scaffold_539.592 Scaffold_1805.113 Conservation	TCCCTAGCCAATGAGTTTGATCTTCCTGAGAAATTGTTGGAAGATTACAATCCTAGAGTGAATTTCAGTGGCGGAAGT TCCCTAGCCAATGAGTTTGATCTTCCTGAGAAATTGTTGGAAGATTACAATCCTAGAGTGAATTTCAGTGGCGGAAGT	1248 600
Scaffold_539.592 Scaffold_1805.113 Conservation	GGTTTGATTTTTGTCCCAGGAAAAGATCAAAATGGAATTTTTCCACCATTAAAGTCAAGCTCAAGTGGAATCTCAGGT GGTTTGATTTTTGTCCCAGGAAAAG GATCTCAGGT	1326 636
Scaffold_539.592 Scaffold_1805.113 Conservation	GGAGCTATTGCTGGAATTACAATTGCAGTACTTGCTGGAGCTATTTTCTGGCCGTCTGCTTGTATGTA	1404 714
Scaffold_539.592 Scaffold_1805.113 Conservation	AGACAAAAGGAGAATATCAGAAGGATTTCCTAAAGCAGAACCCCATGAACTAAATGATGAGAATGTGGACGATGGACCTGGA AGACAAAAGGAGAATATCAGAAGGATTTCCTAAAGCAGAACCCCATGAACTAAATGATGAGCATGGACCATGGACCTGGA	1482 792
Scaffold_539.592 Scaffold_1805.113 Conservation	GCACTGGAGAAAATATGGGAATCAGGTCCCCTTGTCAGCACCACTACAAGAATGCCCGGCATCACTGTGGACAAATCT GCACTGGAGAAAATATCGGAATCAGGTCCCCTTGTCAGCACCACTACAAGAATGCCCGGCATCACTGTGGACAAATCT	1560 870
Scaffold_539.592 Scaffold_1805.113 Conservation	GTIGAATTCTCATATGAABAACTTGCCGAGGCAACAATGAACTTTAGCCTAGCAAACAAA	1638 948
Scaffold_539.592 Scaffold_1805.113 Conservation	GGTTCTGTTTTCTATGGGGAGTTAAGAGGCGAGAAAGCTGCAATTAAGCAGATGGATATGCAAGGGTCCAAAGATTC	1026
Scaffold_539.592 Scaffold_1805.113 Conservation	CTTGCTGAACTGAAGGTTTTGACCCATGTTCATCACTTAAACCTGGTCCGCTTAATTGGATATTGTGCGAGGGATCC CTTGCTGAACTGAA	1794 1104
Scaffold_539.592 Scaffold_1805.113 Conservation	TIGTITCTGGTITATGAATACATCGAGAATGGCAACCTAACTCAGCATITGCGTGGTITIGGTAGGGAACCATIGCCT TIGTITCTGGTITATGAATACATCGAGAATGGCAACCTAACTCAGCATITGCGCGGTITIGGTAGGGAACCATIGCCT	1872 1182
Scaffold_539.592 Scaffold_1805.113 Conservation	TGGTCTGCCAGAATGCAGATTGCCCTTGATTCAGCAAGAGGACTCGAGTATATTCATGAGCATACAGTTCCTGTTTAC TGGTCTGCCAGAATGCAGATTGCCCTTGATTCAGCAAGAGGACTCGAGTATATTCATGAGCATACAGTTCCTGTTTAC	1950 1260
Scaffold_539.592 Scaffold_1805.113 Conservation	ATTCATCGAGACATTAAGCCAGCTAACATTTTGATAGACAAAACTTCCGAGCAAAGGTTGCTGACTTAGCA ATTCATCGAGACATTAAGCCAGCTAACATTTTGATAGACAAAAACTTCCGAGCAAAGGTTGCTGACTTTGGACTCACA	2028 1338
Scaffold_539.592 Scaffold_1805.113 Conservation	AAACTTACAAAAGTTGGAAGTACATCTCTGCAAAACACGCGTCTCGTGGGTACTTTCGGTTACATGCCTCCAGAGTAT AAACTTACAAAAGTTGGAAGTACATCTCTGCAAAACACGCGTCTAGTGGGTACTTTCGGTTACATGCCTCCAGAGTAT	2106 1416
Scaffold_539.592 Scaffold_1805.113 Conservation	GCCCAGTATGGTGATGTTTCCCCGAAAATAGATGTTTACGCATTTGGAGTTGTTCTTTATGAGCTTATATCAGCTAAA GCCCAGTATGGTGATGTTTCCCCGAAAATAGATGTTTACGCATTTGGAGTTGTCTTTATGAGCTTATATCAGCTAAA	2184 1494
Scaffold_539.592 Scaffold_1805.113	GAAGCAATTATCAAGACGAATGAAGTTGTTACAGAATCAAAGGGTCTTGTTGCTTGTTTGAGGATGCTTTTAACCAA GAAGCAATTATCAAAACGAATGAAGTTGTTACAGAATCAAGGGGTCTTGTTGCTTGTTTGAGGATGCTTTTAACCAA	2262 1572
Scaffold_539.592 Scaffold_1805.113 Conservation	CCTGATCCTCTAGAAGCCTTGACCAAACTGATGGATCCCGGGCTCGGCGACGATTATCCGCTTGATTCAGTTCGAAAG CCTGATCCTCTAGAAGCCTTGACCAAACTGATGGATCCCGGGCTCGGCGACGATTATCCGCTTGATTCAGTTCGAAAG	2340 1650
Scaffold_539.592 Scaffold_1805.113 Conservation	ATGGCTCAGCTGGCCAGGGCATGCACACACGAAAATCCTCAGCTCAGGCCAAGCATGAGGTCTATTGTGGTTGCATTA ATGGCTCAGCTGGGCAGGGCA	2418 1728
Scaffold_539.592 Scaffold_1805.113 Conservation	ATGACATTGTCATCGACTACTGAGGATTGGGATATTGGTTCCATTTATGAAAACCAAGGTCTGGTACATCTAATGTCT ATGACATTGTCATCTACTACTGAGGATTGGGATATTGGTTCCATTTATGAAAACCAAGGTCTGGTACATCTAATGTCT	2496 1806

Scaffold_539.592 GGAAGGCAGCATTAG 2511 Scaffold_1805.113 GGAACG------TAG 1815 Conservation

S5fig.

Scaffold_2193.164 ATGTTATTCTTCATCAAACCCAGAATTATAACAGCCCTTTTACTCCTTCTCCTCCTCCAATCTCAACCGCAAATTTC 78 Scaffold_476.38 ATGTTATTCTTCATCAAACCCAGAATTATAACAGCCCTTTTACTCCTTCTCCTCTCTCAATCTCACTGCAAATTTT 78 Conservation Scaffold_2193.164 CAAGTCAATTCCCAGTGCAGCAAAGGCTGTGACTTAGCTTTAGCCAGCTACGACGACGTCTGAGAGGTTCAAACGTAACC 156 Scaffold_476.38 CAAGTCAATTCCCAGTGCAGCAAAGGCTGTGACTTAGCTTTAGCCAGCTTCGACGTCTGGAGAGGTTCAAACGTAACC 156 Conservation Scaffold_2193.164 TTAATCGCCGATCTTTTCAGCGTCCCAGTTTCCACTCTCCTCAGCTGGAACCCGGTTACCCTCCCAGACAGGGATACA 234 Conservation Scaffold_2193.164 GTCATAGCAGGGACAAGAGTAAACATCCCATTTCCTTGTGACTGCATCAATGGGAATTTCCTAGCTCATGTCTTCAAT 312 Scaffold_476.38 GTCATAGCAGGGACAAGAATAAACATCCCATTTCCTTGTGACTGCATCAGTGGGAATTTCCTAGCTCATGTCTTCAAT 312 Conservation Scaffold_2193.164 TACAGTGTTTCATCGGGGGATACTTATGATATAGTTGCGTCCCAATTTTACGCGAATTTAACGAGTACCACGTGGTTG 390 Scaffold_476.38 TACAGTGTTTCAACGGGCGATACTTATGATTTAGTTGCGTCCCGCAATTACGCGAATTTAACGAGTACCACGTGGTTG 390 Scaffold 2193.164 CGGAGGTTTAATAGTTATCCGGCTAATAATATCCCAGATACTGGAGTTCTGAATGTTACTGTGAATTGTTCTTGCGGG 468 Scaffold_476.38 CGGAGGTTTAATAGTTATCCGG<mark>CAA</mark>ATAATATCCCAGA<mark>C</mark>ACTGGA<mark>T</mark>TTCTGAATGTTACTGTGAATTGTTCTTGCGGG 468 Conservation Scaffold_2193.164 AATAAGGCGATTCCCGAGGACTATGGGTTGTTCATAACTTGGCCTATAGCGGTTGGGGATACTTTGCAGTCTGTAGCT 546 Scaffold_476.38 AATAAGGCGATTTTCGAGGGCTATGGGTTGTTCATAACTTGGCCTATAGCGGTTGGGGATACTTTGCAGTCTGTAGCT 546 Conservation Scaffold_2193.164 TCTGCTAATATTTGAGTGCTAATTTGATCAGCAGATATAATCCAACTGCTAATTTTACTTCCGGGAGTGGTCTGTTG 624 Scaffold_476.38 TCTGCTAATAATTTGAGTGCTAATTTGATCAGCAGATATAATCCAACTGCTAATTTTACGTCCGGGAGTGGTCTGTTG 624 Conservation Scaffold_2193.164 TTCATCCCTGGAAAAGATCTAAGTGGAAGCTACCGGCCCCTGAAATCCAGCACAGGATTTTCTGGTGGAGCTATAGCT 702 Scaffold_476.38 TTCATCCCTGGAAAAGATCTAAATGGAAGCTACCGGCCCCTGAAATCCAGCAAAGGATTTTCTGGTGGAGCTATAGCT 702 Conservation Conservation Scaffold_2193.164 CAGAAGATCTCCCTTACTCTCAAATTATCAGTTCCAGTTAGCTGCTCCAGCCCCTGGAGTTGCTGAAGTTAAAACTTCA 858 Scaffold_476.38 CAGAAGATCTCCCTTACTCTCAAATTATCAGTTCCAGTTCAGTTAGCTGCTCCAGCCCCTGGAGTTGCTGAAGTTAAAACTTCA 858 Conservation Scaffold_2193.164 GACTCCACTGGTGTTGCTGAAGGAACTTCTCCAGGTCTTACTGGCATAACTGTTGACAAATCTGTTGAGTTCTCATAT 936 Scaffold_476.38 GACTCCACTGGTGTTGCTGAAGGAACTTCTCCAGGTCTTACTGGCATAACCCGTTGACAAATCTGTTGAGTTCTCATAT 936 Conservation Scaffold 2193.164 GAAGAGCTTGCAAACGCTACGGACGACTTCAGTTTAGCTAATAAGATTGGTGAAGGTGGCTTTGGCGCCTGTTTACTAT 1014 Scaffold_476.38 GAAGAGCTTGCAAACGCTACGGACGACTTCAGTTTAGCTAATAAGATTGGTGAAGGTGGCTTTGGCGCTGTTTACTAT 1014 Conservation Conservation Scaffold_2193.164 GTTTTAACACATGTCCATCATCTGAACCTGGTGCGCTTGATAGGATATTGTGTCGAGGGTTCCCTTTTCCTTGTATAT 1170 Scaffold_476.38 GTTTTAACACATGTCCATCATCTGAACCTGGTGCGCTTGATAGGATATTGTGTTGAGGGTTCCCTTTTCCTTGTATAT 1170 Conservation Conservation Scaffold_2193.164 GGAAGTTCATCTTTGCCCACACGTCTAGTGGGTACATTTGGCTACATGCCACCAGAGTATGCGCAGTATGGTGATGTT 1482 Scaffold 476.38 GGAAGTTCATCTTTGCCCACACGTCTAGTGGGTACATTTGGCTACATGCCACCAGAGTATGCGCAGTATGGTGATGTT 1482 Conservation Scaffold_2193.164 TCTCCCAAAGTTGATGTGTATGCTTTTGGTGTAGTACTTTATGAGTTAATTTCGGCCAAGGAAGCCATAGTTAAGGGA 1560 Scaffold_476.38 TCTCCCAAAGTTGATGTGTATGCTTTTGGTGTAGTACTTTATGAGTTAATTTCGGCCAAGGAAGCCATAGTTAAGGGA 1560 Conservation Scaffold_2193.164 GGTCCTGTTGCTGAATCTAAGGGGCCTTGTAGCTTTGTTGAAGAAGTTCTTAGTCAGCCAGATCCCAATGATGATCTC 1638 Scaffold_476.38 GGTCCTGTTGCTGAATCTAAGGGGCCTTGTAGCTTTGTTGAAGAAGTTCTTAGTCAGCCAGATCCCAATGATGATCTC 1638 Conservation Scaffold_2193.164 CGCAAAGTGGTTGACCCTAGACTTGGAGATTCTTATCCCCTTGACTCAGCCCGCAAGATGGCACAGCTTGCAAAAGCT 1716 Scaffold_476.38 CGCAAAGTGGTTGACCCTAGACTTGGAGATTCTTATCCCCTTGACTCAGCCCGCAAGATGGCACAGCTTGCAAAAGCT 1716 Conservation Scaffold_2193.164 TGCACGCACGAAAATCCTCAGCTTCGGCCGAGCATGAGATCCATCGTCGTTGCGCTAATGACACTTTCCTCCTCCACT 1794 Scaffold 476.38 TGCACGCACGAAAATCCTCAGCTTCGGCCGAGCATGAGATCTATCGTGGCTAATGACACTTTCCTCCTCCACCT 1794 Conservation Scaffold_2193.164 GAGGACTGGGATGTTGGGTCCTTCTATGGAAACCCAAGGGATTGTAAATCTTATGTCGGGAAGATAG 1860 Scaffold_476.38 GAGGACTGGGATGTTGGGTCCTTCTATGGAAACCCAAGGGATTGTAAATCTTATGTCGGGAAGATAG 1860 Conservation

S6fig.

Scaffold_612.376 Scaffold_952.320	$\label{eq:construct} at {\tt GGATCGTTTGCATCTTCATTTGGGTCCTTTCATCTTTCAATCTGTAACTGTTCTTTGATCGAATCCCAGCAGCCGATGGATCGTTTTGCATCTTCATTTGGGTCCTTTTCATCTTTCTAATCTGTAACTGTTCTTTGATCGAAATCCCAGCAGCCGATGGATCCCAGCAGCCGATGTCTTTCATCTTCATCTTTCAATCTGTAACTGTTCTTTGATCGAATCCCAGCAGCCGATGGATCCCAGCAGCCGATGTCTTTCATCTTTCAATCTGTAACTGTTCTTTGATCGAATCCCAGCAGCCGATGTCTTTCAATCTGTAACTGTTCTTTGATCGAATCCCAGCAGCCGATGTCTTTCAATCTGTAACTGTTCTTTGATCGAATCCCAGCAGCCGATGTCTTTGATCGAATCCCAGCAGCCGATGTTCTTTCAATCTGTAACTGTTCTTTGATCGAATCCCAGCAGCCGATGTCTTTCAATCTGTAACTGTTCTTTGATCGAATCCCAGCAGCCGATGTCTTTCAATCTGTAACTGTTCTTGATCGAATCCCAGCAGCCGATGTCTTGCATCTGTAATCTGTAATCTGTAATCTGTAATCTGTAATCTGTAATCTGTAATCTGTAATCTGTAATCCCAGCAGCCGATCCCAGCAGCCGATGTCTTTCAATCTGTAATCTGTAATCTGTAATCTGTAGATCCCAGCAGCCGATGTCTTTCAATCTGTAATTGTAATTGTAATGTGTAATCTGTAATCTGTAATCTGTAATCTGTAATCTGTAATTGTAATGTGTAATTGTAATTGTAATTGTAATGTGTAATTGTAATGTGTAATCTGTAATTGTAATTGTAATTGTAATTGTAATTGTAATTGTAATTGTAATTGTAATGTGTAATTGTAATTGTAATTGTAATGTGTAATTTTTT$	78 78
Scaffold_612.376 Scaffold_952.320	TACATCGGAAAGGCCACAAACAGATGCGACAGCGCCGATAATTCCACTTCTGTTCTGGGCTATAGTTGCAATGGGGTG TACATCGGAAAGGCCACAAACAGATGCGACAGCGCCGATAATTCCACATCTGTTCTGGGCTATAGTTGCAATGGCGTG	156 156
Conservation		
Scatfold_612.376 Scatfold_952.320	ACCCAAAGTTGCCAAGCCTATCTCACCTTCAGATCTCTACCACCTTTCAACTCCGTTTCTTCCATCTCATCTCATCCCTCTTA ACCCAAAGTTGCCAAGCCTATCTCACCTTCAGATCTCTACCACCTTTCAACTCCGTTTCTTCCATCTCATCCCTCTTA	234 234
Scaffold_612.376	GCAGCTGATCCATCCCACCTCTCCCAGCTCAACAAGGTTTCTCAAGACGCAACATTCGAGACTAACAGGACCGTGCTT	312
Scaffold_952.320 Conservation	GCAGCTGATCCATCCCACCTCTCCCAGCTCAACAAAGTTTCTCAAGACGCAACATTCGAGACTAACAGGACCGTGCTT	312
Scaffold_612.376	GTTCCCGTCAACTGCTCCTGTTCAGGTTCGCACTATCAATTCAACACATCTTACGTTATTCAGCACGGCAACACCTAC	390
Scaffold_952.320 Conservation	GTTCCCGTCAACTGCTCCTGTTCAGGTTCGCACTATCAATTCAACACATCTTACGTTATTCAGCACGGCAACACCTAC	390
Scaffold_612.376	TTGTCAATTGCCAATAGCACTTTCCAAGGCTTGTCCACCTGTCAAGCTCTACAAGCACAAAATGCCAATCTTAGTACT	468
Scaffold_952.320	TTCTCAATTGCCAATAGCACTTTCCAAGGCTTGTCCACCTGTCAAGCTCTACAAGCACAAAATGCCAATCTTAGTACT	468
Conservation	GTGAACTIGATIGCCGCCACCAGGATTAGAGTICCGCCTAAGATGCCTGCCCGACTAAGAATCAAGCCGACGACGACGACGACGACGACGACGACGACGACG	546
Scaffold_952.320	GGGAACTTGATTGTGGGTACCAGGATTAGAGTTCCGCTAAGATGTGCTTGCCCGACTAAGAATCAAGCCGACGACGACGGC	546
Conservation		
Scaffold_612.376 Scaffold_952.320	GTCAAATATCTGTTGAGTTATTTAGTCACTTGGGGTCAATACGTTGCTGCGATTAGCTCAATGTTTGGGGTGGATACT GTCAAATATCTGTTGAGTTATTTAGTCACTTGGGGTCAATACGTTTCTGCGATTAGCTCAATGTTTGGAGTGGATACT	624 624
Conservation		
Scaffold_612.376	GGGAAAACTCTCCAAGCCAATGGATTGTCTGAACAAAATTTTAATATTTATCCCTTTACGACTCTCTTAGTTCCGCTT	702
Scaffold_952.320	GGGAAAACTCTCCCAAGCCAATGGATTGTCTGAACAAAATTTTAATATTTATCCCTTTACGACTCTCTTAGTTCCGCTT	702
Scaffold 612.376	CAGAACTCGCCATCCAGTTCCCAAACTGTGGAGCCGCCTCCGCCACCGTCGCAGCAGTCACCGCCAACTTTAATTGCC	780
Scaffold_952.320	CAGAACTCGCCATCCAGTTCCCAAACTGTGGAGCCGCCTCCGCCACCGTCGCAGCAGTCACCGCCAACTTTAATTGCC	780
Conservation		050
Scaffold_952.320	CCTCCTCCAAACAGTAGCTCAAGAAAAACCTGGGTCTATGCTCTCGTTGGAACTCTTGGCGGGTTAGCTCTAATAGCC	656 858
Conservation		
Scaffold_612.376	GTATTTGGGCTGCTTATATTCTGGTCTCGTTTTGCTAAAAGAAAG	936 936
Conservation		500
Scaffold_612.376	AGCTTTGAATCAATCGAGAAACCACTCGAGAAGAAGAAGAAGTTGGAGGAAGAAGACATGTCTCAGAATTTCTGGGAT	1014
Scaffold_952.320	AGCTTTGAATCAATCGAGAAACCACTCGAGAAGAGGAAGAAGTTGGAGGAAGAAGACATGTCTCAGAATTTCTGGGAT	1014
Scaffold 612.376	AGTITACCTAGTITIGCTCATICICTICAACTATACACCTATGAAGAACTTAAATTGGCAACACAGAATTTTAGTCCT	1092
Scaffold_952.320	AGTITACCTAGTITIGCTCATTCTCTTCAACTATACACCTATGAAGAAATTAAATTGGCAACACAGAATTTAGTCCT	1092
Conservation		1170
Scaffold_952.320	AGTAGTTTGATTGGTGGATCGGTTTACCGTGGTACGATCAAAGGGGATTATGCTGCCGTTAAGAAAATGAGCGGAGAT	1170
Conservation		
Scattold_612.376 Scatfold 952.320	GIGICIGAGGAAAIIAAICIACIGAACAAGAICAGCCAIIIGAAICIIAICCGGCTIICCGGGGIIIGIIICAGCGAI GTGTCTGAGGAAATTAATCTACTGAACAAGATCAGCCATTTGAATCTTATCCGGCTTTCCGGGGTTTGTTT	1248 1248
Conservation		
Scaffold_612.376	GGGTATTGGTATCTTGTTTACGAGTATGCTGCCAATGGAGCATTGAGTGATTGGCTCTATGAAAACCAGGACAGACA	1326
Conservation		1320
Scaffold_612.376	AAGAAGAAGTGTCTGGATTGGAAGCAGAGATTACAGATTGGCTTGGATGTGGCCACGGGGCTTAATTATCTTCATAGC	1404
Scaffold_952.320	AAGAAAAAGTGTTTGGATTGGAAGCAGAGATTACAGATTTGCTTGGATGTGGCCACGGGGCTTAATTATCTTCATAGC	1404
Scaffold 612.376	TACACTTCCCCTCCCCACGTGCACAAAAATCTAAAAAACAGCAGCAATGTTCTTGATGCTGATTTCAGGGCGAAGATC	1482
Scaffold_952.320	TACACTTCCCCTCCCCACGTGCACAAAAATCTAAAAAGCAGCAATGTTCTTCTTGATGCTGATTTCAGGGCGAAGATC	1482
Conservation		1560
Scaffold_952.320	AGTAATTTTGGGCTAGCAAGATCAGCAGATGGGCAAGGAGGCCAGTTGCCTTGACTAGGCACATTATTGGGACGAAA AGTAATTTTGGGCTAGCAAGATCAGCAGATGGGCAAGGAGGCCAGTTGCCTTGACTAGGCACATTATTGGGACGAAA	1560 1560
Conservation		
Scaffold_612.376 Scaffold_952.320	GGTTACATGGCTCCTGAGTATTTGGAGAATGGTCTGGTATCCACAATGCTTGATGTTTATTCATTTGGGGTTCTCCTG GGTTTCATGGCTCCTGAGTATTTGGAGAATGGTCTGGTATCCACAATGCTTGATGTTTATTCATTTGGGGTTCTCCTG	1638 1638
Conservation		
Scaffold_612.376	CTGGAGACTTTCACCGGGAAAGAAGTCGCTGTCTTGTATGAAGCTGTGAATGTGAACTTGGCAGAGATTCTGAGCCCT	1716
Conservation		1716
Scaffold_612.376	GTGCTTGACGAGAAAGACGGGATCGAGAACTTGAGCCAGATCATGGATTCTTCTCTCGGAGGAAATTATCCTTCCGAA	1794
Scaffold_952.320	GTGCTTGACGAGAAAGACGGGATCGAGAACTTGAGCCAGATCATGGATTCTTCTCTCGGAGGAAATTATCCTTCCGAA	1794
Scaffold 612.376	CTTGCAATTTTGCTCATCAGATTGATTGCCAGTTGCTTAAAGAAAG	1872
Scaffold_952.320 Conservation	CTTGCAATTTTGCTCATCAGATTGATTGCTAGTTGCTTAAAGAAAG	1872
Scaffold_612.376	GTCCAGACTCTGTCCACATCCGTCACTGCCACAACATCTTGGGATTCCAAACAAA	
Scaffold_952.320	GTCCAGACTCTGTCCACATCCGTCACTGCCACAACATCTTGGCATTCCAAACAAA	
Conservation		

S1table.

Query id	Subject id	% Identity	Alignment length	Mismatches	Gap opens	Q. start	Q. end	S. start	S. end	e-value	Bit score
Os-CEBiP	evm.model.Scaffold_1196.90 (1 of 2) PTHR33734:SF5 - LYSM DOMAIN- CONTAINING GPI-ANCHORED PROTEIN 2	42.258	310	162	7	37	331	40	347	3.99E-62	206
Os-CEBiP	evm.model.Scaffold_506.17 (1 of 3) PTHR23354:SF75 - LYSM DOMAIN- CONTAINING GPI-ANCHORED PROTEIN 1	35.622	233	138	7	92	315	93	322	1.59E-31	124
Os-CEBiP	evm.model.Scaffold_1856.2 (1 of 3) PTHR23354:SF75 - LYSM DOMAIN- CONTAINING GPI-ANCHORED PROTEIN 1	34.764	233	140	7	92	315	98	327	1.14E-30	122
Os-CEBiP	evm.model.Scaffold_439.212 (1 of 2) PTHR33734:SF5 - LYSM DOMAIN- CONTAINING GPI-ANCHORED PROTEIN 2	35.385	260	132	11	86	316	26	278	6.13E-27	110
At-LYK5	evm.model.Scaffold_952.320 (1 of 6) PTHR27001:SF174 - LYSM DOMAIN RECEPTOR-LIKE KINASE 4	40.819	659	354	16	6	651	4	639	2.49E-139	426
At-LYK5	evm.model.Scaffold_612.376 (1 of 6) PTHR27001:SF174 - LYSM DOMAIN RECEPTOR-LIKE KINASE 4	40.516	659	356	16	6	651	4	639	1.71E-138	424
At-LYK5	evm.model.Scaffold_1841.91 (1 of 2) PTHR27001:SF183 - PROTEIN LYK5	58.631	336	115	5	349	662	339	672	2.43E-128	399
At-LYK5	evm.model.Scaffold_628.522 (1 of 2) PTHR27001:SF183 - PROTEIN LYK5	58.036	336	117	5	349	662	339	672	1.18E-127	397
At-LYK5	evm.model.Scaffold_1805.113 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	37.458	299	176	5	360	651	293	587	8.55E-62	219
At-LYK5	evm.model.Scaffold_539.592 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	37.793	299	175	5	360	651	523	817	1.07E-61	222
----------	---	--------	-----	-----	----	-----	-----	-----	-----	-----------	-----
At-LYK5	evm.model.Scaffold_2627.64 (1 of 4) PF00069//PF01476 - Protein kinase domain (Pkinase) // LysM domain (LysM)	41.275	298	160	7	355	644	328	618	1.82E-57	207
At-LYK5	evm.model.Scaffold_2658.204 (1 of 4) PF00069//PF01476 - Protein kinase domain (Pkinase) // LysM domain (LysM)	40.94	298	161	7	355	644	328	618	6.30E-57	206
At-LYK5	evm.model.Scaffold_352.302 (1 of 2) PTHR27001:SF102 - LYSM DOMAIN RECEPTOR-LIKE KINASE 3	35.35	314	185	6	354	651	336	647	1.49E-55	202
At-LYK5	evm.model.Scaffold_462.277 (1 of 2) PTHR27001:SF102 - LYSM DOMAIN RECEPTOR-LIKE KINASE 3	34.713	314	187	6	354	651	302	613	6.84E-55	200
At-CERK1	evm.model.Scaffold_539.592 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	56.109	622	258	7	2	617	222	834	0	657
At-CERK1	evm.model.Scaffold_476.38 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	57.261	606	242	9	18	617	25	619	0	655
At-CERK1	evm.model.Scaffold_2193.164 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	57.546	603	239	9	21	617	28	619	0	652
At-CERK1	evm.model.Scaffold_1805.113 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	55.145	622	248	7	2	616	6	603	0	645
At-CERK1	evm.model.Scaffold_608.131 (1 of 40) K04733 - interleukin-1 receptor-associated kinase 4 (IRAK4)	36.102	626	342	17	7	606	13	606	5.17E-100	321

At-CERK1	evm.model.Scaffold_608.648 (1 of 2414) 2.7.11.1 - Non-specific serine/threonine protein kinase / Threonine-specific protein kinase	35.229	633	353	17	7	617	13	610	6.72E-95	308
At-CERK1	evm.model.Scaffold_352.302 (1 of 2) PTHR27001:SF102 - LYSM DOMAIN RECEPTOR-LIKE KINASE 3	44.377	329	168	7	304	617	336	664	5.28E-82	275
At-CERK1	evm.model.Scaffold_462.277 (1 of 2) PTHR27001:SF102 - LYSM DOMAIN RECEPTOR-LIKE KINASE 3	44.073	329	169	7	304	617	302	630	5.30E-82	274
At-CERK1	evm.model.Scaffold_612.376 (1 of 6) PTHR27001:SF174 - LYSM DOMAIN RECEPTOR-LIKE KINASE 4	39.203	301	163	8	310	601	350	639	2.88E-55	201
At-CERK1	evm.model.Scaffold_952.320 (1 of 6) PTHR27001:SF174 - LYSM DOMAIN RECEPTOR-LIKE KINASE 4	38.333	300	165	8	310	600	350	638	3.77E-54	197
At-CERK1	evm.model.Scaffold_628.522 (1 of 2) PTHR27001:SF183 - PROTEIN LYK5	33.639	327	181	7	303	601	343	661	3.90E-51	189
At-CERK1	evm.model.Scaffold_628.522 (1 of 2) PTHR27001:SF183 - PROTEIN LYK5	35.606	132	79	5	66	195	85	212	4.18E-12	70,1
At-CERK1	evm.model.Scaffold_1841.91 (1 of 2) PTHR27001:SF183 - PROTEIN LYK5	33.639	327	181	7	303	601	343	661	1.29E-50	187
At-CERK1	evm.model.Scaffold_1841.91 (1 of 2) PTHR27001:SF183 - PROTEIN LYK5	35.938	128	76	5	66	191	85	208	6.44E-12	69,3

At-LYK4	evm.model.Scaffold_952.320 (1 of 6) PTHR27001:SF174 - LYSM DOMAIN RECEPTOR-LIKE KINASE 4	46.154	624	292	10	22	608	23	639	7.01E-153	459
At-LYK4	evm.model.Scaffold_612.376 (1 of 6) PTHR27001:SF174 - LYSM DOMAIN RECEPTOR-LIKE KINASE 4	46.154	624	292	10	22	608	23	639	1.57E-152	458
At-LYK4	evm.model.Scaffold_1841.91 (1 of 2) PTHR27001:SF183 - PROTEIN LYK5	39.506	324	145	5	336	610	342	663	1.92E-56	204
At-LYK4	evm.model.Scaffold_628.522 (1 of 2) PTHR27001:SF183 - PROTEIN LYK5	39.198	324	146	5	336	610	342	663	2.44E-56	204
At-LYK4	evm.model.Scaffold_638.859 (1 of 2414) 2.7.11.1 - Non-specific serine/threonine protein kinase / Threonine-specific protein kinase	29.412	612	379	15	32	601	24	624	6.42E-54	196
At-LYK4	evm.model.Scaffold_2627.64 (1 of 4) PF00069//PF01476 - Protein kinase domain (Pkinase) // LysM domain (LysM)	37.898	314	162	9	318	601	308	618	3.50E-41	159
At-LYK4	evm.model.Scaffold_2658.204 (1 of 4) PF00069//PF01476 - Protein kinase domain (Pkinase) // LysM domain (LysM)	37.261	314	164	9	318	601	308	618	2.06E-40	156
At-LYK4	evm.model.Scaffold_2193.164 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	33.226	310	177	7	332	612	298	606	5.40E-37	146
At-LYK4	evm.model.Scaffold_476.38 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	33.226	310	177	7	332	612	298	606	5.82E-37	146
At-LYK4	evm.model.Scaffold_608.131 (1 of 40) K04733 - interleukin-1 receptor-associated kinase 4 (IRAK4)	36.226	265	136	7	378	610	337	600	4.31E-35	140

At-LYK4	evm.model.Scaffold_352.302 (1 of 2) PTHR27001:SF102 - LYSM DOMAIN RECEPTOR-LIKE KINASE 3	34.496	258	136	5	386	610	392	649	1.20E-34	140
At-LYK4	evm.model.Scaffold_462.277 (1 of 2) PTHR27001:SF102 - LYSM DOMAIN RECEPTOR-LIKE KINASE 3	34.109	258	137	5	386	610	358	615	2.71E-34	138
At-LYK4	evm.model.Scaffold_539.592 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	31.935	310	179	8	333	611	512	820	2.29E-32	134
At-LYK4	evm.model.Scaffold_1805.113 (1 of 4) K13429 - chitin elicitor receptor kinase 1 (CERK1)	31.613	310	180	7	333	611	282	590	2.84E-31	129

1	ARTIGO 2
2	(Artigo redigido de acordo com as normas do periódico Frontiers in Plant Science)
3	Genome-wide identification, characterization, and comparative
4	analysis of NLR resistance genes in Coffea spp.
5 6 7	Mariana de Lima Santos ^{1*} , Mário Lúcio Vilela de Resende ^{1*} , Gabriel Sérgio Costa Alves ² , Jeremy Todd Brawner ³ , Jose Carlos Huguet-Tapia ³ , Márcio Fernando Ribeiro de Resende Júnior ⁴
8 9	¹ Laboratorio de Fisiologia do Parasitismo, Faculdade de Ciências Agrárias, Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
10 11 12	² Laboratório de Processos Biológicos e Produtos Biotecnológicos, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
13 14	³ Institute of Food and Agricultural Sciences, Department of Plant Pathology, University of Florida, Gainesville, Florida, FL, United States
15 16	⁴ Sweet Corn Laboratory, Institute of Food and Agricultural Sciences, Horticultural Sciences Department, University of Florida, Gainesville, Florida, FL, United States
17 18 19 20	* Correspondence: Corresponding Authors santos-ml@outlook.com mlucio@ufla.br
21 22	Keywords: resistance genes, Coffea, nucleotide-binding site leucine-rich repeat, Genome-wide, NLR-annotator.
23	Abstract
24 25 26 27 28 29 30 31	The largest family of disease resistance genes in plants are nucleotide-binding site leucine- rich repeat genes (NLRs). The products of these genes are responsible for recognizing avirulence proteins (Avr) of phytopathogens and triggering specific defense responses. Identifying NLRs in plant genomes with standard gene annotation software is challenging due to their multidomain nature, sequence diversity, and clustered genomic distribution. We present the results of a genome-wide scan and comparative analysis of NLR loci in three coffee species (<i>Coffea arabica, Coffea canephora,</i> and <i>Coffea eugenioides</i>). A total of 1311 non-redundant NLR loci were identified in <i>C. arabica,</i> 927 in <i>C. canephora,</i> and 1079 in <i>C.</i>
32 33 34 35 36	<i>eugenioides</i> , of which 809, 562, and 695 are loci completes, respectively. The NLR-annotator, tool used in this study, showed sensitivities and specificities extremely high (over 99%) in the coffee genomes and increased the detection capability of putative NLRs. The NLRs loci in coffee are distributed among all chromosomes and are organized mostly in clusters. The <i>C. arabica</i> genome present a smaller number of NLR loci when compared to the sum of the

77

parental genomes (*C. canephora*, and *C. eugenioides*). There are orthologs NLRs

38 (orthogroups) shared between coffee, tomato, potato, and reference NLRs and those that are

39 shared only among coffee species, which gives us clues about the functionality and

40 evolutionary history of these groups. Phylogenetic analysis demonstrated orthologs NLRs

41 shared between *C. arabica* and the parental genomes and those that were possibly lost. The

42 NLR family members in coffee are subdivided into two main groups: TIR-NLR (TNL) and

an non-TNL. The non-TNLs seem to represent an important repertoire of resistance genes in

44 coffee. These results will support functional studies and contribute to a more precise use of

45 these genes for breeding disease-resistant coffee cultivars.

46 Introdution

Coffee is a globally important agricultural commodity that plays a significant economic role 47 in producing and consuming countries (Krishnan, 2017). The genus Coffea consists of more 48 than 100 botanical species (Davis et al., 2006), however, the most cultivated species are 49 50 *Coffea canephora* and *Coffea arabica*. *C. canephora* is diploid (2n = 2x = 22 chromosomes)(Denoeud et al., 2014), while C. arabica is a allotetraploid (2n = 4x = 44 chromosomes) (Tran 51 et al., 2018) originated from natural hybridization between C. canephora and C. eugenidoides 52 (Lashermes et al., 1999; Bawin et al., 2020). Among the more than 50 coffee-producing 53 countries, Brazil, Vietnam, Colombia, and Indonesia are major producers, with Brazil being 54 the largest producer by volume. Currently, coffee diseases are the main factor affecting 55 productivity (Cerda et al., 2017). Examples of diseases associated with coffee include 56 cercosporiosis (Cercospora coffeicola), bacterial blight (Pseudomonas syringae pv. garcae), 57 anthracnose (Colletotrichum coffeanum), root-knot nematodes (Meloidogyne spp.), coffee 58 berry disease - CBD (Colletotrichum kahawae), and coffee leaf rust - CLR (Hemileia 59 vastatrix) (Cabral et al., 2016; Krishnan, 2017). CLR is one of the most devastating diseases 60 found in coffee and is present in all world regions where coffee is grown (McCook and 61 Vandermeer, 2015; Cabral et al., 2016). Currently, 95% of C. arabica varieties cultivated in 62 63 Brazil are susceptible to CLR due to the emergence of variants of the pathogen. (Cabral et al., 2016). Given the increasing problem of plant pathogens in coffee production, a greater 64 understanding of the set of receptors regulating the plant immune system of coffee is needed. 65

66 Throughout evolution, plants have developed sophisticated systems to defend themselves

67 from pathogens. The plant immune system involves both broad-spectrum and specific

recognition of pathogens. Broad-spectrum recognition is related to the detection of pathogenassociated molecular patterns (PAMP), such as fungal chitin or bacterial flagella, by pattern

recognition receptors (PRR) that are anchored to the plasma membrane and trigger the

71 PAMP-triggered immunity (PTI) (Boutrot and Zipfel, 2017). Specific recognition, on the

72 other hand, primarily involves receptors encoded by resistance genes (R genes) that detect the

73 presence of pathogen effector proteins and trigger effector-triggered immunity (ETI) (Jones

and Dangl, 2006). Both types of recognition occur dynamically and continuously, converging

into signaling pathways that activate essential mechanisms for downstream responses to

76 pathogen recognition (Lu and Tsuda, 2021; Yuan et al., 2021).

77 The R genes have been extensively studied in several crops to facilitate their greater use in plant breeding. (Jupe et al., 2013; Wan et al., 2013; Lozano et al., 2015; Inturrisi et al., 2020; 78 Steuernagel et al., 2020). The protein products of these genes recognize directly or indirectly 79 80 the effectors secreted by pathogens (Kourelis and Van Der Hoorn, 2018) and trigger a series of signaling steps that lead to the hypersensitive response (HR) that activates cell death and 81 potentially leads to systemic acquired resistance (SAR) (Kachroo and Robin, 2013; Jones et 82 83 al., 2016). The largest and most diverse group of R genes found in plants belong to the nucleotide-binding site leucine-rich repeat family (NLR or NBS-LRR) (Jones et al., 2016). 84 The proteins encoded by these genes are typically modular, and many have a variable N-85 86 terminal domain-containing Toll/interleucina-1 receptors (TIR) or coiled-coil (CC). As well, the nucleotide-binding domain (NB-ARC or NBS) is a canonical feature of NRLs, that is 87

- shared with human apoptotic protease-activating factor-1 (APAF-1) and Caenorhabditis
- 89 *elegans* death-4 (*CED-4*) proteins. A C-terminal region comprising a variable number of
- 90 leucine-rich repeats (LRRs) is another common feature in NLR genes (Jones et al., 2016;
- Shao et al., 2019). The NB-ARC domain is highly conserved and is involved in the active and
- 92 inactive state of the NLS protein (Bonardi et al., 2012; Jones et al., 2016). This domain
- 93 presents motifs characteristic of the ATPase family, such as p-loop and kinase 2, besides the
- 94 RNBS (Resistance Nucleotide Binding Site) A, RNBS-C, and RNBS-D motifs (Van Ghelder
- et al., 2019). Mutations in specific residues within these motifs may cause the loss of protein
- 96 function or self-activation and interfere with the regulation or activation of defense
- 97 mechanisms. (Monteiro and Nishimura, 2018; Bezerra-Neto et al., 2020).
- The domains described above provide a more refined classification of NLRs proteins, which 98 99 may be characterized into two main groups: TNLs (TIR-NLRs) or non-TNL (which include 100 CNLs - CC-NLRs). The truncation of a single domain, such as LRR (CN or TN), TIR or CC (NL), in both C and N terminal domains (N), may also be used to classify NLR genes 101 (Monteiro and Nishimura, 2018). Additionally, atypical or non-canonical integrated domains 102 103 (IDs) that act as decoys and play roles in oligomerization or downstream signaling may be present, demonstrating the structural diversity of this NLR family (Kroj et al., 2016; Wang et 104 al., 2021). The number of NLRs in plant genomes varies greatly and is often organized in 105 tandem, which facilitates duplication, contraction, and transposition and provides a reservoir 106 of genetic variation that allows plant evolutionary dynamics to respond to changes 107 108 phytopathogen populations (Barragan and Weigel, 2021). These genes are often under 109 selection pressure, resulting in a large number of pseudogenes and variable loci content within the same species, among species, and across plant populations (Schatz et al., 2014; 110 Steuernagel et al., 2015; Sun et al., 2020; Hufford et al., 2021). 111
- The knowledge of how NLRs are distributed throughout the genome and their diversity is of 112 113 great interest. It may reveal new sources of resistance that may be used to develop new 114 cultivars (Monteiro and Nishimura, 2018). The growing number of sequenced plant genomes facilitates the search for novel NLR and has led to the genome-wide analysis of NLR genes 115 116 (Denoeud et al., 2014; Song et al., 2015; Scott et al., 2020; Wang et al., 2021). However, its large number, frequently clustered genomic distribution, and low expression in uninfected 117 tissues make the cataloging NLR genes a great challenge and often underestimate the number 118 of NLRs in genomes (Jupe et al., 2013; Steuernagel et al., 2015, 2020). To mitigate this 119 problem, some specific gene/loci NLR annotation pipelines have been developed to augment 120 standard gene annotation software and improve our ability to identify and locate genes 121 belonging to this family. Some examples of these pipelines are NBSPred (Kushwaha et al., 122 2016), NLGenomeSweeper (Toda et al., 2020), and NLR-annotator, a new version of NLR-123 parser (Steuernagel et al., 2015, 2020). The NLR-Annotator is a tool used to annotate NLR 124 loci that use 20 highly curated motifs present in NLR proteins and does not depend on the 125 support of transcript data (Jupe et al., 2012; Steuernagel et al., 2020). Since it was published, 126 this tool has been applied in several studies to prospect and annotate R genes in recently 127 sequenced genomes (Muliyar et al., 2020; Read et al., 2020; Scott et al., 2020), to checking 128 129 the completeness of previous annotations (Muliyar et al., 2020), and for studies of the resistance-related locus (Jost et al., 2020). 130
- The genome of *C. canephora* was published in 2014, which allowed the first genome-wide NLR study in coffee (Denoeud et al., 2014). In 2018, the *C. arabica* and *C. eugenioides* genomes were deposited at the NCBI, providing an essential resource for studying the structure and evolution of NLRs in arabica coffee and the contribution of the genomes that gave rise to this species. For coffee production to continue advancing in producing regions

- 136 worldwide, adequate disease management is of great importance. A range of strategies must
- 137 be used to control the main phytosanitary problems. Using these genomic resources is
- 138 essential for informing breeding strategies aimed at developing resistance to disease in coffee.
- 139 Given the above, this study aimed to: (i) identify NLR loci in *C. arabica*, *C. canephora*, and
- 140 C. eugenioides genomes using the NLR-annotator tool and discuss the improvements in
- 141 annotation derived from the use of a specific pipeline for NLR genes in coffee, (ii) catalog,
- 142 classify and characterize the distribution of NLRs loci in the *coffee spp*. genomes, and (iii)
- understand the contribution of *C. canephora* and *C. eugenioides* to the NLRs repertoire of *C.*
- 144 *arabica*.

145 Materials and Methods

146 Coffee Genomic Resources

147 Three genomes were used in this study. The *C. arabica* (Caturra red - <u>Cara_1.0</u>, GenBank

- assembly accession: GCA_003713225.1) and *C. eugenioides* (<u>Ceug_1.0</u>, GenBank assembly
- accession: GCA_003713205.1) genomes are available from the NCBI (National Center for
- 150 Biotechnology Information) database (<u>https://www.ncbi.nlm.nih.gov/</u>) and the *C. canephora*
- 151 genome is available at Coffee genome hub (<u>https://coffee-genome.org/</u>) (Denoeud et al.,
- 152 2014). For the three species, the genome files, set of predicted proteins, predicted genes, and
- 153 GFF (General Feature Format) were used.

154 Identification of loci NLR in Coffea spp. genomes

155 The identification of NLR loci in *Coffea spp.* was accomplished using the NLR-Annotator,

156 (Steuernagel et al., 2020) using the default parameters. The tool uses combinations of short

motifs of 15 to 50 amino acids to classify a genomic locus as an NLR. These motifs were

defined using domains of known NLR proteins used as a training set in a study carried out by

- 159 Jupe et al. 2012 (Supplementary Table 1).
- 160 In summary, the pipeline is divided into three steps: 1) dissection of genomic input sequence 161 into 20-kb fragments overlapping by 5 kb; 2) translating each fragment into all six reading
- frames and searching for the motifs associated with NLR by NLR-Parser that to create an
- 162 manes and searching for the motifs associated with NER by NER-1 aser that to create an 163 xml-based reporting file. The NLR-Parser searches for combinations of doublets or triplets of
- 164 motifs, disregarding motifs that occur randomly. In this step, the positions of each motif are
- transferred to the nucleotide positions, and 3) the NLR-Annotator uses the xml file as input,
- 166 integrates data from all fragments, evaluates positions and combinations of motifs. In this
- 167 step, the NB-ARC motifs are used as a seed to annotate NLR loci (Supplementary Table 1),
- generate output files (.gff, .bed Browser Extensible Data, .txt and file of the NB-ARC motifs
- as multiple alignments to complete loci) based on coordinates and orientation the initial input
- 170 genomic sequence (Steuernagel et al., 2020).
- 171 Each section of the genomic sequence associated with a single NLR is called an 'NLR locus'
- and refers to an NB-ARC domain (or associated motif) followed or not by one or more
- 173 leucine-rich repeats (LRRs). From the sets of motifs that are identified, these loci are
- 174 classified as complete (containing the P-loop, at least three consecutive NB-ARC motifs, and
- at least one LRR), complete (pseudogenes), partial and partial (pseudogenes) (Supplementary
- 176 Table 1). Therefore, the NLR-Annotator identifies the NLR loci that are either active genes or
- pseudogenes. The number of NLR loci and their classification is described in the output
- 178 file.txt. For more details, see at Steuernagel et al., 2020 and <u>https://github.com/steuernb/NLR-</u>
- 179 <u>Annotator</u>.

Validation of sensitivity and specificity of the NLR-annotator in coffee genomes 180

To validate the sensitivity and specificity of the NLR-annotator in the coffee genomes, we 181

initially classified the protein sequences of the three genomes using PfamScan 182

(https://pfam.xfam.org/) version 1.5 with an e-value of less than 1E- 5 and models from Pfam-183

A. Subsequently, proteins that had the NB-ARC domain (PF00931) were filtered, and from 184

- this process, we obtained the ID of the genes corresponding to each protein. With the list of 185
- gene model IDs of the NLR family, it was then possible to filter the GFF files and obtain the 186 positions of the genes that had already been annotated in each genome. 187
- We look for overlapping intervals to compare the NLR loci detected by NLR-Annotator and 188 189 the NLR genes annotated in the genomes. We used the information from .gff files from both annotations for an overlay analysis using bedtools intersect (version 2.29.2). An overlap was 190 only considered if both, the locus, and gene, were on the same strand. This analysis made it 191 192 possible to distinguish the loci identified by NLR-annotator that were or were not overlapping
- on the gene models from reference genomes. 193
- 194 For NLR genes already annotated in the genomes and not identified by NLR-annotator, a
- search for motifs by NLR-Parser was performed to obtain the xml and txt output (options -c 195 196 and -o) as well the detection of conserved domains using NCBI Conserved Domain Database
- (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) for nucleotides sequences. Standard 197
- parameters were used for the conserved domains analysis, except for the threshold (E-value), 198
- 199 which was set to 1E-5. The Graphical summary was set to provide a concise view of the

results. To characterize the NLR loci only found by NLR-annotator and to make sure they 200

were homologous with NLRs already annotated in plants, we aligned these loci sequences 201 with NCBI's non-redundant protein database (nr) (https://blast.ncbi.nlm.nih.gov) using 202

BLASTx (BLAST - version 2.10.1 with max target seqs 5). For loci that did not have 203

- 204 homology with NLRs proteins, a conserved domain analysis was also performed as
- previously described. 205
- 206 The sensitivity of the pipeline was calculated as the ratio of the number of loci identified by NLR-annotator (including motifs detected by NLR-Parser in the second step of the pipeline) 207 to the number of NLRs genes already annotated in the genomes. The specificity was 208
- 209 calculated as the ratio of the number of loci identified by NLR-annotator that are related to
- NLRs genes or presents characteristic domains of that family (overlap with the annotations 210
- already described in the studied genomes, homology with NLR proteins by BLASTx or NB-211
- ARC domains by conserved domains analysis) to the total number of loci identified. 212

213 Distribution of NLR loci in Coffee's chromosomes

- For visualize the distribution of NLR loci on chromosomes of the three analyzed coffee 214
- species, the annotation file from NLR annotator (.txt) were used to extract the genomic 215
- position and classifications of the loci. The chromosomes size information in Mb was 216
- obtained from the NCBI (for C. arabica and C. eugenioides) and Coffee genome hub (for C. 217
- 218 canephora). The visualization was performed using the R software with the chromoMap
- package. (Anand and Lopez, 2020). The chromoMap, divides the chromosomes as a 219
- continuous composition of loci. Each locus, consist of a specific genomic range determined 220
- algorithmically based on chromosome length and then the annotations are inserted. The 221
- detailed annotation information on each locus NLRs (complete, complete (pseudogene), 222
- partial and partial (pseudogene)) is displayed in an HTML file. 223

Prediction of genes in the complete loci found only by the NLR-annotator 224

- Gene prediction was performed using the AUGUSTUS program version 3.3.3 225
- (http://bioinf.uni-greifswald.de/augustus/) (Stanke et al., 2006) using gene models from 226
- Solanum lycopersicum and allowing for the prediction of only complete genes. 227

228 **Orthologous groups and Phylogenetic Analyses**

229 The complete loci identified in the coffee genomes, being those that overlap with gene models of the reference genomes or that were annotated by AUGUSTUS as putative genes, were 230 selected for ortholog and phylogenetic analysis. In order to make a comparison with the set of 231 coffee NLRs, 326 NLR loci identified in tomato (Solanum licopersicum - Heinz 1706) by 232 Andolfo et al., 2014, 755 loci identified in potato (Solanum tuberosum) by Jupe et al., 2013, 233 234 67 NLR reference genes (functionally characterized protein) obtained from The Plant Resistance Genes database - PRGDB (http://prgdb.org/prgdb/, S2 table) (Osuna-Cruz et al., 235 236 2018) and the CED-4 gene from Caenorhabditis elegans (outgroup) were also added. All these sequences were classified according to the rules of motifs established by the NLR-237 annotator and only those considered as complete NLR were used in the analysis. This 238 criterion was used to standardize the methodology for classifying loci as complete or not. 239 240 The amino acid sequences of the NB-ARC domain were extracted from the set of complete

241 NLR loci for the 5 species compared (C. arabica, C. canephora, C. eugenioides, S.

licopersicum and S. tuberosum) and the reference genes by the NLR -annotator (parameter -242

a). All NB-ARC domain of these complete loci (hereafter called as NLRs) were compared 243

244 with each other using BLASTP all-by-all (E value <1e-10). The markov clustering algorithm was performed with inflation value of 1.5 and then NLRs in the same cluster were classified 245 as orthologous subgroups by OrthoMCL version 1.4 (standard parameters) (Li et al., 2003). In 246 order to analyze and visualize the number of orthogroups shared between the species or the 247 ones that are unique to a single species we used the UpSetR package in R (Conway et al., 248 2017). 249

250 The NLRs clustered into single-copy orthogroups (orthogroups that have one copy of each

NLR present once in each of the 5 genomes or reference NLRs) by OrthoMCL were used to 251 construct a phylogenetic tree. The sequences were aligned by MAFFT software version 6.903 252

(Katoh et al., 2002), using --auto parameter to select the best alignment strategy. The tree was 253

254 inferred using RAxML version 8.2.10 (Stamatakis, 2014) with the PROTGAMMAAUTO

model (the JTT model was selected as having the highest likelihood) with 100 bootstrap 255

replicates. A second phylogenetic tree to classify the coffee NLRs was also constructed with 256

the above-mentioned parameters using the entire set of complete NLRs. Coffee NLRs were 257

- classified in the tree, from the previous classification described to 67 reference NLRs 258
- (Supplementary Table 2) and the tomato and potato NLRs (Jupe et al., 2012, 2013; Andolfo et 259
- al., 2014). The trees were visualized and edited using the Interactive Tree of Life (iTOL) tool 260 (Letunic and Bork, 2021). 261

Results 262

NLRs Identification, validation of the sensitivity and specificity of NLR-annotator in 263 coffee genomes 264

- 265 A total of 1318 loci were identified for C. arabica, 932 for C. canephora, and 1081 for C.
- eugenioides (Supplementary Table 3). In each species, we identified some loci that are in the 266
- same position but were separated by the NLR-annotator as two distinct NLRs. We found 7, 5, 267
- 268 and 2 repeated loci in the species mentioned above, respectively (Supplementary Table 3

269 highlighted in blue). Considering these repeated loci, for counting the number and distribution

270 of the NLRs loci on the chromosomes, the most complete classification was considered. After

the identification of these regions, it was found that there were 1311 non-redundant loci for C.

arabica (627 from the *C. canephora* subgenome - CaC, 650 from the *C. eugenioides*

subgenome - CaE and 34 Unassigned - Un), 927 for *C. canephora* (559 mapped on

chromosomes and 367 Un) and 1079 for *C. eugenioides* (944 mapped on chromosomes and

135 Un). The number of complete loci found in each species was 809 (*C. arabica*), 562 (*C. arabica*), 562

276 *canehora*), and 695 (*C.eugenioides*).

277 To examine whether there was a consensus between the gene models for NLRs that have previously been annotated in the genomes and loci identified by NLR-annotator, an overlap 278 analysis was performed. PfamScan analysis on the set of predicted proteins and subsequent 279 280 selection of NLR proteins annotated in each genome showed that 1015, 709, and 869 genes 281 encoded proteins (including isoforms) with the NB-ARC domain in the C. arabica, C. canephora, and C. eugenioides genomes, respectively (Figure 1, Supplementary Table 4). The 282 overlap between the genomic positions of these genes and the positions of loci from NLR-283 284 annotator showed that of 1311, 927, and 1079 loci identified by NLR-annotator for C. arabica, C. canephora, and C.eugenioides respectively, 1013 (99,80%), 687 (96,90%), and 285 857 (98,62%) overlaps the genes already annotated in the reference genomes. It was also 286 287 detected that 298, 240 and 222 NLRs do not overlap (Figure 1, Table 1). We also noticed that there are cases in which more than one NLR loci overlapped with a single NLR gene and that 288 289 the opposite was also found in all three genomes. A Venn diagram representing these data is 290 shown in figure 1 (intersection Figure 1 and highlighted in Supplementary Table 5).

291 The overlap analysis also made it possible to identify genes annotated in the reference genomes that did not overlap with any locus from NLR-annotator. To examine these genes, an 292 NLR-parser analysis with the options -c (file.xml) and -o (file.txt) was performed on this set. 293 294 Among the genes not identified by NLR-annotator for C. arabica (18), C. canephora (25), 295 and C. eugenioides (24), 7, 3, and 4 were below the standard threshold (1E-5) for the search of MAST motifs by NLR-Parser, respectively. Additionally, 9, 17, and 16 genes present 296 297 motifs detectable by the standard threshold but did not contain at least three consecutive motifs belonging to the NB-ARC domain and motifs in random order and therefore were not 298 299 annotated in the third step of the NLR-annotator (Supplementary Table 6). After this analysis, we also confirmed genes not found by NLR-annotator. Two genes were not found for C. 300 arabica (LOC113737176 and LOC113735982), five genes for C. canephora, (Cc02_g12220, 301 Cc03 g10360, Cc07 g18800, Cc00 g21910 and Cc00 g35420) and four genes for C. 302 303 eugenioides (LOC113766771, LOC113766774, LOC113766615 and LOC113777141). For 304 more details about this analysis, see supplementary text 1, supplementary table 6 and 305 supplementary figure 1. After these analyses, it was possible to verify that the NLR annotator showed a sensitivity of 99.8%, 99.4%, and 99.7% for C. arabica, C. canephora and C. 306 eugenioides, respectively. 307

As stated above, the overlap analysis also made it possible to identify that the NLR-annotator annotated complete, complete (pseudogene), partial and partial (pseudogene) loci that did not overlap with genes already annotated in reference genomes (Figure 1, Table 1). To further investigate these loci and make sure that they were indeed related to genes encoding NLR proteins, a BLASTx analysis was performed. This analysis showed that of the 298, 240, and

313 222 loci in *C. arabica*, *C canephora*, and *C. eugenioides*, only 7, 4, and 6 did not show

homology, with resistance proteins being found among the five best hits, respectively.

315 (Supplementary Table 7, 8, and 9, highlighted in orange).

- To describe the sequences that did not show homology to NLRs proteins by BLASTx, a 316
- conserved domains analysis was performed (Supplementary Figure 2). Many of these loci do 317
- not show homology with NLRs proteins because most of the sequence contains domains 318
- related to the family of proteins involved in the activity of transposable elements such as 319
- ribonuclease H (RNase H) and reverse transcriptases (RTs). However, it was also possible to 320
- identify characteristic domains of NLR proteins such as NB-ARC, Toll / interleukin-1 321
- receptor (TIR), RX-CC_like, and Rx_N, suggesting that these loci cannot be considered false 322
- positives. Only three loci did not present characteristic domains, Chr11c_nlr_73_Ca, 323 324
- chr0_nlr_300_Cc and Chr8_nlr_67_Ce, all partial (pseudogene). These loci were removed from further analysis. From these results, it was possible to verify that the specificity of the
- 325
- NLR-annotator was 99.9% in all three genomes. 326

327 Distribution of NLR loci in the Coffea spp. Genome

Considering all detected loci, in C. canephora, chromosomes 3 and 11 have the most 328

- significant number of identified loci, including complete, complete (pseudogene), partial and 329
- partial (pseudogene). For C. eugenioides, chromosomes 3 and 11 also contains many NLR, 330
- this large number was also found in the chromosomes 5 and 8. The total amount of loci found 331 on chromosome 8 is almost the same as that of 11, however, the number of complete NLR on 332
- chromosome 8 is higher, with 16 more loci identified. For C. arabica, chromosomes 3 and 11 333
- from C. canephora and C. eugenioides subgenomes, respectively, also have the largest 334
- number of NLR, what was also detected to the chromosome 8 from C. eugenioides 335
- subgenoma. For *C. arabica*, in general the *C. eugenoides* subgenome has a slightly higher 336
- number of NLRs loci, as already reported above. The number of loci of this subgenome on 337
- 338 chromosomes 8 and 11 stand out in comparison to C. canephora subgenome, with 34 and 30
- more loci, respectively. The chromosomes with the fewest loci for the three species are 9 and 339
- 340 10, and the chromosome 4 for *C. eugenioides*. The number of loci in unmapped sequences
- 341 (Unassigned) for the C. canephora reference genome represent 39.7%, which was much
- 342 higher than those found in C. eugenioides (12.5%) and C. arabica (2,6%) (Figure 2A).
- The chromosomal location of these loci in the three species demonstrated that most loci are 343 organized in clusters and are unevenly distributed across the entire chromosome. In addition, 344 345 there are clusters that have the four different types of loci or at least two types, presenting a stretch of complete, complete (pseudogene), partial and/or partial (pseudogene). Not all loci 346 were clustered, we also found loci of the four types that were physically isolated in 347
- 348 chromosomes (Figure 2B).

Gene prediction for complete loci found only by NLR-annotator 349

- 350 It was considering that the NLR-annotator is not a gene predictor but a tool to annotate loci
- associated with NLRs, the gene-finding program AUGUSTUS was used to characterize the 351
- loci found only by NLR-annotator that were classified as complete (S3 Table highlighted in 352
- orange). This analysis aimed to verify whether these complete loci could be considered 353
- potential gene models. This analysis showed that of the 70 and 67 complete loci for C. 354
- arabica and C. canephora, 64 and 66, are potential gene models, respectively. For C. 355
- 356 eugenioides, all 71 loci were predicted as potential genes. The loci not identified as potential
- genes are in red in supplementary table 3. 357

Ortholog Groups and Phylogenetic Analysis 358

To ortholog groups analysis by OrthoMCL, 803 complete loci of *C. arabica*, 561 of *C. canephora* and 695 of *C. eugenioides* were used. Six and 1 loci of *C. arabica* and *C. canephora*, respectively, were removed from analysis because they are complete loci that are not overlapping gene models or were not identified as putative genes by AUGUSTUS analysis. Additionally, 151 tomato loci (out of 326) and 403 potato loci (out of 755) that were

- 364 classified as complete loci by NLR-annotator, moreover 67 reference NLRs and *CED-4* were
- also used. Out of a total of 2681 NLRs, 2038 (76%) were grouped into 593 ortholog groups,
- hereinafter called orthogroups (Figure 3, Supplementary Table 10). The number of coffee
- NLRs present within these orthogroups were 591, 427, 584, which represents 73.6%, 76.1%
- and 84% of the total NLRs found for *C. arabica*, *C. canephora* and *C. eugenioides*,
- respectively. Two hundred and seventy-two orthogroups were in single-copy, grouping 647
- 370 NLRs, of which only 7 are reference NLRs.
- There were 10 orthogroups shared by all species and reference NLRs and 11 were shared only among species. As expected, the greatest number of orthogroups were shared among coffee NLRs, 200 orthogroups with 783 NLRs were shared only among *C. arabica* (296: 163 CaE,
- 130 CaC e 3 un), *C. canephora* (215) e *C. eugenioides* (272), respectively. The comparison
- between *C. arabica* NLRs with only one of the diploid species showed that *C. eugenioides*
- shares a slightly higher number of orthogroups (78) than *C. canephora* (71) and also of NLRs
- within these orthogroups (orthogroup Ca/Ce = 87/96 NLRs, orthogroup Ca/Ce = 86/74
- 378 NLRs). When the comparison was only between the two diploid species, it was observed that
- 379 34 orthogroups are shared only between them. The number of orthogroups shared between
- NLRs of the same coffee species was 31 in *C. eugenioides*, 24 in *C. arabica* and 9 in *C. canephora*.

The orthogroups NLR shared only between the three coffee species and one solanum specie, 382 was higher among potato (9) than tomato (3) NLRs, however it should be considered that the 383 384 number of potato NLRs in the analysis was almost 3 times bigger than tomato. Forty-six 385 orthogroups have gathered NLRs from at least one coffee species and one solanum species. Fifteen orthogroups were shared between reference NLRs, and at least one coffee specie and 386 387 solanum, grouping 21 reference NLRs. (Figure 3, Supplementary Table 10, highlighted in light blue), of these, C. canephora and/or C. eugenioides are present in three orthogroups with 388 reference genes in which C. arabica is absent (ORTHOMCL16: Cc, Soly, Soltu e Hero; 389 390 ORTHOMCL17: Ce, Soly, Soltu e Rpiblb1; ORTHOMCL24: Cc, Ce, Soly, Soltu e VAT). Four orthogroups clustered only the three coffee species and reference NLRs (ORTHOMCL1, 391 ORTHOMCL19, ORTHOMCL119 and ORTHOMCL199, Figure 3 and Supplementary Table 392 393 10, highlighted in dark blue), gathering Lr10, MLA1, MLA10, MLA13, Mla12, Mla6, Pi36, 394 Pikm2TS, FOM-2, Rdg2a e Pm3. The percentage of orphans (i.e., NLRs not assigned to any ortholog group by OrthoMCL) among coffee NLRs was highest in C. arabica (26.4% -212) 395 followed by C. canephora (23.9% - 134) and C. eugenioides (16% -111) (Supplementary 396 Table 11). 397

398 The phylogenetic tree of single-copy orthologous NLRs showed that most clades are shared only among coffee species (Figure 4), but it was also possible to observe clades that clustered 399 400 NLRs from solanum, coffee and reference. Among the clades that clustered coffee NLRs, in 71 of them it was possible to observe groupings of orthologs between C. arabica, C. 401 402 canephora and C. eugenioides, and most of which are located within the same chromosome. One of these clades, in addition to grouping NLRs of the three coffee species, presents the 403 reference NLR RPS2 (RESISTANCE to P. SYRINGAE 2) (Figure 4). This clade was 404 supported by high bootstrap value (100%) and were grouped in the ORTHOMCL45 405

406 (Supplementary Table 10). All loci in this cluster were found on chromosome 6 for the three

species. Clades that clustered NLRs of *C. arabica* and *C. canephora*, *C. arabica* and *C. eugenioides* and a few *C. canephora* and *C. eugenioides* can also be observed. These are
within the same chromosome or not.

410 Phylogenetic analysis for coffee NLRs classification revealed that members of the NLR

411 superfamily are grouped into 2 main groups: TIR-NLR (including TNL and NLs) and non-

- 412 TNLs (including CNLs and NLs) (Figure 5). NLRs belonging to the non-TNLs group
- 413 outnumbered those in the TNL group in coffee genomes. We also found that the non-TNLs
- group is divided into 13 subgroups and that all subgroups had NLRs from all studied coffee
- genomes. It also occurred in the TNL group. Within non-TNLs subgroups it was possible to
- 416 observe clades with a greater number of NLRs of *C. arabica* that are shared with *C.*
- 417 *eugenioides* (bands on the outer ring of the tree with a predominance of green and blue
- 418 colors). There were exclusive coffee clades and those that were shared with potato, tomato,
- and reference NLRs.

420 Discussion

421 NLRs Identification and use of NLR-annotator in coffee genomes

422 In this study, we investigated loci related to genes of the NLR family in three coffee genomes. 423 The annotation of genes in this family is a high priority in plant genome sequencing and

The annotation of genes in this family is a high priority in plant genome sequencing and annotation projects (Steuernagel et al., 2015) because losses from pathogens are among the main problems for sustainable agriculture. A better understanding of disease resistance in crops will provide plant breeders with tools that may be used to produce long-term solutions for dealing with future environmental change. A catalog of NLRs loci, whether complete

genes or pseudogenes, within and between species, provides a toolbox for exploring NLRs
hitherto not described (Jones et al., 2016). Given the importance of coffee and the availability
of the recent *C. arabica* and *C. eugenioides* genomes, the study of NLRs loci in these species
represents an essential source of information for the development of new disease-resistant
cultivars.

433 As NLR-annotator has already been validated in C. canephora (Steuernagel et al., 2020), we 434 initially used this genome to assure the reproducibility of the tool in our study and then use it in the C. arabica and C. eugenioides genomes. The software identified 932 loci NLR for C. 435 canephora, which is in accordance with Steuernagel et al., 2020, and the prediction of two 436 437 distinct NLRs loci within the same genomic position was also reported. This repeatable annotation is the result of a complete NB-ARC domain preceded by a truncated NB-ARC 438 domain, which makes the tool use the two NB-ARC domains as distinct seeds to identify two 439 440 NLRs for the same locus, a fact that has also been reported with the use of this tool on wheat (Steuernagel et al., 2020). The sensitivities and specificities of this tool in coffee genomes 441 were extremely high (above 99%). In the Arabidopsis thaliana genome, which represents a 442 well-annotated model plant genome, this tool achieved 95% sensitivity, and all loci found 443 444 were validated to be associated with NLRs (specificity of 100%) (Steuernagel et al., 2020). In 445 rice (Nipponbare reference genome), the detection success rate was 99.2% (Read et al., 2020).

As NLR genes have repeated and clustered genomic distribution in plants, their representation
in genomes using standard gene callers can be underestimated (Jupe et al., 2013; Steuernagel
et al., 2015, 2020). In addition to the high rate of specificity and sensitivity, the NLRannotator allowed for the identification of complete loci for coffee in regions distinct from the
gene models already annotated in the reference genomes. This study, therefore, increased the

detection capability the number of possible NLR genes in coffee species for the reference

genomes used. The complete loci identified by NLR-annotator that did not overlap the 452 reference genome annotation have also been reported in rice (Read et al., 2020). It is also 453 relevant to highlight that as this tool is not limited to searching for functional genes, the 454 complete (pseudogene) loci that did not overlap the annotations of the reference genome were 455 also identified for C. arabica (90), C. canephora (56), and C eugenioides (65). The location 456 of these loci also represents an important resource since non-functional alleles identified in 457 sequenced accessions may represent functional NLRs in other individuals of the same species 458 (Steuernagel et al., 2020). The caturra cultivar (C. arabica) sequenced and used in this study, 459 for example, is used as a susceptible control to differentiate Hemileia vastatrix races among 460 differential clones (Zambolim and Caixeta, 2021). Pseudogene regions in this genome may 461 indicate functional genes in other coffee cultivars. 462

463 Our data showed that 18 of the 20 loci found only by NLR-annotator that did not present homology to NLRs proteins by BLASTx analysis, have protein domains involved in the 464 activity of transposable elements (TE). It is known that TE are abundant in plant genomes and 465 that they play an important role in adaptive evolution, contributing to the evolutionary 466 467 dynamics of plant-pathogen interactions (Malacarne et al., 2012; Zhang et al., 2014; Kim et al., 2017). Many R genes are flanked by TE, which in addition to being sources of genetic 468 variability, are involved in suppressing or increasing the expression of these genes (Seidl and 469 470 Thomma, 2017). The Ty3-gypsy-like TE performance has been reported in a region around the S_H3 locus for CLR resistance. This TE has been described in C. arabica subgenomes, 471 replacing the orthologous counterpart of C. canephora to C. eugenioides (homoeologous non-472 473 reciprocal transposition - HNRT) (Cenci et al., 2012). Moreover, there is evidence of functional R genes that have evolved through TE-mediated duplications (Seidl and Thomma, 474 2017), which demonstrates their importance in the evolutionary changes and expansion of 475 476 NLR receptors of the plant defense system and justifies the presence of domains related to TE

in the studied loci (Zhang et al., 2014; Kim et al., 2017).

478 Distribution of NLR loci in the *Coffea spp*. Genome

479 Although C. arabica results from the natural interspecific hybridization between C. canephora and C. eugenioides, the number of loci found was not proportional to the sum of 480 481 the two subgenomes, showing that this species has a smaller number of NLRs loci. The C. canephora genome size is about 690 Mbp, and the C. eugenioides is 665 Mbp (Noirot et al., 482 2003; Clarindo and Carvalho, 2011; Hamon et al., 2015). The C. arabica genome, on the 483 484 other hand, is slightly smaller than the sum of its two combined parental genomes (about 1276 485 Mbp) (Hamon et al., 2015). This may explain the smaller number of NLRs in this species. Genome contraction is common in amphidiploids, which may be related to chromosomal 486 rearrangements, including duplication, insertions, and deletions after initial hybridization 487 (Hamon et al., 2015). An example of the number of NLRs reduced compared to the sum of 488 489 the corresponding parents was reported in *Brassica juncea* (Indian mustard), a species formed 490 by hybridization between the diploid Brassica species, B. rapa, and B. nigra (Inturrisi et al., 2020). Moreover, differences in the genome assembly quality may also have interfered with 491 the identification of NLR loci. 492

Among the three species analyzed, the only one with a genome-wide NLR study already
reported is *C. canephora* (Denoeud et al., 2014). The NLR gene data from that study agrees
with much of our findings. A large number of NLR loci in unanchored scaffolds for this
species has also been described. Here 210 complete NLR loci were identified in unanchored
scaffolds for *C. canephora*, while in the first description of the manually curated genes, 213
were not mapped. The number of mapped NLR genes was 348, while in our study, there were

352 complete loci. In C. canephora, it has also been reported that NLRs genes are located on 499 all chromosomes, but with an increased number found on chromosomes 1, 3, 5, 8, 11, which 500 501 together represented 70.1% of the mapped NLR genes. Although we have highlighted chromosomes 3 and 11 as having a greater number of NLR, chromosomes 1,3, 5, 8 and 11 502 also present large numbers of NLR loci in the three species studied here, together representing 503 68.2, 71.4 and 70.0% of the total of NLR loci mapped for C. arabica, C. canephora, and C. 504 eugenioides, respectively. Moreover, the few NLR genes on chromosomes 9 and 10 have also 505 506 been previously reported (Denoeud et al., 2014). These comparisons show that the three 507 species display a conserved pattern to the chromosomal distribution of NLR loci.

508 The NLR loci found for the three studied coffee species are arranged in clusters that group complete loci, pseudogenes and partial. These genes tend to group providing birth-and-death 509 510 events for functional NLRs (Ling et al., 2021). In these clusters it is possible to find tandem gene duplications, recombination hotspots or active transposon elements functioning as a 511 reservoir of genetic variation to generate specificity for new pathogen variants (Michelmore 512 and Meyers, 1998; Zhang et al., 2014). Within plant genomes many R genes have been found 513 514 to reside in clusters (Jupe et al., 2012; Andolfo et al., 2014, 2021; Seo et al., 2016; Zheng et al., 2016; Read et al., 2020). The S_{H3} locus in coffee, for example, corresponds to a complex 515 cluster of multiple genes, including CNL-like NLR genes (Ribas et al., 2011; Cenci et al., 516 2012). The number of complete or functional loci in plants represents a fraction of the total 517 number of loci found (Jupe et al., 2012; Seo et al., 2016). This happens precisely because the 518 519 evolutionary dynamics within these clusters favor the coexistence of functional genes, 520 pseudogenes, and partial genes, which differ between plants in consequence of evolutionary routes for certain pathosystems. 521

Recent discoveries show that NLRs can be multi domain receptors, that is, present domains 522 integrated to the canonical form NLR or TNL/CNL (Bailey et al., 2018; Wang et al., 2021). 523 524 Knowing regions of the genome that have this canonical form can facilitate the description of 525 non-canonical integrated domains that are upstream or downstream from the more conserved region (Monteiro and Nishimura, 2018). Another relevant information is that activation of 526 527 NLRs often happens in complexes and there is evidence that truncated NLRs can form heterocomplexes with complete NLRs, or act as main receptors in defense activation 528 (Monteiro and Nishimura, 2018). NLRs truncated as CbCN (Capsicum baccatum - CC-NB-529 530 ARC), and TN2 (TIR-NB-ARC) act in resistance to pathogens (Zhao et al., 2015; Son et al., 2021). This evidence reinforces the importance of knowing loci related to R genes, whether 531 complete, pseudogenes or partial. 532

533 Ortholog groups and Phylogenetic Analyses

The genus Coffea belongs to the Rubiaceae family, which is in the asterid clade, as well as to 534 535 the Solanaceae family. Many studies use species of the genus Solanum to obtain insights about the genomic and evolutionary architecture of coffea (Lin et al., 2005; Lefebvre-536 Pautigny et al., 2010; Denoeud et al., 2014). Species of the genus Solanum are also used as a 537 538 model for understanding the molecular processes related to plant-pathogen interaction, which makes us understand that comparative approaches with these species can lead to discoveries 539 of NLR loci or functionally important gene families in coffee (Andolfo et al., 2021). Our 540 541 results showed that of the 17 reference NLRs cloned and characterized in species of the genus Solanum and used in this study, 8 of them are present in shared orthogroups with coffee 542 (Supplementary Table 2 and Supplementary Table 10), being 1 TNL (Gro1-4) and 7 CNL 543 544 (Hero, Prf, Rpi-blb1, Rx2, Sw-5, Tm-2a, Tm-2). These genes are involved in the mechanism of resistance to a diverse group of pathogens including viruses, oomycetes, bacteria and 545

et al., 2021). In total 46 orthogroups were shared between coffee and solanum indicating that 547 these orthologs were probably present before the speciation of these two groups. Reference 548 NLRs characterized in species such as Hordeum vulgare, Oryza sativa, Triticum aestivum, 549 Glycine max, Arabidopsis thaliana e Cucumis melo also share othogroups with coffee NLRs, 550 all of which belong to the CNL class (Supplementary Table 2 and Supplementary Table 10). 551 These orthogroups are important as it can indicate possible roles to be investigated. An 552 interesting orthogroup and that obtained a high support in the phylogenetic tree was the one 553 that clustered the RPS2 reference NLR and NLRs present in the three coffee species. The 554 RPS2 is a resistance gene of Arabidopsis thaliana that confers resistance against 555 Pseudomonas syringae bacteria that express avirulence gene avrRpt2 (Bent et al., 1994; 556 Mindrinos et al., 1994). 557

546

nematodes (Bendahmane et al., 2000; Van Der Vossen et al., 2003; Paal et al., 2004; Andolfo

558 In general, plant species exhibit differences in the number of NLR genes. Amplification of certain groups is also detected (Seo et al., 2016). This diversity has not been associated with 559 genome size or phylogenetic relationships, but rather as a consequence of the specialization of 560 561 each particular host (Wan et al., 2013; Lozano et al., 2015; Seo et al., 2016; Zheng et al., 2016; Steuernagel et al., 2020). In all three coffee species, a set of orphan genes and 562 orthogroups that share NLRs within the same species were detected. In tomato, 45 of ~320 563 NLRs sequences are more similar to each other than to any other sequences compared 564 (Andolfo et al., 2021) and orthogroups that share NLRs within the same species in solanum 565 566 are attributed to duplication events that generate different gene repertoires resulting in 567 species-specific subfamilies (Seo et al., 2016).

568 The single-copy ortrogroups provide more reliable results of the evolutionary processes between groups of evaluated genes, making it possible to identify true orthologs between 569 different groups of plants (Zimmer et al., 2007; Duarte et al., 2010). The results from single-570 571 copy ortrogroups tree showed that some orthologous NLR seem to have a common ancestor 572 only among coffee species. The S_H3 locus, for example, was described as being shared only among coffee species suggesting that the ancestral copy S_H3 -CNL was inserted into the S_H3 573 574 locus after the divergence between the Solanum and Coffea lineages (Ribas et al., 2011). The clades that clustered orthologous NLRs from C. arabica, C. canephora and C. eugenioides 575 probably represent NLR present in both ancestral diploids genomes, and that were passed to 576 577 C. arabica genome. On the other hand, clades that clustered only C. canephora and C. eugenioides may represent ancestral NLRs that were lost in C. arabica or that underwent so 578 many modifications in this species that it makes it difficult to find homology between these 579 580 NLRs. Nucleotide level changes, such as deletions, insertions and rearrangements were observed in coffee RGA (Resistance gene analogues) (Noir et al., 2001; Hendre et al., 2011). 581 It is also known that it is very likely that the sequenced genotypes of C. canephora and C. 582 eugenioides present significant differences from ancestral donors of C. arabica subgenomes, 583 which may explain the lack of homology in certain NLR groups (Cenci et al., 2012). 584

585 The NB-ARC is the most conserved domain in the NLR gene family. Despite this conservation, from this domain it is possible to distinguish the TIR (TNL) and non-TIR 586 587 classes based on different residues inside the motifs present in this region (Jones et al., 2016; Shao et al., 2019; Van Ghelder et al., 2019). Therefore, this domain is used to describe the 588 phylogenetic relationships between the sequences of this group and classify them (Andolfo et 589 al., 2014). The classification of NLRs in coffee revealed that the non-TNL class were in 590 greater numbers than those of the TNL group in each of the three analyzed coffee genomes. It 591 is known that non-TNL genes that include many CNL are widely distributed in monocots and 592 dicots, while TNL are mainly found in dicots (McHale et al., 2006; Zheng et al., 2016). The 593

low frequency of TNLs in coffee agrees with results found for species of the solanum group,
such as pepper, tomato and potato (Andolfo et al., 2014; Seo et al., 2016). Our results are also
consistent with the low frequency of TNLs found in previous coffee studies (Hendre et al.,
2011; Denoeud et al., 2014). Thus, it is possible to suggest that, as in solanum, non-TNLs
represent an important repertoire of resistance genes in coffee. Additionally, the TNL group
and the non-TNLs subgroups had NLRs from *C.arabica*, *C. canephora* and *C. eugenioides*,

- indicating conservation of the NLR classes across coffee genomes and suggesting that allsubgroups were present in a common ancestor, thus as described for comparisons of species
- 602 of the solanum group (Seo et al., 2016).
- In the two phylogenetic trees analyzed, the clades group coffee NLRs that are mostly present in the same chromosomes but grouping NLRs in different chromosomes were also detected. Genes located on the same chromosome tend to group into subclades in the phylogenetic tree. However, rearrangement events of the chromosomes can affect NLR loci modify their genomic order or location (Cenci et al., 2012; Zheng et al., 2016; Ling et al., 2021).

Considering the relevance of coffee, few studies have been conducted addressing the
identification of NLR in genomes of this crop. RGA studies using degenerate primers for NBARC region have already been performed (Noir et al., 2001; Hendre et al., 2011; Kumar,

611 2012), in addition to studies in $S_H 3$ locus (Cenci et al., 2010, 2012; Lashermes et al., 2010),

612 but very little is known about the NLR family in cultivated (*C.arabica* e *C. canephora*) and 613 uncultivated coffee species (such as *C. eugenioides*). This is the first study focused on the

- 614 wide identification of NLRs in *C. arabica* genome, besides to adding information to the
- existing report for *C. canephora* (Denoeud et al., 2014). The Genome-wide identification of
- 616 coffe NLRs allow for more in-depth future molecular studies and represents a potential
- approach for candidates genes cloning and subsequent use of functional NLR genes,
- expanding the range of NLR in the breeding of this crop (Seo et al., 2016).
- 619

620 Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior – Brasil (CAPES) – Finance Code 001.

623

624 **References**

- Anand, L., and Lopez, C. M. R. (2020). chromoMap: An R package for Interactive
 Visualization and Annotation of Chromosomes.
- Andolfo, G., D'agostino, N., Frusciante, L., and Ercolano, M. R. (2021). The tomato
 interspecific NB-LRR gene arsenal and its impact on breeding strategies. *Genes.* 12, 1–
 12. doi:10.3390/genes12020184.
- Andolfo, G., Jupe, F., and Witek, K. (2014). Defining the full tomato NB-LRR resistance
 gene repertoire using genomic and cDNA RenSeq. *BMC plant* 14, 120, 2014.
 doi:10.1186/1471-2229-14-120.
- Bailey, P. C., Schudoma, C., Jackson, W., Baggs, E., Dagdas, G., Haerty, W., et al. (2018).
 Dominant integration locus drives continuous diversification of plant immune receptors

- with exogenous domain fusions. *Genome Biol.* 19, 1–18. doi:10.1186/s13059-018-13926.
- Barragan, A. C., and Weigel, D. (2021). Plant NLR Diversity: The Known Unknowns of Pan NLRomes. *Plant Cell* 33, 814–831. doi:/10.1093/plcell/koaa002.
- Bawin, Y., Ruttink, T., Staelens, A., Haegeman, A., Stoffelen, P., Mwanga Mwanga, J. C. I.,
 et al. (2020). Phylogenomic analysis clarifies the evolutionary origin of *Coffea arabica*. *J. Syst. Evol.* doi:10.1111/jse.12694.
- Bendahmane, A., Querci, M., Kanyuka, K., and Baulcombe, D. C. (2000). Agrobacterium
 transient expression system as a tool for the isolation of disease resistance genes:
 Application to the *Rx2* locus in potato. *Plant J.* 21, 73–81. doi:/10.1046/j.1365313x.2000.00654.x.
- Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., et al.
 (1994). RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease
 resistance genes. *Science* 265, 1856–1860. doi:10.1126/science.8091210.
- Bezerra-Neto, J. P., Araújo, F. C., Ferreira-Neto, J. R. C., Silva, R. L. O., Borges, A. N. C.,
 Matos, M. K. S., et al. (2020). "NBS-LRR genes-Plant health sentinels: Structure, roles,
 evolution and biotechnological applications," in *Applied Plant Biotechnology for Improving Resistance to Biotic Stress* (Elsevier), 63–120. doi:10.1016/B978-0-12816030-5.00004-5.
- Bonardi, V., Cherkis, K., Nishimura, M. T., and Dangl, J. L. (2012). A new eye on NLR
 proteins: Focused on clarity or diffused by complexity? *Curr. Opin. Immunol.* 24, 41–50.
 doi:10.1016/j.coi.2011.12.006.
- Boutrot, F., and Zipfel, C. (2017). Function, discovery, and exploitation of plant pattern
 recognition receptors for broad-spectrum disease resistance. *Annu. Rev. Phytopathol.* 55,
 257–286. doi:10.1146/annurev-phyto-080614-120106.
- Cabral, P. G. C., Maciel-Zambolim, E., Oliveira, S. A. S., Caixeta, E. T., and Zambolim, L.
 (2016). Genetic diversity and structure of *Hemileia vastatrix* populations on *Coffea spp. Plant Pathol.* 65, 196–204. doi:10.1111/ppa.12411.
- 663 Cenci, A., Combes, M. C., and Lashermes, P. (2010). Comparative sequence analyses indicate
 664 that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral
 665 genome. *Mol. Genet. Genomics* 283, 493–501. doi:10.1007/s00438-010-0534-7.
- 666 Cenci, A., Combes, M. C., and Lashermes, P. (2012). Genome evolution in diploid and
 667 tetraploid Coffea species as revealed by comparative analysis of orthologous genome
 668 segments. *Plant Mol. Biol.* 78, 135–145. doi:10.1007/s11103-011-9852-3.
- Cerda, R., Avelino, J., Gary, C., Tixier, P., Lechevallier, E., and Allinne, C. (2017). Primary
 and secondary yield losses caused by pests and diseases: Assessment and modeling in
 coffee. *PLoS One* 12, 1–17. doi:10.1371/journal.pone.0169133.
- 672 Clarindo, W. R., and Carvalho, C. R. (2011). Flow cytometric analysis using SYBR Green I
 673 for genome size estimation in coffee. *Acta Histochem*. 113, 221–225.
 674 doi:10.1016/j.acthis.2009.10.005.

- 675 Conway, J. R., Lex, A., and Gehlenborg, N. (2017). UpSetR: An R package for the
 676 visualization of intersecting sets and their properties. *Bioinformatics* 33, 2938–2940.
 677 doi:10.1093/bioinformatics/btx364.
- Davis, A. P., Govaerts, R., Bridson, D. M., and Stoffelen, P. (2006). An annotated
 taxonomic of the genus coffea (Rubiaceae). *Bot. J. Linn. Soc.* 152, 465–512.
 doi:10.1111/j.1095-8339.2006.00584.x.
- Denoeud, F., Carretero-Paulet, L., Dereeper, A., Droc, G., Guyot, R., Pietrella, M., et al.
 (2014). The coffee genome provides insight into the convergent evolution of caffeine
 biosynthesis. *Science* 345, 1181–1184. doi:10.1126/science.1255274.
- Duarte, J. M., Wall, P. K., Edger, P. P., Landherr, L. L., Ma, H., Pires, J. C., et al. (2010).
 Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and
 Oryza and their phylogenetic utility across various taxonomic levels. *BMC Evol. Biol.*10, 1–18. doi:10.1186/1471-2148-10-61.
- Hamon, P., Hamon, S., Razafinarivo, N. J., Guyot, R., Siljak-Yakovlev, S., Couturon, E., et
 al. (2015). "Coffea Genome Organization and Evolution," in *Coffee in Health and Disease Prevention*, 29–37. doi:10.1016/B978-0-12-409517-5.00004-8.
- Hendre, P. S., Bhat, P. R., Krishnakumar, V., Aggarwal, R. K., and Donini, P. (2011).
 Isolation and characterization of resistance gene analogues from Psilanthus species that
 represent wild relatives of cultivated coffee endemic to India. *Genome* 54, 377–390.
 doi:10.1139/g11-004.
- Hufford, M. B., Seetharam, A. S., Woodhouse, M. R., Chougule, K. M., Coletta, D., Tittes,
 S., et al. (2021). De novo assembly, annotation, and comparative analysis of 26 diverse
 maize genomes. *bioRxiv Prepr*. doi:10.1101/2021.01.14.426684.
- Inturrisi, F., Bayer, P. E., Yang, H., Tirnaz, S., Edwards, D., and Batley, J. (2020). Genomewide identification and comparative analysis of resistance genes in *Brassica juncea*. *Mol. Breed*. 40, 1–14. doi:10.1101/2020.12.15.422814.
- Jones, J. D. G., and Dangl, J. L. (2006). The plant immune system. *Nature* 444, 323–329.
 doi:10.1038/nature05286.
- Jones, J. D. G., Vance, R. E., and Dangl, J. L. (2016). Intracellular innate immune
 surveillance devices in plants and animals. *Science* 354. doi:10.1126/science.aaf6395.
- Jost, M., Singh, D., Lagudah, E., Park, R. F., and Dracatos, P. (2020). Fine mapping of leaf
 rust resistance gene Rph13 from wild barley. *Theor. Appl. Genet.* 133, 1887–1895.
 doi:10.1007/s00122-020-03564-6.
- Jupe, F., Pritchard, L., Etherington, G. J., MacKenzie, K., Cock, P. J. A., Wright, F., et al.
 (2012). Identification and localisation of the NB-LRR gene family within the potato
 genome. *BMC Genomics* 13, 1–14. doi:10.1186/1471-2164-13-75.
- Jupe, F., Witek, K., Verweij, W., Śliwka, J., Pritchard, L., Etherington, G. J., et al. (2013).
 Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR
 gene family from sequenced plant genomes and rapid mapping of resistance loci in
 segregating populations. *Plant J.* 76, 530–544. doi:10.1111/tpj.12307.

- Kachroo, A., and Robin, G. P. (2013). Systemic signaling during plant defense. *Curr. Opin. Plant Biol.* 16, 527–533. doi:10.1016/j.pbi.2013.06.019.
- Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid
 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* 30,
 3059–66. doi:/10.1093/nar/gkf436.
- Kim, S., Park, J., Yeom, S. I., Kim, Y. M., Seo, E., Kim, K. T., et al. (2017). New reference
 genome sequences of hot pepper reveal the massive evolution of plant disease-resistance
 genes by retroduplication. *Genome Biol.* 18, 1–11. doi:10.1186/s13059-017-1341-9.
- Kourelis, J., and Van Der Hoorn, R. A. (2018). Defended to the Nines: 25 years of Resistance
 Gene Cloning Identifies Nine Mechanisms for R Protein Function. *Plant Cell* 30, 285–
 299. doi:10.1105/tpc.17.00579.
- Krishnan, S. (2017). Sustainable Coffee Production. *Oxford Res. Encycl. Environ. Sci.* doi:10.1093/acrefore/9780199389414.013.224.
- Kroj, T., Chanclud, E., Michel-Romiti, C., Grand, X., and Morel, J. B. (2016). Integration of
 decoy domains derived from protein targets of pathogen effectors into plant immune
 receptors is widespread. *New Phytol.* 210, 618–626. doi:10.1111/nph.13869.
- Kumar, D. (2012). Isolation of Nucleotide Binding Site (NBS)-Leucine Rich Repeat (LRR)
 Resistant Gene Analogs (Rgas) In Arabica Coffee (*Coffea arabica* L. Cv S.288). *J. Biotechnol. Biomater.* 02. doi:10.4172/2155-952x.1000146.
- Kushwaha, S. K., Chauhan, P., Hedlund, K., and Ahren, D. (2016). NBSPred: A support
 vector machine-based high-throughput pipeline for plant resistance protein NBSLRR
 prediction. *Bioinformatics* 32, 1223–1225. doi:10.1093/bioinformatics/btv714.
- Lashermes, P., Combes, M. C., Ribas, A., Cenci, A., Mahé, L., and Etienne, H. (2010).
 Genetic and physical mapping of the SH3 region that confers resistance to leaf rust in
 coffee tree (*Coffea arabica* L.). *Tree Genet. Genomes* 6, 973–980. doi:10.1007/s11295010-0306-x.
- Lashermes, P., Combes, M. C., Robert, J., Trouslot, P., D'Hont, A., Anthony, F., et al. (1999).
 Molecular characterization and origin of the Coffea arabica L. genome. *Mol. Gen. Genet.*261, 259–266. doi:10.1007/s004380050965.
- Lefebvre-Pautigny, F., Wu, F., Philippot, M., Rigoreau, M., Priyono, Zouine, M., et al.
 (2010). High resolution synteny maps allowing direct comparisons between the coffee
 and tomato genomes. *Tree Genet. Genomes* 6, 565–577. doi:10.1007/s11295-010-02723.
- Letunic, I., and Bork, P. (2021). Interactive tree of life (iTOL) v3: an online tool for the
 display and annotation of phylogenetic and other trees. *Nucleic Acids Res.* 49, W293–
 W296. doi:10.1093/nar/gkw290.
- Li, L., Stoeckert, C. J. J., and Roos, D. S. (2003). OrthoMCL: Identification of Ortholog
 Groups for Eukaryotic Genomes. *Genome Res.* 13, 2178–2189.
 doi:10.1101/gr.1224503.candidates.

- Lin, C., Mueller, L. A., Carthy, J. M., Crouzillat, D., Pétiard, V., and Tanksley, S. D. (2005).
 Coffee and tomato share common gene repertoires as revealed by deep sequencing of
 seed and cherry transcripts. *Theor. Appl. Genet.* 112, 114–130. doi:10.1007/s00122-0050112-2.
- Ling, J., Xie, X., Gu, X., Zhao, J., Ping, X., Li, Y., et al. (2021). High-quality chromosomelevel genomes of *Cucumis metuliferus* and *Cucumis melo* provide insight into Cucumis
 genome evolution. *Plant J.* 107, 136–148. doi:10.1111/tpj.15279.
- Lozano, R., Hamblin, M. T., Prochnik, S., and Jannink, J. L. (2015). Identification and
 distribution of the NBS-LRR gene family in the Cassava genome. *BMC Genomics* 16, 1–
 14. doi:10.1186/s12864-015-1554-9.
- Lu, Y., and Tsuda, K. (2021). Intimate Association of PRR- and NLR-Mediated Signaling in
 Plant Immunity. *Mol. Plant-Microbe Interact.* 34, 3–14. doi:10.1094/mpmi-08-20-0239 ia.
- Malacarne, G., Perazzolli, M., Cestaro, A., Sterck, L., Fontana, P., van de Peer, Y., et al.
 (2012). Deconstruction of the (paleo)polyploid grapevine genome based on the analysis
 of transposition events involving NBS resistance genes. *PLoS One* 7.
 doi:10.1371/journal.pone.0029762.
- McCook, S., and Vandermeer, J. (2015). The Big Rust and the Red Queen: Long-Term
 Perspectives on Coffee Rust Research. *Phytopathology* 105, 1164–1173.
 doi:10.1094/PHYTO-04-15-0085-RVW.
- McHale, L., Tan, X., Koehl, P., and Michelmore, R. W. (2006). Plant NBS-LRR proteins:
 Adaptable guards. *Genome Biol.* 7. doi:10.1186/gb-2006-7-4-212.
- Michelmore, R. W., and Meyers, B. C. (1998). Clusters of resistance genes in plants evolve
 by divergent selection and a birth-and-death process. *Genome Res.* 8, 1113–1130.
 doi:10.1101/gr.8.11.1113.
- Mindrinos, M., Katagiri, F., Yu, G. L., and Ausubel, F. M. (1994). The A. thaliana disease
 resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucinerich repeats. *Cell* 78, 1089–1099. doi:10.1016/0092-8674(94)90282-8.
- Monteiro, F., and Nishimura, M. T. (2018). Structural, functional, and genomic diversity of
 plant NLR proteins: An evolved resource for rational engineering of plant immunity.
 Annu. Rev. Phytopathol. 56, 243–267. doi:10.1146/annurev-phyto-080417-045817.
- Muliyar, R. K., Chowdappa, P., Behera, S. K., Kasaragod, S., Gangaraj, K. P., Kotimoole, C.
 N., et al. (2020). Assembly and Annotation of the Nuclear and Organellar Genomes of a
 Dwarf Coconut (Chowghat Green Dwarf) Possessing Enhanced Disease Resistance. *Omi. A J. Integr. Biol.* 24, 726–742. doi:10.1089/omi.2020.0147.
- Noir, S., Combes, M.-C., Anthony, F., and Lashermes, P. (2001). Origin, diversity and
 evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). *Mol. Genet. Genomics* 265, 654–662. doi:10.1007/s004380100459.

Noirot, M., Poncet, V., Barre, P., Hamon, P., Hamon, S., and De Kochko, A. (2003). Genome size variations in diploid African Coffea species. *Ann. Bot.* 92, 709–714.

- 794 doi:10.1093/aob/mcg183.
- Osuna-Cruz, C. M., Paytuvi-Gallart, A., Di Donato, A., Sundesha, V., Andolfo, G., Cigliano,
 R. A., et al. (2018). PRGdb 3.0: A comprehensive platform for prediction and analysis of
 plant disease resistance genes. *Nucleic Acids Res.* 46, D1197–D1201.
 doi:10.1093/nar/gkx1119.
- Paal, J., Henselewski, H., Muth, J., Meksem, K., Menéndez, C. M., Salamini, F., et al. (2004).
 Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of
 the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. *Plant J.* 38, 285–297. doi:10.1111/j.1365-313X.2004.02047.x.
- Read, A. C., Moscou, M. J., Zimin, A. V., Pertea, G., Meyer, R. S., Purugganan, M. D., et al.
 (2020). Genome assembly and characterization of a complex zfBED-NLR genecontaining disease resistance locus in Carolina Gold Select rice with Nanopore
 sequencing. *PLoS Genet.* 16, 1–24. doi:10.1371/journal.pgen.1008571.
- Ribas, A. F., Cenci, A., Combes, M. C., Etienne, H., and Lashermes, P. (2011). Organization
 and molecular evolution of a disease-resistance gene cluster in coffee trees. *BMC Genomics* 12. doi:10.1186/1471-2164-12-240.
- Schatz, M. C., Maron, L. G., Stein, J. C., Hernandez Wences, A., Gurtowski, J., Biggers, E.,
 et al. (2014). Whole genome de novo assemblies of three divergent strains of rice, Oryza
 sativa, document novel gene space of aus and indica. *Genome Biol.* 15, 506.
 doi:10.1186/s13059-014-0506-z.
- Scott, A. D., Zimin, A. V, Puiu, D., Workman, R., Britton, M., Zaman, S., et al. (2020). The
 giant sequoia genome and proliferation of disease resistance genes. *bioRxiv* 28, 1–43.
 doi:10.1101/2020.03.17.995944.
- Seidl, M. F., and Thomma, B. P. H. J. (2017). Transposable Elements Direct The Coevolution
 between Plants and Microbes. *Trends Genet.* 33, 842–851.
 doi:10.1016/j.tig.2017.07.003.
- Seo, E., Kim, S., Yeom, S. I., and Choi, D. (2016). Genome-wide comparative analyses reveal
 the dynamic evolution of nucleotide-binding leucine-rich repeat gene family among
 solanaceae plants. *Front. Plant Sci.* 7, 1–13. doi:10.3389/fpls.2016.01205.
- Shao, Z. Q., Xue, J. Y., Wang, Q., Wang, B., and Chen, J. Q. (2019). Revisiting the Origin of
 Plant NBS-LRR Genes. *Trends Plant Sci.* 24, 9–12. doi:10.1016/j.tplants.2018.10.015.
- Son, S., Kim, S., Lee, K., Oh, J., Choi, I., Do, J., et al. (2021). The *Capsicum baccatum*Specific Truncated NLR Protein CbCN Enhances the Innate Immunity against
 Colletotrichum acutatum. *Int. J. Mol. Sci.* 22. doi:10.3390/ijms22147672.
- Song, W., Wang, B., Li, X., Wei, J., Chen, L., Zhang, D., et al. (2015). Identification of
 Immune Related LRR-Containing Genes in Maize (*Zea mays L.*) by Genome-Wide
 Sequence Analysis. *Int. J. Genomics* 2015. doi:10.1155/2015/231358.
- Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis
 of large phylogenies. *Bioinformatics* 30, 1312–1313. doi:10.1093/bioinformatics/btu033.

Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. (2006). 833 AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, 834 W435-W439. doi:10.1093/nar/gkl200. 835 Steuernagel, B., Jupe, F., Witek, K., Jones, J. D. G., and Wulff, B. B. H. (2015). NLR-parser: 836 Rapid annotation of plant NLR complements. *Bioinformatics* 31, 1665–1667. 837 doi:10.1093/bioinformatics/btv005. 838 Steuernagel, B., Witek, K., Krattinger, S. G., Ramirez-Gonzalez, R. H., Schoonbeek, H. J., 839 840 Yu, G., et al. (2020). The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 183, 468-482. doi:10.1104/pp.19.01273. 841 Sun, X., Jiao, C., Schwaninger, H., Chao, C. T., Ma, Y., Duan, N., et al. (2020). Phased 842 diploid genome assemblies and pan-genomes provide insights into the genetic history of 843 apple domestication. Nat. Genet. 52, 1423-1432. doi:10.1038/s41588-020-00723-9. 844 845 Toda, N., Rustenholz, C., Baud, A., Le Paslier, M. C., Amselem, J., Merdinoglu, D., et al. (2020). NLGenomeSweeper: A tool for genome-wide NBS-LRR resistance gene 846 identification. Genes. 11, 333. doi:10.3390/genes11030333. 847 Tran, H. T. M., Ramaraj, T., Furtado, A., Lee, L. S., and Henry, R. J. (2018). Use of a draft 848 genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content. 849 Plant Biotechnol. J. 9, 1756–1766. doi:10.1111/pbi.12912. 850 851 Van Der Vossen, E., Sikkema, A., Te Lintel Hekkert, B., Gros, J., Stevens, P., Muskens, M., et al. (2003). An ancient R gene from the wild potato species Solanum bulbocastanum 852 confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and 853 tomato. Plant J. 36, 867-882. doi:10.1046/j.1365-313X.2003.01934.x. 854 855 Van Ghelder, C., Parent, G. J., Rigault, P., Prunier, J., Giguère, I., Caron, S., et al. (2019). The large repertoire of conifer NLR resistance genes includes drought responsive and highly 856 diversified RNLs. Sci. Rep. 9, 1-13. doi:10.1038/s41598-019-47950-7. 857 Wan, H., Yuan, W., Bo, K., Shen, J., Pang, X., and Chen, J. (2013). Genome-wide analysis of 858 NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of 859 NBS-encoding genes in Cucurbitaceae crops. BMC Genomics 14, 109. 860 doi:10.1186/1471-2164-14-109. 861 Wang, Z., Ren, H., Xu, F., Lu, G., Cheng, W., Que, Y., et al. (2021). Genome-Wide 862 Characterization of NLRs in Saccharum spontaneum L. and Their Responses to Leaf 863 864 Blight in Saccharum. Agronomy 11, 153. doi:10.3390/plants10020322. Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., He, S. Y., et al. (2021). Pattern-recognition 865 receptors are required for NLR-mediated plant immunity. Nature, 1-5. 866 doi:10.1101/2020.04.10.031294. 867 Zambolim, L., and Caixeta, E. T. (2021). An overview of physiological specialization 868 ofcoffee leaf rust - new designation of Pathotypes. Int. J. Curr. Res. 13, 15564-15575. 869 870 Zhang, R., Murat, F., Pont, C., Langin, T., and Salse, J. (2014). Paleo-evolutionary plasticity of plant disease resistance genes. BMC Genomics 15. doi:10.1186/1471-2164-15-187. 871

Zhao, T., Rui, L., Li, J., Nishimura, M. T., Vogel, J. P., Liu, N., et al. (2015). A Truncated
NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the exo70B1
Mutant. *PLoS Genet.* 11, 1–28. doi:10.1371/journal.pgen.1004945.

Zheng, F., Wu, H., Zhang, R., Li, S., He, W., Wong, F. L., et al. (2016). Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. *BMC Genomics*17, 1–13. doi:10.1186/s12864-016-2736-9.

Zimmer, A., Lang, D., Richardt, S., Frank, W., Reski, R., and Rensing, S. A. (2007). Dating
the early evolution of plants: Detection and molecular clock analyses of orthologs. *Mol. Genet. Genomics* 278, 393–402. doi:10.1007/s00438-007-0257-6.

881

882

Figure 1. Venn diagrams representing the overlap between the loci from NLR-annotator and NLR genes annotated in the *C. arabica*, *C. canephora*, and *C. eugenioides* refence

and NLK genes annotated in the c. *arabica*, C. *canephora*, and C. *eugentotaes* referee

genomes. The colors represent the origin of the annotation, with blue indicating thoseannotated by NLR-annotator and green indicating those found in the reference genome. The

intersection refers to the overlap that occurred once or more than once.

Figure 2. Number and chromosomal distribution of NLR loci in *C. arabica*, *C.*

889 canephora e C. eugenioides. A. The chromosomes with the highest number of NLR loci are 890 highlighted in dark blue, and the smallest number of NRL are highlighted in light blue. CPL identifies the completeness of NLR as: C= complete, Cps= complete (pseudogene), P= partial, 891 Pps= partial pseudogene and Un= unassigned. **B.** The chromosomes represented in *C. arabica* 892 refer to the two subgenomes, the first originating from C. canephopra and the second 893 originating from C. eugenioides. The chromosomal distribution represented in this figure does 894 not show all loci for each region but identifies all regions that present NLRs loci. A browse to 895 view these chromosomes and observe all regions in detail may be found at Supplementary 896

Figure 3, 4 and 5.

898 Figure 3. Upset plot of orthologous NLR groups (orthogroups) among five species (*C*.

arabica (Ca) C. canephora (Cc), C. eugenioides (Ce), S. tuberosum (Soltu) and S.

900 *lycopersicum* (Soly) and NLRs de referência (Ref). The orthogroups that gather

combination for species/Ref NLRs is shown by the interconnected blue dots on the bottom
panel. Unconnected blue dots show orthogroups within the same species. The 'Set size'
represents the total number of orthogroups per species/Ref. The 'intersection size' shows the
number of orthogroups inside and between species/Ref. The orthogroups were clustered by
OrthoMCL.

906 Figure 4. Phylogenetic tree of single-copy NLR orthogroups. The phylogenetic tree was constructed based on 647 NLRs (domain NB-ARC) single-copy orthologs using RAxML. The 907 colored ring indicates coffee NLR clades, the green color represents C. arabica (Ca), red, C. 908 canephora (Cc) and blue C. eugenioides (Ce). Labels in black are coffee NLRs, in green, S. 909 lycopersicum (Soly), in blue, S. tuberosum (Soltu) and pink are reference proteins (Ref). 910 911 Bootstrap values above 70% are indicated on each branch with a brown circle. Pink 912 backgrounds indicate clades that group orthologs of Ca, Cc and Ce. The clade highlighted in 913 purple shows the coffee NLR and RPS2 grouping.

Figure 5. Phylogenetic tree for coffee NLRs classification. NB-ARC domains from 2681 NLRs gathering *C. arabica* (*Ca*), *C. canephora* (*Cc*), *C. eugenioides* (Ce), *S. lycopersicum*, *S.*

916 *tuberosum*, reference NLRs (pink balls) and CED-4 (root) were used in the construction. The

917 tree was constructed using RAxML. The classifications of the reference NLRs and some *S*.

- 918 *lycopersicum*, *S. tuberosum* NLRs were used to classify the coffee NLRs into TNLs and Non
- 919 TNLs groups (inner ring TNL = yellow, CNL = gray and NL = Purple). Subgroups in Non
- TNLs are indicated from I to XIII and alternating colors (green and purple). Gray and yellow
 background highlight coffee NLRs and the outer ring separates the NLRs for Ca, Cc and Ce in
- 922 green, red and blue respectively.

923

Table and Figures

99

A

											Co	ffea ar	abica											
CPL	Chr1c 42	<u>Chr1e</u> 48	Chr2c	22 22	<u>Chr3c</u> 71	Chr3e 65	Chr4c 25	21 21	<u>Chr5c</u> (42	20 Chr5e	23	Chr6e 15	<u>Chr7c</u> 44	Chr7e 43	Chr8c 35	Chr8e 54	Chr9c	Chr9e 7	Chr100	<u>9</u>	<u>Chr11</u> 54	<u>Chr11e</u> 73	Un 23	Total 809
Cps	21	13	7	8	38	24	5	6	28	19	3	6	14	15	12	23	1	4	1	1	12	23	5	289
Р	5	4	4	6	13	12	1	4	4	5	10	2	5	6	4	3	1	0	5	8	10	7	6	125
Pps Total	5 73	2 67	2 30	39	8 130	4	33	32	75	2	38	4 27	2 65	4 68	4 55	9 89	15	11	4 26	21	10 86	13	0 34	1311
						202					Coff	ea can	ephora											
<u>— CP</u>	L	<u>Chr1</u> 49		<u>Chr2</u> 19	_	Chr3 70	C	hr4 23	<u>Chr5</u> 42		<u>Chr6</u> 16		<u>Chr7</u> 29		2hr8 37	<u>Ch</u>	r9	<u>Chr1</u> 11	.0	<u>Chr11</u> 55	_	Un 210	<u>Tot</u> 56	<u>al</u> 2
C	s	14		9		25		7	14		4		7		12	1		1	_	14		66	17	4
P Pp	s	3		7		12 13		3	5 2		2		5 2		2	3		3		8 13		68 23	12 70	1
Tot	al	72		37		120	3	34	63		24		43		54	6		16		90		367	92	7
CP	1.	Chr	1	Chr?		Chr3	0	'hr4	Chri		Coffe	ea euge	enioides Chr7		Chr8	C	hr9	Chi	r10	Chr	1	Lin	To	tal
		56		30		98		17	86	,	40		56		106		18	10	0	90		88	69	95
C	s	14		17		33		7	34		16		18		27		5	3	3	29		36	23	39
P Pr	s	3		10		13		2	9		4		8		9		1	3	3 1	16		5	8 6	3 12
Tot	al	75		60		155		27	134		63		85		148		27	2	0	149	1	135	10	79
в			-																					
D			С. с	aneph	ora			_																
chr1																								
chr2																C anab	:							
chr3												ch	nr1 🚺			c.uruu	icu							
chr4												ch	nr1 🧧											
chr5												ch	nr2											
chr6												ch	nr2				ĊП			· ·				
chr7							_					ch	nr3										_	
-1-0												ch	nr3											
chro												ch	nr4											
chr9												ch	nr4											
chr10												ch	nr5 🔳							D				
chr11												ch	nr5											
											7	ch	nr6											
	0bp	10	Mb	20M	b) (bp)	30Mb		40Mb	50	Mb		ch	nr6											
			C au	ranioid	las							ch	nr7											
chr1			C. eug	zenioia	25							ch	nr7											
chr2					_							ch	nr8							_				
01112												ch	nr8								_			
chr3												ch	nr9								- co	omplete		
chr4												Cr									- co	omplete (p	seudo	gene)
chr5												chi	r10								– pa	artial		
chr6																			•		– pa	artial (pse	udoger	ıe)
chr7												ch	r11								_			
chr8																								
0110													0bp		2	20Mb		40M	b	6	0Mb		80Mb	
chr9																								
chr10																								
chr11																								
	0bp		201	/b	4h /h->	40Mb		60	Mb		80Mb													
				Leng	ui (DD)																			

Figure 3

Supplementary Text 1. NLRs genes not found by the NLR-annotator in the coffee genomes.

The overlap analysis made it possible to identify genes annotated in the reference genomes that did not overlap with any locus from NLR-annotator. To examine these genes, an NLR-parser analysis was performed on this set. After this analysis, we observed genes that did not obtain motifs detectable by NLR-parser and therefore did not present annotations in NLR-annotator. These loci were considered as "not found" by the tool. For *C. arabica*, two genes were not found, the LOC113737176 (XP_027120243.1 disease resistance protein RGA2-like) and the LOC113735982 (XP_027118739.1 probable disease resistance protein At4g19060) and for *C. canephora*, five genes were not found: Cc02_g12220 (Putative disease resistance protein At4g19050), Cc03_g10360 (Hypothetical protein with PFAM:PF00931), Cc00_g21910 (Putative NBS-coding resistance gene protein -Fragment), and Cc00_g35420 (Putative Disease resistance protein RGA2).

For *C. eugenioides*, two situations occurred: the LOC113766771 (XP_027166726.1- probable disease resistance protein At5g43730) and the LOC113766774 (XP_027166730.1 - disease resistance protein At4g27190-like) did not present motifs detectable by NLR-Parser and consequently, were not annotated by NLR-annotator. As well, two genes (LOC113766615 - putative disease resistance protein RGA4 and LOC113777141 - putative late blight resistance protein homolog R1B-17) had at least three consecutive motifs belonging to the NB-ARC domain and detectable by NLR-Paser (standard threshold) but were not annotated. For the latter situation, a manual search of the positions in the txt file (Supplementary Table 3) was undertaken to make sure that there were no errors in the overlap analysis. The locus in this interval (Chr3 start at 40629207 and ends at 40630439, Ch7 start at 40630439 and ends at 22112852) was not detected by the NLR-annotator, and these genes were also classified as "not found" (Supplementary Table 6).

To ensure that the genes that NLR-annotator did not found encode proteins with NB-ARC domains, in addition to the PfamScan analysis, a conserved domains analysis using the nucleotide sequence was performed (Supplementary Figure 1). The goal here was to use a strategy similar to that used by the NLR-annotator. For C. arabica, we observed that the two genes belong in the NB-ARC superfamily, but with incomplete domain and variation in domain length. This also occurred in C. canephora, except for one gene (Cc07_g18800) that did not present detectable domains, despite showing a small fragment of the NB-ARC with PfamScan analysis (highlighted in orange in Supplementary Table 4). Additionally, in this genome, the Cc00 g35420 gene presented an NB-ARC incomplete domain and contained an N-terminal with Rx_N (pfam18052), a domain found in many plant resistance proteins. For C. eugenioides, two genes (LOC113766615 and LOC113766771) presented NB-ARC incomplete domains of different lengths, and the LOC113766774 gene, in addition to presenting NB-ARC complete domain, contains leucine-rich repeat. The gene LOC113777141 has two NB-ARC fragments separated by a domain belonging to the retrotran gag two superfamilies, containing a gag-polypeptide of LTR (long terminal repeat), which is a known type of retrotransposon in plants.

RF +1	
Superfanilies N8-ARC	
ID Name Accession Description Interval	E-value
LOC113737176_Ca NB-ARC super family cl26397 NB-ARC domain 208-438	8.92e-11
1 75 150 225 300 375 450 ·	536
RF +1	
Super-raniiles no-inc	
ID Name Accession Description Interval	E-value
LOC113735982_Ca NB-ARC super family cl26397 NB-ARC domain 82-483	1.90e-11
1 250 500 750 1000 1250 1500 1750 20	002052
RF +2	
ID Name Accession Description Interval	E-value
Cc02_g12220_Cc NB-ARC super family C126397 NB-ARC domain 1195-11/1	3.08e-08
1 250 500 750 1000 1250 1500 1750 1750	1872
RF *1 Superfanilies NB-sRC	
ID None Accession Decomption Interval	Evolue
Col3 a10360 Co. NB APC super family cl26307 NB APC domain 1561 1236	Z-Value 7 70e 13
CCOCOUCCCCCCCCCCCCCCCCCCCCCCCCCCC	1./00-13
	-
No conserved domains have been identified for this query sequence	
ID Name Accession Description Interval	E-value
Cc07_g18800_Cc	-
1 <u>5</u> 0 <u>1</u> 00 <u>15</u> 0 <u>20</u> 0 <u>25</u> 0 <u>300</u> <u>550 <u>30</u></u>	4
KF +1 Superfanilies NB-RRC S	
	E value
II) Nama Accession Description Interval	
ID Name Accession Description Interval	7.620.08
IDNameAccessionDescriptionIntervalCc00_g21910_CcNB-ARC super familycl26397NB-ARC domain109-360	7.62e-08
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360	7.62e-08
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Rem60P2 interaction site AA 200 200 200 200 200 RF +1 Rem60P2 interaction site AA 200 200 200 200 200 200	7.62e-08
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 100 200 200 200 200 200 200 200 200 200 400 500 600	7.62e-08
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits Superfamilies RX-N Name Accession Description ID Name Accession Description Interval	7.62e-08
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits RX_N RX_N RX_N ID Name Accession Description Interval ID Name Accession Description Interval ID Name Accession Description Interval	7.62e-08
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Rx_N Rx_N Rx_N Rx_N Mame Accession Description Interval ID Name Accession Description Interval Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain found in many plants 1-	7.62e-08 * erval E-value 213 1.29e-17
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Rx_N Rx_N Rx_N Rx_N Superfanilies Rx_N Accession Description Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain; This entry represents the N-terminal domain found in many plants 1-	E-value 7.62e-08 * erval E-value 213 1.29e-17 8-663 1.78e-10
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits RX Participation Interval ID Name Accession Description Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits RX RX Addition Superfamily ID Name Accession Description Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain; This entry represents the N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits RX RX Addition ID Name Accession Description Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain; This entry represents the N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448 RF +3 Superfamilies Ne-sec 500 750 100	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Remotive and the super family 200 310 400 500 RF +1 Remotive and the super family 200 310 400 500 RF +1 Remotive and the super family RX 400 500 500 RF +1 RX_CC_like super family RX N-terminal domain; This entry represents the N-terminal domain found in many plants 1- Cc00_g35420_Cc Rx_N pfam18052 RX N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448 RF +3 Superfamilies NB-ARC super family 510 700 100 ID Name Accession Description Interval	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Renoffic hits Rx Rx Rx Me-sec ID Name Accession Description Interval ID Name Accession Description Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain; This entry represents the N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448 RF +3 Superfamilies Ne-sec 510 - ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 FF +1 Specific hits Rx_N Rx_N Rx_N Rx_N ID Name Accession Description Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain; This entry represents the N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448 RF +3 Superfamilies NB-ARC super family cl26397 ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455	E-value 7.62e-08 4 erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1552
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 FF +1 Specific hits Rx_N State of the state of th	Z-Value 7.62e-08 * * 213 1.29e-17 3-663 1.78e-10 * * * *
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 FF +1 Specific hits Rx_N State of the state of th	Image: Product of the second secon
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits RX_N Particle Superfamilies RX_N Superfamilies ID Name Accession Description Interval Cc00_g35420_Cc RX_N pfam18052 RX N-terminal domain; This entry represents the N-terminal domain found in many plants 1-terval NB-ARC super family cl26397 NB-ARC domain 448 RF +3 NB-ARC super family cl26397 NB-ARC domain 448 RF +1 NB-ARC super family cl26397 NB-ARC domain 448 ID Name Accession Description Interval ID Name Accession Description 1-terval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies Ne-aec 975 <t< td=""><td>E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1052 E-value</td></t<>	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1052 E-value
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 FF +1 Specific hits RX Particle Superfamilies RX Superfamilies Ne-mec ID Name Accession Description Interval Cc00_g35420_Cc RX_N pfam18052 RX N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448 FF +3 Superfamilies NB-ARC super family cl26397 NB-ARC domain 448 RF +3 Superfamilies NB-ARC super family cl26397 NB-ARC domain 448 RF +1 Superfamilies NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies NB-ARC sup	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1052 E-value 9.82e-07
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 FF +1 Specific hits RX Particle Superfamilies RX Particle ID Name Accession Description Interval Cc00_g35420_Cc RX_N pfam18052 RX N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448 RF +3 Superfamilies NB-ARC super family cl26397 NB-ARC domain 448 RF +3 Superfamilies NB-ARC super family cl26397 NB-ARC domain 448 RF +4 Superfamilies NB-ARC super family cl26397 NB-ARC domain 150-455 ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies NB-ARC super family cl26397 NB-ARC domain 55-525 <	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1052 E-value 9.82e-07
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits Super families RX.N RX.N RX.N ID Name Accession Description Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain; This entry represents the N-terminal domain found in many plants 1- Super families NB-ARC super family cl26397 NB-ARC domain 448 RF +3 Super families Ne-MC 540 750 10 ID Name Accession Description Interval ID Name Accession Description 1- Super families NB-ARC super family cl26397 NB-ARC domain 150-455 ID Name Accession Description Interval ID Name Accession Description Interval ID Name Accession Description Interval Super families NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Super familie	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1052 E-value 9.82e-07
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 Ff +1 Specific hits Superfamilies RX_N RX_N RX_N RX_N Description Interval ID Name Accession Description Interval Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain; This entry represents the N-terminal domain found in many plants 1448 Superfamilies NB-ARC super family cl26397 NB-ARC domain 448 Ff +3 Superfamilies Name Accession Description Interval ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies Ne-Rec 540 540 540 750 400 ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455 ID Name Accession Description Interval LOC113766771_Ce NB-ARC super family cl26397 NB-ARC domain 5	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 Image: state st
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 KF +1 Specific hits Superfamilies Str. N RX_N Path 100 ID Name Accession Description Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain found in many plants 14 KF +3 Superfamilies Me-MC State 10 10 KF +4 Superfamilies Me-MC State 10 10 KF +1 Superfamilies Me-MC State 10 10 KF +1 Superfamilies Me-MC State 10 10 KF +1 Superfamilies Me-MC State 10 10 NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies Me-MC State 10 10 NB-ARC super family cl26397 NB-ARC domain 150-455 KF +1 Superfamilies Me-MC State 10 10 NB-ARC super family cl26397 NB-ARC domain	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 Image: state st
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 Ff +1 Specific hits Rx_CC_1ike superfamily cl26397 NB-ARC domain 109-360 ID Name Accession Description Interval ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448 Ff +3 Superfamilies NB-ARC super family cl26397 NB-ARC domain 1449 ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455 Rf +1 125 259 576 58 625 78 79 <td>E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 ** • 9.82e-07 *128</td>	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 ** • 9.82e-07 *128
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits RX_N Particle RX_N Particle ID Name Accession Description Interval Cc00_g35420_Cc RX_N pfam18052 RX N-terminal domain found in many plants 1- Cc00_g35420_Cc RX_N pfam18052 RX N-terminal domain found in many plants 1- ID NB-ARC super family cl26397 NB-ARC domain 448 RF +3 Superfamilies NB-ARC super family cl26397 NB-ARC domain 1448 ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455 FF +1 Superfamilies NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 125 25% 56% 66% 77% 77% 77% 77% ID Name Accession Description Interval 150-455 Superfamilies NB-ARC super family cl26397 NB-ARC domain 55-525 RF +1 100<	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 * 1.53e-11 * 9.82e-07 * 128 * 1.990-11
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits RX_N RX_N Specific hits Specific hits Specific hits Specific hits NB-ARC super family Addition Specific hits Specific hits Specific hits NB-ARC super family Interval Interval Specific hits Specif hits Specific hits Specif hits <td>E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 * 1.53e-11 * 9.82e-07 * 1.53e-11 * 9.82e-07 * 9.69e-11</td>	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 * 1.53e-11 * 9.82e-07 * 1.53e-11 * 9.82e-07 * 9.69e-11
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 RF +1 Specific hits RX_N RX_N Specific hits Specific	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1052 E-value 9.82e-07 01200 E-value 9.69e-11 00 40
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 FF +1 Specific hits FK N FK N FK N FK N Superfamilies FK N FK N FK N FK N ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain; This entry represents the N-terminal domain found in many plants 1- Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain found in many plants 1- MB-ARC super family cl26397 NB-ARC domain 448 FF +3 Superfamilies FK +4 510 510 10 ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455 ID Name Accession Description Interval LOC113766717_Ce NB-ARC super family cl26397 NB-ARC domain 55-525 ID Name Accession Description Interval LOC113766771_Ce NB-ARC super family cl26397 NB-ARC domain 55-525 ID	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1052 E-value 9.82e-07 0120 E-value 9.69e-11 00 4524 NB-R
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 FF +1 Specific hits Rx_N Ff +1 Ff +1 Ff +1 Ff +1 Super families Rx_N pf am18052 Rx N-terminal domain; This entry represents the N-terminal domain found in many plants 11- Cc00_g35420_Cc Rx_N pf am18052 Rx N-terminal domain found in many plants 14- Super families NB-ARC super family cl26397 NB-ARC domain 1445 Super families Ff +3 Ff +3 Ff +4 Ff +4 Ff +4 Super families NB-ARC super family cl26397 NB-ARC domain 150-455 Ff +1 Super families NB-ARC super family cl26397 NB-ARC domain 55-525 Ff +1 Super families NB-ARC super family cl26397 NB-ARC domain 55-525 Ff +1 NB-ARC super family cl26397 NB-ARC domain 55-525 Ff +1 Name Accession Description Interval LOC113766771_Ce NB-ARC super family cl26397 NB-ARC domain 637-1326 Super families Name Accession Description In	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1052 E-value 9.82e-07 8128 E-value 9.69e-11 00 4824 105-8
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 F +1 Specific hits RK_N RK_N RK_N 109-360 ID Name Accession Description Interval IC RK_N RK_N RK_N Interval 109-360 ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain found in many plants 1- NB-ARC super family cl26397 NB-ARC domain 448 Superfamilies Name Accession Description Interval ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455 RF +1 Superfamilies N=-MeC Superfamilies 10- 10- ID Name Accession Description Interval LOC113766771_Ce NB-ARC super family cl26397 NB-ARC domain 55-525 RF +1 Superfamilies Superfamilies Superfamilies 10- ID Name Accession Descri	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1052 E-value 9.82e-07 0120 E-value 9.69e-11 00 4824 MB-R
ID Name Accession Description Interval Cc00_g21910_C NB-ARC super family cl26397 NB-ARC domain 109-360 Ff +1 Specific hits Rx_N Pfam18052 Rx_N Pfam18052 ID Name Accession Description Interval Cc00_g35420_Cc Rx_N pfam18052 Rx N-terminal domain, This entry represents the N-terminal domain found in many plants 14 Superfamilies NB-ARC super family cl26397 NB-ARC domain 448 Ff +3 Superfamilies NB-ARC super family cl26397 NB-ARC domain 14 ID Name Accession Description Interval LOC113766615_Ce NB-ARC super family cl26397 NB-ARC domain 150-455 Rf +1 Superfamilies Name Accession Description Interval LOC113766771_Ce NB-ARC super family cl26397 NB-ARC domain 55-52 Superfamilies Name Accession Description Interval LOC113766771_Ce NB-ARC super family cl26397 NB-ARC domain 55-52 Superfamilies Superfamilies Superfamilies Superfamilies Superfamilies Superfamilies Superfamilie	E-value 7.62e-08 * erval E-value 213 1.29e-17 3-663 1.78e-10 1236 E-value 1.53e-11 00 1852 E-value 9.82e-07 8128 E-value 9.69e-11 00 4824 MB-R E-value 2.22e-14
ID Name Accession Description Interval Cc00_g21910_Cc NB-ARC super family cl26397 NB-ARC domain 109-360 ##### ####################################	E-value 7.62e-08 *
ID Name Accession Description Interval Cc00_g21910_C NB-ARC super family cl26397 NB-ARC domain 109-360 #**1 Specific hits Bearth and a superfamily	E-value 7.62e-08 * erval E-value 213 1.29e-17 i-663 1.78e-10 * 1.53e-11 * 9.82e-07 * 9.69e-11 * 9.69e-11 * 9.69e-11 * 2.22e-14 1.58e-10

388 444

Supplementary Figure 1. Conserved domains analysis for genes not found by the NLRannotator in the coffee genomes. For the analysis, nucleotide sequences were used. The table shows the list of domain hits found for each of the sequences. The conserved domains were detected using NCBI Conserved Domain Database and the graphical summary was set to concise view. If the alignment omitted more than 20% of the either the N- or C-terminus or both, the partial nature of the hit is indicated in the graphical display as domain with jagged edges. At the end of each ID, the source genome is identified, Ca: C. arabica, Cc: C. eugenioides and Ce: C. eugenioides. RF: reading frame.

t		1000	2000	3000	4000	5000		5000 6484		
RF +1 Superfamilies	NB-ARC									
1		1000	2000	3000	4000	5000		5000 6484		
RF +2										
Superfa n ilies	NB									
ŧ		1000	2000	3000	4000	5000		5000 6484		
RF +3					act	ive site 🗛 🗛	Ą			
Specific hits				N 9 N	KNH/DNH NYDrid bind	ng site RNase_				
Superfa n ilies			Retro	999_P transpo	RVT_2	RNase_H_	1			
	I .		Chr_4e	c_nlr_22_Ca partial			- 1			
NB-ARC super fa	mily cl2	ession 6397		Description NB-ARC domai	n	I	nterval	E-value		
NB-ARC super fa	mily cl2	26397		NB-ARC domai	n	1	94-457	4.21e-12		
RNase_HI_RT_7	Fy1 cd0	09272	Ty1/Copia family	of RNase HI in long-t	term repeat retroelemen	ts 49	65-5378	2.30e-60		
RVT_2 super fan	nily cl0	6662	Reverse transc	riptase (RNA-depende	ent DNA polymerase)	39	78-4682	8.87e-51		
Retrotran_gag_2 supe	er family cl2	6047	gag-polypeptide of LTR	copia-type; This fam	ily is found in Plants an	d fungi 17	79-2075	5.08e-16		
Transpos_IS481 supe	r family cl4	1329	<u></u>	29	34-3404	3.45e-12				
Gag_pre-integr	rs pfan	n13976	GAG-pre-integrase don	nain; This domain is fo insertion elemen	ound associated with ret	roviral 26	70-2885	3.14e-11		
1		2000	4000	1	10000					
RF +2							NB-			
Super Fullities										
Ł		2000	4000	6000	8000	1	0000	12212		
RF +3					F0 / 🗮					
Superfamilies				FI	AD_6 BB					
· · · · · · · · · · · · · · · · · · ·			Chr 3c nlr 4	4 Ca complete (pseu	idogene)					
Name	Accessio	n		Description	luogene)		Interval	E-value		
NB-ARC super fam	ily cl26397	'			10199-1058	5 2.48e-10				
FAD_binding_4	pfam0156	55 FAD bi	nding domain; This fan	as a co-factor	6453-6872	5.37e-19				
BBE	pfam0803	31 Berber	rine and berberine like;	This domain is found	in the berberine bridge a	and berberine	7632-7805	5.77e-14		
		1500	3000	4500 0	6000 7500		000	10500 10908		
RF +1								10300 10900		
Specific hits	TIR									
Superfamilies TI	R su									
1		1500	3000	4500 6	6000 7500	9		10500 10908		
RF +2 Superfamilies										
•			FHY3							
1	1	15,00	3000	45,00 6	6000 7500	9	10,00	10500 10908		
RF +3										
Supert anilies				FHY3						
PE _2	1	1500	3000	4500 6	6000 7500	9		10500 10908		
Superfamilies										
				18 Connential (near	dogono)					
			Chr_10c_nlr	<u>10_Ca pa</u> ruai (pseu	uogene)					
Name	Accession		Chr_10c_nlr	_18_Ca partial (pseu Description]	Interval	E-value		
Name TIR	Accession pfam01582		Chr_10c_nlr TIR domain; T	<u>Description</u> The Toll/interleukin-1 1	receptor (TIR)]	Interval 4-450	E-value 1.05e-54		
Name TIR FHY3 super family	Accession pfam01582 cl31971		Chr_10c_nlr TIR domain; T Protein FAR-R	<u>Description</u> The Toll/interleukin-1 I ED ELONGATED HY	receptor (TIR) YPOCOTYL 3	35	Interval 4-450 598-3861	E-value 1.05e-54 5.24e-22		
Name TIR FHY3 super family FAR1 super family	Accession pfam01582 cl31971 cl40636		TIR domain; T Protein FAR-R FAI	<u>Description</u> The Toll/interleukin-1 1 ED ELONGATED HY R1 DNA-binding dom	receptor (TIR) YPOCOTYL 3 ain	33	Interval 4-450 598-3861 074-3334	E-value 1.05e-54 5.24e-22 1.24e-19		
Name TIR FHY3 super family FAR1 super family FHY3 super family	Accession pfam01582 cl31971 cl40636 cl31971 cl31971		Chr_10c_nlr TIR domain; T Protein FAR-R FAI Protein FAR-R	Description The Toll/interleukin-1 r ED ELONGATED HY R1 DNA-binding dom ED ELONGATED HY	receptor (TIR) YPOCOTYL 3 ain YPOCOTYL 3 VPOCOTYL 3	3: 3(2) 2)	Interval 4-450 598-3861 074-3334 936-3610 861-5096	E-value 1.05e-54 5.24e-22 1.24e-19 7.11e-17 1.62e.62		
Name TIR FHY3 super family FAR1 super family FHY3 super family FHY3 super family PH-like super family	Accession pfam01582 cl31971 cl40636 cl31971 cl31971 v cl17171	Pleck	Chr_10c_nlr TIR domain; T Protein FAR-R FAI Protein FAR-R Protein FAR-R strin homology-like dou	<u>Description</u> The Toll/interleukin-1 r ED ELONGATED H ^V R1 DNA-binding dom ED ELONGATED H ^V ED ELONGATED H ^V ED ELONGATED H ^V main: The PH-like fan	receptor (TIR) YPOCOTYL 3 ain YPOCOTYL 3 YPOCOTYL 3 YPOCOTYL 3 njlv includes the PH dor	33 30 29 38 nain 90	Interval 4-450 598-3861 074-3334 936-3610 361-5096 019-9207	E-value 1.05e-54 5.24e-22 1.24e-19 7.11e-17 1.62e-62 4.83e-08		

	1				15	500				3	000				45	500			6	000				- 75	500			90	0.0	987	2
		1	1	1	1		1	1	1	1		1	1	1	1		1	1	1		1	1	1	1		1	1		1		
DC 13																															

KF #.1				
		active site 🔥 🔥 🔥		
		RNA/DNA hybrid binding site		
Specific hits		RNa		
Superfamilies	NB	9a RVT_2 RNase_		
		Chr_8c_nlr_13_Ca complete (pseudogene)		
Name	Accession	Description	Interval	E-value
RVT_2 super family	c106662	Reverse transcriptase (RNA-dependent DNA polymerase)	6069-6800	2.16e-76

	0007272 1	yl/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H (RNase H)	7053-7469	3.08e-74
Gag_pre-integrs	pfam13976 G	AG-pre-integrase domain; This domain is found associated with retroviral insertion elements	4710-4874	1.19e-08
NB-ARC super family	cl26397	NB-ARC domain;	309-554	2.54e-06
RF +2	1000 	2000 3000 4000 5000 inhibitor binding site AAA catalytic motif Catalytic residue A Rative site flap A	6000 	6972
Specific hits		retro		
Superfamilies		R pepsi		
RF +3	, , , ¹⁰⁰⁰	2000 3000 4000 5000 Putative nucleic acid binding site A Putative NTP binding site A MT_TT	6000	6972
Superfamilies		RT like		
		Chr_11c_nlr_73_Ca partial (pseudogene)		
Name	Accession	Chr_11c_nlr_73_Ca partial (pseudogene) Description	Interval	E-value
Name Retropepsin_like	Accession cd00303	Chr_11c_nlr_73_Ca partial (pseudogene) Description Retropepsins; pepsin-like aspartate proteases	Interval 4346-4606	E-value 5.67e-11
Name Retropepsin_like Retrotrans_gag super family	Accession cd00303 cl29674	Chr_11c_nlr_73_Ca partial (pseudogene) Description Retropepsins; pepsin-like aspartate proteases Retrotransposon gag protein; Gag or Capsid-like proteins from LTR retrotransposons	Interval 4346-4606 3542-3745	E-value 5.67e-11 1.56e-07
Name Retropepsin_like Retrotrans_gag super family RT_LTR	Accession cd00303 cl29674 cd01647	Chr_11c_nlr_73_Ca partial (pseudogene) Description Retropepsins; pepsin-like aspartate proteases Retrotransposon gag protein; Gag or Capsid-like proteins from LTR retrotransposons RT_LTR: Reverse transcriptases (RTs)	Interval 4346-4606 3542-3745 5256-5597	E-value 5.67e-11 1.56e-07 2.09e-40

RF +3	1	500	1000	1500	2000	2500	3000	3500	4000	4500 4688
Superfamilies										NB-ARC
	t	500	1000	1500	2000	2500	3000	3500	4000	4500 4688
RF -2 RNA/DNA hybri	id binding site									
Specific hits		RNase_HI_R								
Superfamilies		RNase_H_like		RVT_2						
	4	500	1000	1500	2000	25.0.0	3000	3500	4000	4500 4688

RE -3	500	1000 1500	2000	2500	3000 35	00	4000	4500 4688						
Specific hits					r _{ga} 1									
Superfamilies					949_P									
Chr_6e_nlr_10_Ca partial (pseudogene)														
Name	Accession		Descript	tion			Interval	E-value						
RX-CC_like	cd14798	Coiled-coil domain	of the potato virus X r	esistance protein	and similar protein	IS	1-273	3.80e-15						
NB-ARC super family	cl26397		NB-ARC d	omain			4176-4685	2.49e-12						
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family of RNas	e HI in long-term repe	at retroelements;	Ribonuclease H (R	Nase H)	386-802	4.93e-78						
RVT_2 super family	c106662	Reverse	transcriptase (RNA-de	pendent DNA pol	ymerase)		1055-1786	1.73e-68						
Gag_pre-integrs	pfam13976	GAG-pre-integrase domain	; This domain is found	associated with r	etroviral insertion	elements	2965-3132	1.08e-06						

ŧ.,	1500	3000	4500	6000	7500	9000	10304					
RF +1												
Specific hits 😑												
Superfamilies RX-												
ŧ.,	1500	3000	4500	6000	7500	9000	10304					
RF -3												
Specific bits	·14 Dinding site											
		RN										
Superfamilies		RNase RVT_2	t ga									
		Chr_1e_nl	r_61_Ca complete (pseudogene)								
Name	Accession		Descrip	otion		Interval	E-value					
Rx_N	pfam18052	This entry represents th	ne N-terminal domai	n found in many pla	nt resistance proteins	1-243	9.30e-08					
RVT_2 super family	c106662	Reverse ti	ranscriptase (RNA-d	ependent DNA poly	nerase)	2365-3102	1.26e-70					
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family of RNas	e HI in long-term rep	beat retroelements; F	ibonuclease H (RNase H)	1678-2091	3.28e-64					
Transpos_IS481 super family	cl41329		IS481 family transposase									
Gag_pre-integrs	pfam13976	GAG-pre-integrase don	4222-4410 1.42e-									

RF +1 Superfamilies	1000 1	2000 30	00 4000	5000	6000	· · · · · ·	7000 7540
RF +2	1000	2000 300	00 4000	5000 active s NA/DNA hybrid binding s	6000 ite	, , , , ⁷	7000 7540
Specific hits		Re			RNase		
Superfamilies		Re	gag transp	RVT_2	RNase_H_		
RF +3 Superfamilies	1000 NB-ARC		00 4000	5000	6000		2000 7540
		Chr_11e_nlr_43_0	Ca complete (pseudoger	ene)			
Name	Accession		Description			Interval	E-value
RX-CC_like super family	c136576	Coiled-coil domain of the p	otato virus X resistance	protein and similar p	roteins	1-249	9.15e-09
RVT_2 super family	c106662	Reverse transcrip	otase (RNA-dependent D	ONA polymerase)		4622-5350	3.81e-78
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family of RNase HI in	1 long-term repeat retroel H)	lements; Ribonucleas	se H (RNase	5600-6019	4.36e-77
Retrotran_gag_3	pfam14244	gag-polypeptide of LTR co	opia-type; This family is	s found in Plants and	fungi	1814-1954	4.42e-15
Transpos_IS481 super family	cl41329	I	IS481 family transposase	e		3431-3889	2.46e-10
		GAG-pre-integrase domain: Th	his domain is found asso	ciated with retroviral	insertion	2101 2282	1.51-09
Gag_pre-integrs	pfam13976		elements			5191-5582	1.51e-08

	t i		a 1		1.0	1 C	. 1	100 L			 ĩĩ.		, T	ï"		÷	. č	Ϊ	÷ .	÷	1.1	1.1	Ϋ́Υ.	1.0	1.1	 . í	 đΤ
RF -2																											
Superfamilies							R	/T_	2						X	Retr											

Chr_10e_nlr_2_Ca complete (pseudogene)													
Name	Accession	Description	Interval	E-value									
NB-ARC super family	cl26397	NB-ARC domain	5896-6600	5.29e-44									
RX-CC_like	cd14798	Coiled-coil domain of the potato virus X resistance protein and similar proteins	1-225	1.03e-16									
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H (RNase H)	993-1400	8.74e-66									
Gag_pre-integrs	pfam13976	GAG-pre-integrase domain; This domain is found associated with retroviral insertion elements	3534-3746	6.29e-12									
Transpos_IS481 super family	cl41329	IS481 family transposase	3012-3482	7.08e-11									
RVT_2 super family	c106662	Reverse transcriptase (RNA-dependent DNA polymerase)	1679-2419	1.18e-48									
Retrotran_gag_2 super	c126047	gag-polypeptide of LTR copia-type; This family is found in Plants and fungi	4460-4741	2.61e-09									

PF -9	ŧ			250				500			750			1000			1250			1500		_	_	1750
	RNA/1	DNA h	ybrid	l bind	ling :	site	Δ.		A			L												_

	KAH/UAH NYDr	id binding site											
Specific hits		RNase_HI_RT_Ty1											
Superfamilies		RNase_H_like superfamily	RVT_2										
chr0_nlr_300_Cc partial (pseudogene)													
Name	Accession	Des	scription	Interval	E-value								
RNase_HI_RT_Ty1	RNase_HI_RT_Ty1 cd09272 Ty1/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H (RNase H)												
RVT_2 super family	1041-1529	4.39e-47											

RF +1	000 200 1 1 1 1 1	00 3000 4000 inhibitor binding s Active site	5000 6	000 7000	8000	9000 10000	11156							
Specific hits (RX) Superfamilies (RX-CC) NB-AR			peps			NB-A								
	chr8_nlr_26_Cc complete (pseudogene)													
Name	Accession		Description			Interval	E-value							
NB-ARC super family	cl26397		NB-ARC domai	in		427-801	1.88e-22							
NB-ARC super family	cl26397		NB-ARC domai	in		9502-9828	2.21e-15							
RX-CC_like	cd14798	cd14798 Coiled-coil domain of the potato virus X resistance protein and similar proteins 4.												
---	--	---	-------------	------------	--	--	--	--						
Retropepsin_like	cd00303	Retropepsins; pepsin-like aspartate proteases; The family includes pepsin-like aspartate proteases from retroviruses, retrotransposons and retroelements	4612-4851	3.61e-06										
RF +1	1000	2000	9000	1000010224										
Specific hits RX Superfamilies RX-cc NB-	ARC	RVT_2												
RF +3	1000	2000 3000 4000 5000 6000 7000 8000	9000	1000010224										
Specific hits														
Superfamilies		srans_												
		chr7_nlr_33_Cc complete (pseudogene)												
Name	Accession	Description	Interval	E-value										
RVT_2 super family	cl06662	Reverse transcriptase (RNA-dependent DNA polymerase)	5992-6726	3.87e-67										
NB-ARC super family	cl26397	NB-ARC domain	403-1068	1.85e-50										
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H (RNase H) 7000-7149	1.94e-19										
RX-CC like	cd14798	Coiled-coil domain of the potato virus X resistance protein and similar proteins	1-261	1.47e-11										
Transpos_IS481 super family	cl41329	IS481 family transposase	4848-5276	1.29e-14										
Gag_pre-integrs	Gag_pre-integrs pfam13976 GAG-pre-integrase domain; This domain is found associated with retroviral insertion elements													
RF +1	1000	2000 3000 4000 5000 60)00 	7000 7456										
sheetite utes		1.34												

Superfamilies	NB		949_P	P transpos_			
DF 10	t	1000	2000	3000	4000 500	0	7000 74
KF 72					active site 🛓 RNA/DNA hybrid binding site 🛕		
Specific hits						RNase_HI	
Superfamilies	NB-A	Retr	rotran_g		RN	ase_H_lik	
BE 10	1	1000	2000	3000	4000 500	0	7000 74

Superfamilies		RVT_2							
	chr4_nlr_22 Cc complete								
Name	Accession	Description	Interval	E-value					
Transpos_IS481 super family	cl41329	IS481 family transposase	2935-3393	1.65e-13					
Gag_pre-integrs pfam1397		GAG-pre-integrase domain; This domain is found associated with retroviral insertion elements	2671-2886	4.35e-11					
NB-ARC super family	cl26397	NB-ARC domain	1-147	8.67e-07					
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H	4964-5377	1.25e-52					
Retrotran_gag_2 super family	cl26047	gag-polypeptide of LTR copia-type; This family is found in Plants and fungi	1664-2068	6.38e-22					
NB-ARC super family	cl26397	NB-ARC domain	194-457	4.89e-12					
RVT 2 super family	c106662	Reverse transcriptase (RNA-dependent DNA polymerase)	3978-4631	7.19e-46					

RF +1	1000	2000	5000 6000	7000	8000	9172
RF +2 Specific hits	1000	2000 3000 4000 	5000 6000	7000	8000	9172
Superfamilies	1000	2000 3000 4000	RNase_H N	7000	8000	9172
Specific hits Superfamilies		Retrotra Retrotra	RVT_2			
		Chr_5_nlr_92_Ce	complete			
Name	Accession	De	scription		Interval	E-value
RX-CC_like super family	cl36576	Coiled-coil domain of the potato viru	is X resistance protein and simi	lar proteins	1-165	1.40e-07
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family of RNase HI in long	-term repeat retroelements; Rib	onuclease H	5450-5752	1.79e-44
NB-ARC super family	cl26397	NB-ARC domain				1.40e-26
Gag_pre-integrs	pfam13976	GAG-pre-integrase domain; This domain is found associated with retroviral insertion elements				8.44e-13
NB-ARC super family	cl26397	NB-ARC domain				5.76e-09
RVT_2 super family	c106662	Reverse transcriptase (RN	A-dependent DNA polymerase)	4332-5072	3.19e-69
Retrotran_gag_2	pfam14223	gag-polypeptide of LTR copia-type	; This family is found in Plants	and fungi	2022-2381	3.58e-31
RNase_H_like super	cl14782	Ribonuclease H-like superfamily, inclu	ding RNase H, HI, HII, HIII, ar main IV	nd RNase-like	5343-5444	2.92e-08

1 1000 2000 3000 4000 5000 5000	6000	7000 7308
RF 11		
Sportanilis ave		
1 1000 2000 3000 4000 5000 	6000	7000 7308
Kr + 3 Superfamilies	NB-ARC	
1 1000 2000 3000 4000 5000 	6000	7000 7308
RNC-1 RNR/RNR hybrid binding site		
Specific hits Press, HT (12)		
1 1999 2009 3009 4000 5009	6000	7000 7308
RF-3 Strangf-and S		
Chr_10_nlr_19_Ce complete (pseudogene)		1
Name Accession Description	Interval	E-value
RX-CC_like cd14798 Coiled-coil domain of the potato virus X resistance protein and similar proteins; The potato	1-225	8.90e-19
NB-ARC super family cl26397 NB-ARC domain	5955-6662	2.74e-43
RNase_HI_RT_Ty1 cd09272 Ty1/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H	986-1399	1.04e-62
RVT_2 super family cl06662 Reverse transcriptase (RNA-dependent DNA polymerase)	1823-2422	1.44e-40
Gag_pre-integrs pfam13976 GAG-pre-integrase domain; This domain is found associated with retroviral insertion elements	3602-3796	2.47e-09
Retrotran_gag_2 super family cl26047 gag-polypeptide of LTR copia-type; This family is found in Plants and fungi	4407-4730	2.75e-10
1 1000 2000 3000 4000 5000 6000 7000 1 1000 2000 1000 1000 1000 1000 1000	8000	9000 9496
Kr +1 Specific hits (Pr)		
Superfanilies 👷 🚾		
PF -1 1000 2000 3000 4400 5000 6600 7000	8000	9000 9496
BNR/DNR hybrid binding strange		
Superfaulties Page H PUT 2		
1 1000 2000 3000 4000 5000 6000 7000 PE-0	8000	9000 9496
Specific hits		
Superfanilies tran 999_		
Chr. 1 plr. 53 Ce complete (pseudogene)		
Name Accession Description	Interval	E-value
Rx N pfam18052 This entry represents the N-terminal domain found in many plant resistance protein	s 1-243	8.01e-10
RVT 2 super family cl06662 Reverse transcriptase (RNA-dependent DNA polymerase)	2363-3100	2.71e-68
RNase_HI_RT_Ty1 cd09272 Ty1/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H	1676-2089	1.39e-64
Retrotran_gag_2 super family cl26047 gag-polypeptide of LTR copia-type; This family is found in Plants and fungi	5228-5365	4.61e-07
Transpos_IS481 super family transposase	3826-4164	1.06e-15
lanny	-	1.000-15

Ivanic	Accession	Description	mucival	L-value
Rx_N	pfam18052	This entry represents the N-terminal domain found in many plant resistance proteins		1.00e-16
NB-ARC super family	cl26397	NB-ARC domain	6167-6631	6.51e-24
RVT_2 super family	c106662	Reverse transcriptase (RNA-dependent DNA polymerase)	2062-2802	1.81e-65
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H	1381-1791	2.54e-57

Retrotran_gag_2 super family	c126047	gag-polypeptide of LTR copia-type; This family is found in Plants and fungi	4744-5106	2.87e-22
Transpos_IS481 super family	cl41329	IS481 family transposase	3507-3848	3.91e-10
gag_pre-integrs	pfam13976	GAG-pre-integrase domain; This domain is found associated with retroviral insertion elements	3923-4126	4.06e-13

RF -3

Specific hits		RNase_HI_RT_Ty1					
Superfamilies		RNase_H_like superfamily	RVT_2				
Chr_8_nlr_67_Ce partial (pseudogene)							
Name	Accession	Description	Interval	E-value			
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H (RNase H)	1224-1649	7.59e-41			
RVT_2 super family	cl06662	Reverse transcriptase (RNA-dependent DNA polymerase)	1920-2345	8.89e-26			

RF +1	1000	2000	3000	4000	5000 leucine- leucin	6000 rich repeat⊙ e-rich repeat⊙	7144
Specific hits	Ret	trotrana			leuc	ine-rich repeat 🔿	
Superfamilies NB-ARC	Ret	trotran_g gag_p	transpos I	RVT 2	RNase	LRR	
RF +3 Specific hits Superfamilies	1000	2000	, 3000	4000 RUT_2	5000 RN RNsse	6000 , , , ,	7144
		Chr_11_	_nlr_129_Ce part	tial (pseudogene)			
Name	Accession		D	Description		Interval	E-value
RVT_2 super family	c106662	Revers	e transcriptase (R	NA-dependent DNA p	olymerase)	3721-4095	1.01e-43
Retrotran_gag_2	pfam14223	gag-polypeptide	of LTR copia-typ	pe; This family is found	l in Plants and fungi	1429-1815	2.51e-29
NB-ARC super family	cl26397		NB-	ARC domain		1-438	5.97e-26
RNase_HI_RT_Ty1	cd09272	Ty1/Copia family	Ty1/Copia family of RNase HI in long-term repeat retroelements; Ribonuclease H 4972-5169				
Transpos_IS481 super family	cl41329		IS481 fa	amily transposase		2674-3144	4.64e-18
Gag_pre-integrs	pfam13976	GAG-pre-integrase domain; This domain is found associated with retroviral insertion 2431-2622 5.34					5.34e-10
LRR super family	-124026	Leucine-rich repeat (LRR) protein [Transcription] 6277-6747 2.28					2 280 07
LICK super raining	CI34830	Le	ucine-rich repeat	(LRR) protein [Transci	iption	02//-0/4/	2.200-07

Supplementary Figure 2. Conserved domains analysis for loci from NLR-annotator that did not present homology to NLRs proteins by BLASTx analysis. For the analysis, nucleotide sequences were used. The table shows the list of domain hits found for each of the sequences and the domains related to NLR proteins are highlighted in green. The conserved domains were detected using NCBI Conserved Domain Database and the graphical summary was set to concise view. If the alignment omitted more than 20% of the either the n- or c-terminus or both, the partial nature of the hit is indicated in the graphical display as domain with jagged edges. At the end of each ID, the source genome is identified, Ca: *C. arabica*, Cc: *C. eugenioides* and Ce: *C. eugenioides*. RF: reading frame.

Reverse transcriptase (RNA-dependent DNA polymerase)

RVT_2 super family

cl06662

Supplementary Figure 3. chromosomal distribution of NLR loci in *C. arabica*. For more details, mouse-over the picture. To view the figure, access the link and download the HTML file: <u>https://ldrv.ms/u/s!As084N7W1XAIhqJVvP2MB4rLi6jQoQ?e=5aSbCP</u>

Supplementary Figure 4. chromosomal distribution of NLR loci in *C. canephora*. For more details, mouse-over the picture. To view the figure, access the link and download the HTML file: <u>https://ldrv.ms/u/s!As084N7WIXAIhqJVvP2MB4rLi6jQoQ?e=5aSbCP</u>

4095-4466

5.86e-23

Supplementary Figure 5. chromosomal distribution of NLR loci in *C. eugenioides*. For more details, mouse-over the picture. To view the figure, access the link and download the HTML file: <u>https://1drv.ms/u/s!As084N7W1XAIhqJVvP2MB4rLi6jQoQ?e=5aSbCP</u>

Supplementary Table 1. Motif from Jupe et al., 2012 and NB-ARC motif combinations from Steuernagel et al., 2020.

Motif Table from Jupe et al., 2012						
Motif	Sequence	Domain	Group	Similar to		
1	PIWGMGGVGKTTLARAVYNDP	NB-ARC	CNL/TNL	P-loop		
2	LKPCFLYCAIFPEDYMIDKNKLIWLWMAE	NB-ARC	CNL	RNBS-D		
3	CGGLPLAIKVWGGMLAGKQKT	NB-ARC	CNL/TNL	GLPL		
4	YLVVLDDVWDTDQWD	NB-ARC	CNL/TNL	Kin-2		
5	NGSRIIITTRNKHVANYMCT	NB-ARC	CNL/TNL	RNBS-B		
6	HFDCRAWVCVSQQYDMKKVLRDIIQQVGG	NB-ARC	CNL	RNBS-A		
7	CRMHDMMHDMCWYKAREQNFV	linker	CNL/TNL	MHDV		
8	MEDVGEYYFNELINRSMFQPI	linker	CNL/TNL	_		
9	LIHLRYLNLSGTNIKQLPASI	LRR1	CNL/TNL	Motif1 LDL		
10	LSHEESWQLFHQHAF	NB-ARC	CNL/TNL	RNBS-C		
11	MPNLETLDIHNCPNLEEIP	LRR	CNL/TNL	_		
12	IMPVLRLSYHHLPYH	NB-ARC	CNL/TNL	_		
13	QIVIPIFYDVDPSDVRHQTGSFGEAFWKHCSR	TIR	TNL	TIR-3		
14	AIKDIQEQLQKVADRRDRNKVFVPHPTRPIAIDPCLRALYAEATELVGIY	monocot				
15	KNYATSRWCLNELVKIMECKE	TIR	TNL	TIR-2		
16	DAAYDAEDVIDSFKYHA	pre-NB	CNL	EDVID		
17	FAIPKLGDFLTQEYYLHKGIKKEIEWLKRELEFMQA	pre-NB	CNL	-		
18	KYDVFLSFRGADTRRTFTSHLYEALKNRGINTF	TIR	TNL	TIR-1		
19	IKMVEITGYRGTRFPNWMGHPVYCNMVSISIRNCKNCSCLP	LRR	CNL/TNL	-		
20	ETSSFELMDLLGERWVPPVHLREFKSFMPSQLSALRGWIQRDPSHLSNLS	monocot	-	-		
	NB-ARC Motif Combinations from Steuern	agel, et al.	2020			
	1,6,4					
	1,4,5					
	6,4,5					
	5,10,3					
	10,3,12					
	3,12,2					
Consensus structure of an NLR From Steuernagel et al., 2020						
	17 16 1 6 4 5 10 3 12 2 8	7 9 1	1 19			
	Coiled Coil NB-ARC Link	(er L	RRs			
	EDVID P-loop RNBS-A Kin-2 RNBS-B RNBS-C GLPL RNBS-D	MHDV LDL				

Supplementary Table 2. Reference NLRs. All reference NRLs were obtained from the PRGDB. The reference NLRs highlighted in light blue and dark blue refer to NLRs that share orthogroups with coffee, according to table S10

Reference NLRs						
]	Plants			
PRGdb ID	Gene name	Class	Gene type	Species		
PRGDB130	Bs2	<u>CNL</u>	reference	Capsicum chacoense		
PRGDB138	Gpa2	<u>CNL</u>	<u>reference</u>	Solanum tuberosum		
PRGDB140	Hero	<u>CNL</u>	<u>reference</u>	Solanum lycopersicum		
PRGDB142	Mi1.2	<u>CNL</u>	reference	Solanum lycopersicum		
PRGDB146	R1	<u>CNL</u>	<u>reference</u>	Solanum demissum		
PRGDB148	Rpi-blb1	<u>CNL</u>	<u>reference</u>	<u>Solanum bulbocastanum</u>		
PRGDB1484	HRT	<u>CNL</u>	<u>reference</u>	<u>Arabidopsis thaliana</u>		
PRGDB1488	Pi-ta	<u>CNL</u>	<u>reference</u>	<u>Oryza sativa</u>		
PRGDB1489	RCY1	<u>CNL</u>	<u>reference</u>	<u>Arabidopsis thaliana</u>		
PRGDB149	Rpi-blb2	<u>CNL</u>	<u>reference</u>	<u>Solanum bulbocastanum</u>		
PRGDB1491	RPM1	<u>CNL</u>	<u>reference</u>	<u>Arabidopsis thaliana</u>		
PRGDB1492	RPP13	<u>CNL</u>	reference	Arabidopsis thaliana		
PRGDB1494	RPP8	<u>CNL</u>	reference	Arabidopsis thaliana		
PRGDB1495	Rps2	<u>CNL</u>	reference	Arabidopsis thaliana		
PRGDB1497	RPS5	<u>CNL</u>	reference	Arabidopsis thaliana		
PRGDB150	Rx	<u>CNL</u>	reference	Solanum tuberosum		
PRGDB150957	PIB	<u>CNL</u>	reference	<u>Oryza sativa</u>		
PRGDB150958	XA1	<u>CNL</u>	reference	<u>Oryza sativa</u>		
PRGDB151	Rx2	<u>CNL</u>	<u>reference</u>	Solanum acaule		
PRGDB153	Sw-5	<u>CNL</u>	<u>reference</u>	Solanum lycopersicum		
PRGDB154	Tm-2a	<u>CNL</u>	<u>reference</u>	Solanum lycopersicum		
PRGDB157	Tm-2	<u>CNL</u>	<u>reference</u>	Solanum lycopersicum		
PRGDB161432	MLA1	<u>CNL</u>	<u>reference</u>	Hordeum vulgare		
PRGDB161433	Mla6	<u>CNL</u>	<u>reference</u>	Hordeum vulgare subsp. vulgare		
PRGDB135725	MLA10	<u>CNL</u>	<u>reference</u>	Hordeum vulgare		
PRGDB161434	Mla12	<u>CNL</u>	reference	Hordeum vulgare subsp. vulgare		
PRGDB161435	MLA13	<u>CNL</u>	<u>reference</u>	Hordeum vulgare		
PRGDB161436	Pi36	<u>CNL</u>	reference	<u>Oryza sativa Indica Group</u>		
PRGDB161437	Rp1-D	<u>CNL</u>	<u>reference</u>	<u>Zea mays</u>		
PRGDB161438	Pm3	<u>CNL</u>	<u>reference</u>	Triticum aestivum		
PRGDB161439	Lr10	<u>CNL</u>	reference	Triticum aestivum		
PRGDB161440	P18	<u>CNL</u>	<u>reference</u>	Helianthus annuus		
PRGDB161442	Pi9	<u>CNL</u>	<u>reference</u>	<u>Oryza sativa Indica Group</u>		
PRGDB161443	Piz-t	<u>CNL</u>	reference	Oryza sativa Japonica Group		
PRGDB161444	Pi2	<u>CNL</u>	reference	Oryza sativa Indica Group		
PRGDB161446	Cre1	<u>CNL</u>	<u>reference</u>	Aegilops tauschii		
PRGDB161453	Pikm1-TS	<u>CNL</u>	reference	<u>Oryza sativa Japonica Group</u>		
RGDB161454	Pikm2-TS	<u>CNL</u>	reference	Oryza sativa Japonica Group		
PRGDB161456	Rdg2a	<u>CNL</u>	reference	Hordeum vulgare subsp. vulgare		
PRGDB161457	Pid3	CNL	reference	Oryza sativa Japonica Group		

PRGDB161458	Pi5-1	CNL	reference	Oryza sativa Japonica Group
PRGDB161459	Pi5-2	<u>CNL</u>	reference	Oryza sativa Japonica Group
PRGDB161460	Pit	<u>CNL</u>	<u>reference</u>	Oryza sativa Japonica Group
PRGDB161465	FOM-2	<u>CNL</u>	reference	Cucumis melo
PRGDB161468	Lr21	<u>CNL</u>	reference	Triticum aestivum
PRGDB161469	Lr1	<u>CNL</u>	reference	Triticum aestivum
PRGDB161471	VAT	<u>CNL</u>	reference	Cucumis melo
PRGDB145	Prf	<u>CNL</u>	reference	Solanum pimpinellifolium
PRGDB131	Bs4	<u>TNL</u>	reference	Solanum lycopersicum
PRGDB135724	P2	<u>TNL</u>	reference	Linum usitatissimum
PRGDB139	Gro1.4	<u>TNL</u>	reference	Solanum tuberosum
PRGDB1486	L6	TNL	reference	Linum usitatissimum
PRGDB1487	Μ	<u>TNL</u>	reference	Linum usitatissimum
PRGDB1493	RPP5	<u>TNL</u>	reference	Arabidopsis thaliana
PRGDB1496	Rps4	<u>TNL</u>	reference	Arabidopsis thaliana
PRGDB150959	RPP1	<u>TNL</u>	reference	Arabidopsis thaliana
PRGDB150960	RPP4	<u>TNL</u>	reference	Arabidopsis thaliana
PRGDB150963	RRS1	<u>TNL</u>	reference	Arabidopsis thaliana
PRGDB152	RY-1	TNL	reference	Solanum tuberosum subsp andigena
PRGDB161441	SSI4	<u>TNL</u>	reference	Arabidopsis thaliana
PRGDB161464	KR1	<u>TNL</u>	reference	Glycine max
PRGDB161467	RAC1	<u>TNL</u>	reference	Arabidopsis thaliana
PRGDB144	Ν	<u>TNL</u>	reference	Nicotiana glutinosa
PRGDB141	I-2	<u>NL</u>	<u>reference</u>	Solanum lycopersicum
PRGDB1500	Rps1-k-2	<u>NL</u>	<u>reference</u>	Glycine max
PRGDB1501	Rps1-k-1	<u>NL</u>	<u>reference</u>	Glycine max
PRGDB147	R3a	<u>NL</u>	<u>reference</u>	Solanum tuberosum
NCBI ID				Species
NP_001021202.1	CED-4	-	-	Caenorhabditis elegans

Supplementary Table 3. Txt output file from NLR-annotator analysis in the genomes of *C. arabica, C. canephora* and *C.eugenioides*. The NLR loci in the same genomic position that were identified as distinct NLRs by NLR-annotator are highlighted in blue. The complete loci that do not overlap with gene models from the reference genomes are highlighted in orange. Complete loci not identified by AUGUSTUS as putative genes are in red To view the table, access the link:

https://ldrv.ms/u/s!As084N7WIXAIhqJVvP2MB4rLi6jQoQ?e=5aSbCP

Supplementary Table 4. PfamScan analysis for the set of predicted proteins belonging to the NB-ARC family. The PfamSancan analysis highlighted in blue shows all the predicted NB-ARC domains for each of the proteins, which occurred once or more than once. The "description gene/protein" highlighted in purple shows each of the NLR proteins (including isoforms), their description, and the gene encoding it.

To view the table, access the link:

https://1drv.ms/u/s!As084N7WIXAIhqJVvP2MB4rLi6jQoQ?e=5aSbCP

Supplementary Table 5. Overlap analysis between NLR loci annotated by NLRannotator and NLR genes model annotated in each genome. Regions that have more than one overlap are highlighted in orange, and the ID of the genes or NLR-annotator locus that overlaps in more than one region is in bold. To view the table, access the link:

https://1drv.ms/u/s!As084N7W1XAIhqJVvP2MB4rLi6jQoQ?e=5aSbCP

Table S6. NLR-Parser analysis of gene models that did not overlap with loci from NLR-annotator. Genes classified as not found are highlighted in orange.

	C. arabica							
Chr	start	end	strand	Gene ID	Situation	Motif List - NLR-Parser		
1c	6512878	6523148	-	LOC113736959	without 3 consecutive NB-ARC associated motifs	16,1,6,10,3,2,8,9,9,11,9,11,11,11,11,11,11,11,11,11,9,11		
1c	7444225	7444668	+	LOC113737176	not found	N/A		
1e	3276674	3277597	-	LOC113688369	below the threshold	N/A		
1e	3750078	3754745	-	LOC113698956	without 3 consecutive NB-ARC associated motifs	16,1,6,10,3,2,2,8,9,9,11,9,11,11,11,11,11,11,11,11,11,9,11		
3c	35930310	35942468	+	LOC113735021	below the threshold	N/A		
3c	36025944	36044624	+	LOC113735022	without 3 consecutive NB-ARC associated motifs	4,11,18,1,10,3,2,9,11,9		
3c	36310659	36357338	+	LOC113735027	without 3 consecutive NB-ARC associated motifs	8,2,1,6,3,2,9,11,9,4		
3c	38706643	38707176	-	LOC113735982	not found	N/A		
3e	33116426	33117508	-	LOC113737673	below the threshold	N/A		
3e	33157516	33191039	+	LOC113736865	without 3 consecutive NB-ARC associated motifs	8,6,5,8,6,12,2,1,3,2,9,11,9,11		
3e	33416306	33417337	-	LOC113737677	below the threshold	N/A		
8e	5996662	5998340	-	LOC113704444	below the threshold	N/A		
8e	6113951	6115675	-	LOC113704447	without 3 consecutive NB-ARC associated motifs	11,9,11		
7e	1319762	1327541	+	LOC113701944	below the threshold	N/A		
8c	5007613	5009028	-	LOC113705702	below the threshold	N/A		
8c	5031746	5035876	-	LOC113705703	without 3 consecutive NB-ARC associated motifs	6,8,11,11,9,11,9,11,9,9,11,11,9,9,9,11,9,11,11		
8c	5292356	5297998	-	LOC113705523	without 3 consecutive NB-ARC associated motifs	1,11,9,11,9,11,9,9,9,11,11,9,9,9,11,9,11,11		
10c	12139259	12145211	-	LOC113714883	without 3 consecutive NB-ARC associated motifs	6,8,11,9,11,9,11,9,9,11,11,9,9,11,9,11,11,1		
					C.canephora			
Chr	start	end	strand	Gene ID	Situation	Motif List - NLR-Parser		
1	3052489	3076874	+	Cc01_g01770	without 3 consecutive NB-ARC associated motifs	17,15,1,4,9,9,11,11,11,11,11,11,11,11,11,11,11,11		
1	7030448	7034678	-	Cc01_g03240	without 3 consecutive NB-ARC associated motifs	16,1,6,10,3,2,8,9,9,11,9,11,11,11,11,11,11,11,11,11,11,		
2	10176400	10178449	+	Cc02_g12220	not found			
3	13384680	13386551	+	Cc03_g10360	not found			
3	26987218	26999539	+	Cc03_g13770	below the threshold	N/A		
3	27099395	27108875	+	Cc03_g13800	without 3 consecutive NB-ARC associated motifs	1,10,3,2,9,11,9		

5	21717343	21718097	+	Cc05_g06950	without 3 consecutive NB-ARC associated motifs	17,16,1
5	23644535	23650504	+	Cc05_g09100	without 3 consecutive NB-ARC associated motifs	1,10,11,9,11,9,9,9,11,9,11,11,9,9,11,9,11,11
7	2123155	2123892	+	Cc07_g03110	without 3 consecutive NB-ARC associated motifs	17,16,1
7	4004632	4008454	+	Cc07_g05700	below the threshold	N/A
7	16681864	16682166	+	Cc07_g18800	not found	
7	24709506	24714731	-	Cc07_g20750	below the threshold	N/A
8	2676910	2677614	-	Cc08_g02190	without 3 consecutive NB-ARC associated motifs	17,16,1
0	58890586	58894463	+	Cc00_g07290	without 3 consecutive NB-ARC associated motifs	17,16,1,6,19,8,7,9,9,11,10,11
0	84715359	84718639	-	Cc00_g10090	without 3 consecutive NB-ARC associated motifs	1,6,8,11,9,11,9,9,9,9,11,11,9,9,11,9,11
0	116040312	116043383	+	Cc00_g17360	without 3 consecutive NB-ARC associated motifs	17,1,10,3,2,9,11,9,11,11,11,11
0	138585790	138588278	-	Cc00_g21830	without 3 consecutive NB-ARC associated motifs	1,6,8,11,9,11,9,11,9,9,11,11,9
0	139277121	139277483	-	Cc00_g21910	not found	N/A
0	156558503	156559243	+	Cc00_g24980	without 3 consecutive NB-ARC associated motifs	17,16,1,6
0	165812081	165812791	+	Cc00_g26400	without 3 consecutive NB-ARC associated motifs	17,16,1,6
0	181282461	181283961	+	Cc00_g29640	without 3 consecutive NB-ARC associated motifs	17,16,1,6,11,11
0	183665123	183667650	-	Cc00_g30260	without 3 consecutive NB-ARC associated motifs	1,8,11,9,11,9,11,9
0	184677779	184678558	-	Cc00_g30580	without 3 consecutive NB-ARC associated motifs	17,16,1,6
0	203517297	203517947	-	Cc00_g35410	without 3 consecutive NB-ARC associated motifs	17,16,1
0	203550867	203551550	-	Cc00_g35420	not found	N/A
					C. eugenioides	
Chr	start	end	strand	Gene ID	Situation	Motif List - NLR-Parser
11	22314608	22315932	-	LOC113752059	without 3 consecutive NB-ARC associated motifs	17,16,1,6
11	50613214	50617035	+	LOC113753345	below the threshold	N/A
3	16302436	16317186	-	LOC113766181	without 3 consecutive NB-ARC associated motifs	4,5,18,1,10,3,2,9,11,9
3	40629207	40630439	+	LOC113766615	not found	1,4,5,3
8	7316120	7325726	-	LOC113780105	without 3 consecutive NB-ARC associated motifs	1,11,9,11,9,11,9,9,9,11,11,20,9,11,9,2
8	7362566	7364434	-	LOC113780107	without 3 consecutive NB-ARC associated motifs	1,11,9,11,9,11
8	7423952	7429039	+	LOC113780108	without 3 consecutive NB-ARC associated motifs	6,11,11,9,11,9,9,9,9,11,11,9,11,9,11,11,1
8	7476020	7481925	+	LOC113779458	without 3 consecutive NB-ARC associated motifs	6,8,11,9,11,9,11,9,9,11,11,9,9,9,11,9,11
3	46512774	46514805	+	LOC113766765	without 3 consecutive NB-ARC associated motifs	1,10,3,2,18,9,11
3	46604388	46606692	+	LOC113766766	without 3 consecutive NB-ARC associated motifs	1,10,3,2,18,9,11,9

3	46638024	46657976	-	LOC113766768	without 3 consecutive NB-ARC associated motifs	20,1,10,3,2,9,11,9,6
3	46782057	46783106	-	LOC113766771	not found	N/A
3	46938907	46947033	-	LOC113766774	not found	N/A
1	5822459	5826205	-	LOC113766334	without 3 consecutive NB-ARC associated motifs	16,1,6,10,3,2,2,8,9,9,11,9,11,11,11,11,11,11,11,11,9,11
7	22108032	22112852	-	LOC113777141	not found	1,6,4
3	47011507	47013825	-	LOC113766777	without 3 consecutive NB-ARC associated motifs	1,10,3,2,9,11,9
3	47802769	47824783	-	LOC113766786	without 3 consecutive NB-ARC associated motifs	2,4,1,10,3,2,9,11,9,18,20,10,13
3	48042814	48058270	-	LOC113766791	below the threshold	N/A
5	40196396	40203450	-	LOC113771639	below the threshold	N/A
5	45613260	45625908	+	LOC113771845	without 3 consecutive NB-ARC associated motifs	1,10,11,9,11,9,9,11,9,11,11,9,9,11,9,11
2	31850051	31851919	+	LOC113759493	below the threshold	N/A
2	54134203	54136209	-	LOC113759896	without 3 consecutive NB-ARC associated motifs	1,10,3,2,9,11
2	59401301	59403620	-	LOC113759976	without 3 consecutive NB-ARC associated motifs	1,10,3,2,18,9,11,9
Un	3866	6528	+	LOC113758937	without 3 consecutive NB-ARC associated motifs	1,10,11,9,11,9,9,11,9,11,11,9,9

Table S7. BLASTx analysis for *C.arabica***.** Complete loci are highlighted in green, and loci that did not present homology with NLR proteins are highlighted in orange.

To view the table, access the link: <u>https://ldrv.ms/u/s!As084N7WIXAIhqJVvP2MB4rLi6jQoQ?e=5aSbCP</u>

 Table S8. BLASTx analysis for C.canephora. Complete loci are highlighted in green, and loci that did not present homology with NLR proteins are highlighted in orange.

To view the table, access the link: <u>https://ldrv.ms/u/s!As084N7WIXAIhqJVvP2MB4rLi6jQoQ?e=5aSbCP</u>

Table S9. BLASTx analysis for *C. eugenioides*. Complete loci are highlighted in green, and loci that did not present homology with NLR proteins are highlighted in orange.

To view the table, access the link: <u>https://ldrv.ms/u/s!As084N7WIXAIhqJVvP2MB4rLi6jQoQ?e=5aSbCP</u>

Table S11. NLRs orphans. These NLRs are the ones not assigned to any ortholog group by OrthoMCL (S10 Table).

C.arabica	C.canephora	C. eugenioides
Ca_NC_03989.1_Chr_1c_nlr_10	Cc_chr0_nlr_10	Ce_NC_040035.1_Chr_1_nlr_16
Ca_NC_039898.1_Chr_1c_nlr_11	Cc_chr0_nlr_106	Ce_NC_040035.1_Chr_1_nlr_18
Ca_NC_039898.1_Chr_1c_nlr_14	Cc_chr0_nlr_109	Ce_NC_040035.1_Chr_1_nlr_2
Ca_NC_039898.1_Chr_1c_nlr_16	Cc_chr0_nlr_113	Ce_NC_040035.1_Chr_1_nlr_3
Ca_NC_039898.1_Chr_1c_nlr_17	Cc_chr0_nlr_114	Ce_NC_040035.1_Chr_1_nlr_37
Ca_NC_039898.1_Chr_1c_nlr_19	Cc_chr0_nlr_117	Ce_NC_040035.1_Chr_1_nlr_4
Ca_NC_039898.1_Chr_1c_nlr_2	Cc_chr0_nlr_126	Ce_NC_040035.1_Chr_1_nlr_60
Ca_NC_039898.1_Chr_1c_nlr_27	Cc_chr0_nlr_129	Ce_NC_040035.1_Chr_1_nlr_61
Ca_NC_039898.1_Chr_1c_nlr_30	Cc_chr0_nlr_131	Ce_NC_040035.1_Chr_1_nlr_64
Ca_NC_039898.1_Chr_1c_nlr_35	Cc_chr0_nlr_141	Ce_NC_040035.1_Chr_1_nlr_65
Ca_NC_039898.1_Chr_1c_nlr_36	Cc_chr0_nlr_159	Ce_NC_040035.1_Chr_1_nlr_74
Ca_NC_039898.1_Chr_1c_nlr_57	Cc_chr0_nlr_165	Ce_NC_040036.1_Chr_2_nlr_4
Ca_NC_039898.1_Chr_1c_nlr_59	Cc_chr0_nlr_169	Ce_NC_040036.1_Chr_2_nlr_42
Ca_NC_039898.1_Chr_1c_nlr_60	Cc_chr0_nlr_175	Ce_NC_040036.1_Chr_2_nlr_5
Ca_NC_039898.1_Chr_1c_nlr_66	Cc_chr0_nlr_18	Ce_NC_040037.1_Chr_3_nlr_1
Ca_NC_039898.1_Chr_1c_nlr_71	Cc_chr0_nlr_208	Ce_NC_040037.1_Chr_3_nlr_107
Ca_NC_039899.1_Chr_1e_nlr_1	Cc_chr0_nlr_212	Ce_NC_040037.1_Chr_3_nlr_116
Ca_NC_039899.1_Chr_1e_nlr_11	Cc_chr0_nlr_217	Ce_NC_040037.1_Chr_3_nlr_121
a_NC_039899.1_Chr_1e_nlr_18	Cc_chr0_nlr_221	Ce_NC_040037.1_Chr_3_nlr_124
Ca_NC_039899.1_Chr_1e_nlr_21	Cc_chr0_nlr_239	Ce_NC_040037.1_Chr_3_nlr_127
Ca_NC_039899.1_Chr_1e_nlr_26	Cc_chr0_nlr_242	Ce_NC_040037.1_Chr_3_nlr_132
Ca_NC_039899.1_Chr_1e_nlr_30	Cc_chr0_nlr_247	Ce_NC_040037.1_Chr_3_nlr_134
Ca_NC_039899.1_Chr_1e_nlr_33	Cc_chr0_nlr_248	Ce_NC_040037.1_Chr_3_nlr_139
Ca_NC_039899.1_Chr_1e_nlr_44	Cc_chr0_nlr_25	Ce_NC_040037.1_Chr_3_nlr_20
Ca_NC_039899.1_Chr_1e_nlr_47	Cc_chr0_nlr_256	Ce_NC_040037.1_Chr_3_nlr_21
Ca_NC_039899.1_Chr_1e_nlr_49	Cc_chr0_nlr_262	Ce_NC_040037.1_Chr_3_nlr_24
Ca_NC_039899.1_Chr_1e_nlr_52	Cc_chr0_nlr_272	Ce_NC_040037.1_Chr_3_nlr_25
Ca_NC_039899.1_Chr_1e_nlr_53	Cc_chr0_nlr_277	Ce_NC_040037.1_Chr_3_nlr_26
Ca_NC_039899.1_Chr_1e_nlr_54	Cc_chr0_nlr_278	Ce_NC_040037.1_Chr_3_nlr_40
Ca_NC_039899.1_Chr_1e_nlr_55	Cc_chr0_nlr_28	Ce_NC_040037.1_Chr_3_nlr_65
Ca_NC_039899.1_Chr_1e_nlr_60	Cc_chr0_nlr_284	Ce_NC_040037.1_Chr_3_nlr_66
Ca_NC_039899.1_Chr_1e_nlr_8	Cc_chr0_nlr_289	Ce_NC_040037.1_Chr_3_nlr_67
Ca_NC_039900.1_Chr_2c_nlr_10	Cc_chr0_nlr_299	Ce_NC_040037.1_Chr_3_nlr_82
Ca_NC_039900.1_Chr_2c_nlr_26	Cc_chr0_nlr_304	Ce_NC_040037.1_Chr_3_nlr_91
Ca_NC_039901.1_Chr_2e_nlr_10	Cc_chr0_nlr_31	Ce_NC_040037.1_Chr_3_nlr_97
Ca_NC_039901.1_Chr_2e_nlr_23	Cc_chr0_nlr_314	Ce_NC_040038.1_Chr_4_nlr_25
Ca_NC_039901.1_Chr_2e_nlr_27	Cc_chr0_nlr_315	Ce_NC_040039.1_Chr_5_nlr_101
Ca_NC_039901.1_Chr_2e_nlr_31	Cc_chr0_nlr_316	Ce_NC_040039.1_Chr_5_nlr_104
Ca_NC_039901.1_Chr_2e_nlr_32	Cc_chr0_nlr_317	Ce_NC_040039.1_Chr_5_nlr_106

Ca_NC_039901.1_Chr_2e_nlr_33	Cc_chr0_nlr_327	Ce_NC_040039.1_Chr_5_nlr_109
Ca_NC_039902.1_Chr_3c_nlr_111	Cc_chr0_nlr_33	Ce_NC_040039.1_Chr_5_nlr_12
Ca_NC_039902.1 Chr_3c_nlr_113	Cc_chr0_nlr_335	Ce_NC_040039.1_Chr_5_nlr_2
Ca_NC_039902.1_Chr_3c_nlr_117	Cc_chr0_nlr_336	Ce_NC_040039.1_Chr_5_nlr_35
Ca NC 039902.1 Chr 3c nlr 127	Cc chr0 nlr 339	Ce NC 040039.1 Chr 5 nlr 36
Ca NC 039902.1 Chr 3c nlr 15	Cc chr0 nlr 34	Ce NC 040039.1 Chr 5 nlr 41
	 Cc_chr0_nlr_342	Ce_NC_040039.1_Chr_5_nlr_43
	 Cc_chr0_nlr_343	Ce_NC_040039.1_Chr_5_nlr_6
	 Cc_chr0_nlr_344	
	Cc chr0 nlr 35	Ce_NC_040039.1_Chr_5_nlr_74
Ca NC 039902.1 Chr 3c nlr 33	Cc chr0 nlr 362	Ce NC 040039.1 Chr 5 nlr 76
Ca_NC_039902.1 Chr_3c_nlr_34	Cc_chr0_nlr_363	Ce NC 040039.1 Chr 5 nlr 92
Ca NC 039902.1 Chr 3c nlr 37	C_{c} chr0 nlr 365	Ce NC 040039.1 Chr 5 nlr 97
Ca NC 039902.1 Chr. 3c nlr 41	$C_{\rm c}$ chr0 nlr 367	Ce NC 040039 1 Chr 5 nlr 98
Ca NC 039902.1 Chr 3c nlr 51	$C_{\rm c}$ chr() nlr 37	Ce NC 040040 1 Cbr 6 plr 12
Ca NC 039902.1 Chr. 3c nlr 55	C_{c} chr0 nlr 40	Ce NC 0400401 Cbr 6 nlr 14
Ca NC 039902.1 Chr 3c nlr 56	C_{c} chr0 nlr 41	Ce NC 040040 1 Chr 6 nlr 15
Ca NC 039902.1 Chr 3c nlr 58	C_{c} chr0 nlr 45	Ce NC 040040.1 Chr 6 nlr 19
$Ca_NC_039902.1_Cm_3c_nn_50$	C_{c} chr0 nlr 52	Ce NC 0400411 Cbr 7 plr 42
$C_{a} = NC = 0.039902 \cdot 1 - Chr - 3c - nlr - 7$	C_{c} chr0 nlr 58	Ce NC 040041.1 Chr 7 nlr 46
$C_2 NC 039902.1 Chr. 3c plr 93$	Cc_chr0_nlr_70	$C_{e} NC_{040041.1} Chr. 7 nlr. 59$
$Ca_NC_039902.1_Cm_3c_nm_53$	$Cc_chr0_nhr_73$	$C_{e} NC_{040041.1} Chr. 7 nlr. 75$
$Ca_NC_039903.1$ Chr. 3e plr. 12	$Cc_chr0_nhr_75$	$C_{P} = NC 040041.1 Chr 8 plr 103$
$Ca_NC_039903.1_Chr_3e_nhr_12$	Cc_chr0_nlr_70	e NC 040042.1_clil_3_lil_103
$Ca_NC_039903.1_Clil_5e_111_13$	Cc_chr0_nlr_86	$e_{NC_040042.1_{Cm_8_{m1}}}$
$Ca_NC_020002.1$ Chr. 20 plr. 2	Cc_chr0_nlr_80	$Ce_NC_040042.1$ Chr. 8 plr 126
$Ca_NC_039903.1_Clil_3e_llil_2$	$Cc_chr0_nhr_90$	$Ce_NC_040042.1_Cm_8_m_130$
$Ca_NC_039903.1_Clil_3e_1ll_20$	$Cc_chr0_nhr_92$	$Ce_NC_040042.1_Cm_8_m_139$
$Ca_1NC_039903.1_Clil_3e_1ll_24$	$Cc_chr0_nhr_07$	Ce_NC_040042.1_CIII_8_IIII_140
$Ca_NC_039903.1_Clil_5e_1ll_20$	$Cc_chr0_nhr_00$	$Ce_NC_040042.1_Clll_6_llll_10$
$Ca_NC_039903.1_Chr_3e_nhr_45$	$Cc_cino_ini_{99}$	$Ce_NC_040042.1_CIII_6_IIII_16$
$Ca_NC_039903.1_Chr_3e_nhr_6$	$CC_CHIT_HIT_17$	$Ce_NC_040042.1_CHI_8_HII_2$
Ca_NC_039903.1_CIII_30_IIII_6		Ce_NC_040042.1_Chr_8_nnr_22
Ca_NC_039903.1_Chr_3e_nir_69	CC_CHTI_HIT_Z	Ce_NC_040042.1_Cfir_8_nir_28
	CC_Chr1_nir_21	Ce_NC_040042.1_Chr_8_nlr_3
Ca_NC_039903.1_Chr_3e_nr_8	CC_CHT1_HT_25	Ce_NC_040042.1_Cfir_8_fir_46
Ca_NC_039903.1_Chr_3e_nir_83	Cc_cnr1_nir_4	Ce_NC_040042.1_Chr_8_nlr_49
Ca_NC_039903.1_Chr_3e_nir_89	Cc_cnr1_nir_43	Ce_NC_040042.1_Chr_8_hlr_58
Ca_NC_039903.1_Chr_3e_nlr_9	Cc_chr1_nlr_50	Ce_NC_040042.1_Chr_8_nlr_62
Ca_NC_039903.1_Chr_3e_nlr_92	Cc_chr1_nlr_51	Ce_NC_040042.1_Chr_8_nlr_79
Ca_NC_039903.1_Chr_3e_nlr_96	Cc_chr1_nlr_53	Ce_NC_040042.1_Chr_8_nlr_87
Ca_NC_039904.1_Chr_4c_nlr_13	Cc_chr1_nlr_54	Ce_NC_040042.1_Chr_8_nlr_89
Ca_NC_039904.1_Chr_4c_nlr_15	Cc_chr1_nlr_58	Ce_NC_040042.1_Chr_8_nlr_91
Ca_NC_039904.1_Chr_4c_nlr_26	Cc_chr1_nlr_6	Ce_NC_040042.1_Chr_8_nlr_95
Ca_NC_039904.1_Chr_4c_nlr_29	Cc_chr1_nlr_65	Ce_NC_040043.1_Chr_9_nlr_17
Ca_NC_039904.1_Chr_4c_nlr_5	Cc_chr1_nlr_68	Ce_NC_040043.1_Chr_9_nlr_25
Ca_NC_039905.1_Chr_4e_nlr_21	Cc_chr1_nlr_7	Ce_NC_040045.1_Chr_11_nlr_101
Ca_NC_039905.1_Chr_4e_nlr_24	Cc_chr11_nlr_13	Ce_NC_040045.1_Chr_11_nlr_121
Ca_NC_039905.1_Chr_4e_nlr_26	Cc_chr11_nlr_36	Ce_NC_040045.1_Chr_11_nlr_132

Ca_NC_039905.1_Chr_4e_nlr_28	Cc_chr11_nlr_41	Ce_NC_040045.1_Chr_11_nlr_2
Ca_NC_039905.1_Chr_4e_nlr_29	Cc_chr11_nlr_72	Ce_NC_040045.1_Chr_11_nlr_27
Ca NC 039905.1 Chr 4e nlr 30	Cc chr11 nlr 78	Ce NC 040045.1 Chr 11 nlr 31
Ca_NC_039905.1_Chr_4e_nlr_31	 Cc_chr2_nlr_32	Ce_NC_040045.1_Chr_11_nlr_33
Ca NC 039906.1 Chr 5e nlr 12	Cc_chr2_nlr_33	Ce NC 040045.1 Chr 11 nlr 36
Ca NC 039906 1 Chr 5e nlr 23	$C_{\rm c}$ chr2 nlr 9	Ce NC 040045.1 Chr 11 nlr 53
$C_2 = NC_0 = 0.00006 + 0.000000000000000000000000000$	$C_{c} chr^{2} nlr 100$	$C_{0} NC 040045.1 Chr 11 plr 55$
$Ca_NC_039900.1_Cm_5e_m_35$	$Cc_cinis_ini_100$	$Ce_NC_040045.1_Chr_11_nhr_55$
Ca_NC_039906.1_CIII_50_IIII_30		Ce_NC_040045.1_CHr_11_Hr_07
	$Cc_cnr3_nr_24$	Ce_NC_040045.1_Cnr_11_nr_96
Ca_NC_039906.1_Chr_5e_nlr_55	Cc_chr3_nlr_41	Ce_NW_020861822.1_nlr_2
Ca_NC_039906.1_Chr_5e_nlr_60	Cc_chr3_nlr_44	Ce_NW_020861823.1_nlr_2
Ca_NC_039906.1_Chr_5e_nlr_68	Cc_chr3_nlr_46	Ce_NW_020862264.1_nlr_1
Ca_NC_039906.1_Chr_5e_nlr_70	Cc_chr3_nlr_59	Ce_NW_020862380.1_nlr_1
Ca_NC_039906.1_Chr_5e_nlr_71	Cc_chr3_nlr_63	Ce_NW_020862810.1_nlr_1
Ca_NC_039907.1_Chr_5c_nlr_11	Cc_chr3_nlr_65	Ce_NW_020862919.1_nlr_1
Ca_NC_039907.1_Chr_5c_nlr_18	Cc_chr3_nlr_70	Ce_NW_020862967.1_nlr_1
Ca_NC_039907.1_Chr_5c_nlr_31	Cc_chr3_nlr_85	Ce_NW_020863939.1_nlr_1
Ca_NC_039907.1_Chr_5c_nlr_32	Cc_chr3_nlr_87	Ce_NW_020864008.1_nlr_1
Ca_NC_039907.1_Chr_5c_nlr_38	Cc_chr4_nlr_16	Ce_NW_020864288.1_nlr_2
Ca_NC_039907.1_Chr_5c_nlr_39	Cc_chr4_nlr_17	Ce_NW_020864351.1_nlr_1
Ca NC 039907.1 Chr 5c nlr 5	Cc chr4 nlr 20	Ce NW 020864351.1 nlr 3
Ca_NC_039907.1_Chr_5c_nlr_57	 Cc_chr4_nlr_22	 Ce_NW_020864659.1_nlr_11
Ca NC 039907.1 Chr 5c nlr 7	 Cc_chr4_nlr_26	 Ce_NW_020864659.1 nlr_4
Ca_NC_039907.1 Chr_5c_nlr_71	Cc chr4 nlr 5	 Ce_NW_020864860.1_nlr_2
	 Cc_chr5_nlr_10	
Ca NC 039908.1 Chr 6c nlr 24	Cc chr5 nlr 2	-
Ca_NC_039908.1 Chr_6c_nlr_29	C_{c} chr5 nlr 22	-
Ca NC 039908 1 Chr 6c nlr 32	$C_{\rm c}$ chr5 nlr 3	-
$C_2 = NC = 0.39908 1 Chr 6c plr 33$	$C_{c} chr_{5} nlr /3$	_
$Ca_NC_039908.1_Cm_0c_nm_33$	$Cc_chr6_nlr_{43}$	
$Ca_NC_039908.1_Cm_0c_m_33$	Cc_chr6_nlr_21	-
$Ca_NC_039908.1_CIII_0C_IIII_38$	$CC_C(110_1111_24)$	-
Ca_NC_039909.1_Chr_6e_nr_2		-
Ca_NC_039909.1_Chr_6e_nir_3	Cc_cnr7_nir_11	-
Ca_NC_039910.1_Chr_/c_nlr_22	Cc_chr/_nlr_13	-
Ca_NC_039910.1_Chr_/c_nlr_25	Cc_chr/_nlr_20	-
Ca_NC_039910.1_Chr_7c_nlr_32	Cc_chr7_nlr_23	-
Ca_NC_039910.1_Chr_7c_nlr_33	Cc_chr7_nlr_38	-
Ca_NC_039910.1_Chr_7c_nlr_37	Cc_chr7_nlr_39	-
Ca_NC_039910.1_Chr_7c_nlr_38	Cc_chr8_nlr_1	-
Ca_NC_039910.1_Chr_7c_nlr_47	Cc_chr8_nlr_15	-
Ca_NC_039910.1_Chr_7c_nlr_48	Cc_chr8_nlr_16	-
Ca_NC_039910.1_Chr_7c_nlr_49	Cc_chr8_nlr_18	-
Ca_NC_039910.1_Chr_7c_nlr_55	Cc_chr8_nlr_19	-
Ca_NC_039910.1_Chr_7c_nlr_56	Cc_chr8_nlr_21	-
Ca_NC_039911.1_Chr_7e_nlr_10	Cc_chr8_nlr_31	-
Ca_NC_039911.1_Chr_7e_nlr_19	Cc_chr8_nlr_39	-
Ca_NC_039911.1_Chr_7e_nlr_23	Cc_chr8_nlr_40	-
Ca_NC_039911.1 Chr_7e_nlr_25		-

Ca_NC_039911.1_Chr_7e_nlr_28	-	-	
Ca_NC_039911.1_Chr_7e_nlr_30	-	-	
Ca NC 039911.1 Chr 7e nlr 33	-	-	
Ca NC 039911.1 Chr 7e nlr 35	-	-	
	-	-	
a NC 039911.1 Chr 7e nlr 41	-	_	
Ca NC 039911.1 Chr 7e nlr 56	-	_	
Ca NC 039911.1 Chr 7e nlr 57	-	-	
Ca NC 039911.1 Chr 7e nlr 7	-	-	
Ca NC 039912.1 Chr 8e nlr 15	-	-	
Ca NC 039912.1 Chr. 8e nlr. 18	_	_	
$C_2 = NC_039912.1 \text{ Chr. 8e nlr 22}$	_	_	
$C_a = NC_{039912} + C_b = 0.039912 + 0.039912 + 0.039912 + 0.039912 + 0.039912 + 0.039912 + 0.05912 + 0.$	_		
$C_2 NC_{030012,1} C_1 C_{11} C_{20012,1} C_2 NC_{020012,1} C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	_	_	
$C_a NC_{039912.1} C_{111_{6}} C_b NC_{039912.1} C_{111_{6}} C_b NC_{112_{6}} C_{111_{6}} C_{112_{6}} C_{112_{6}}$	-	-	
$Ca_NC_039912.1_CIII_6e_IIII_42$	-	-	
Ca_NC_039912.1_Chr_8e_nir_49	-	-	
Ca_NC_039912.1_Chr_8e_nir_48	-	-	
Ca_NC_039912.1_Chr_8e_nir_51	-	-	
Ca_NC_039912.1_Chr_8e_nlr_60	-	-	
Ca_NC_039912.1_Chr_8e_nlr_69	-	-	
Ca_NC_039912.1_Chr_8e_nlr_80	-	-	
Ca_NC_039912.1_Chr_8e_nlr_82	-	-	
Ca_NC_039913.1_Chr_8c_nlr_1	-	-	
Ca_NC_039913.1_Chr_8c_nlr_12	-	-	
Ca_NC_039913.1_Chr_8c_nlr_14	-	-	
Ca_NC_039913.1_Chr_8c_nlr_37	-	-	
Ca_NC_039913.1_Chr_8c_nlr_38	-	-	
Ca_NC_039913.1_Chr_8c_nlr_39	-	-	
Ca_NC_039913.1_Chr_8c_nlr_4	-	-	
Ca_NC_039913.1_Chr_8c_nlr_48	-	-	
Ca_NC_039913.1_Chr_8c_nlr_53	-	-	
Ca_NC_039913.1_Chr_8c_nlr_55	-	-	
Ca_NC_039913.1_Chr_8c_nlr_6	-	-	
Ca_NC_039913.1_Chr_8c_nlr_7	-	-	
Ca_NC_039914.1_Chr_9c_nlr_15	-	-	
Ca NC 039914.1 Chr 9c nlr 3	-	-	
Ca_NC_039915.1_Chr_9e_nlr_1	-	-	
	-	-	
Ca NC 039917.1 Chr 10c nlr 20	-	_	
Ca NC 039917.1 Chr 10c nlr 22	-	-	
Ca NC 039917.1 Chr 10c nlr 24	-	-	
Ca NC 039917.1 Chr 10c nlr 6	-	-	
Ca NC 039918.1 Chr 11c nlr 11	-	-	
Ca NC 039918 1 Chr 11c nlr 25	-	-	
$C_{a} = NC = 0.039918 + 1.0 \text{ m} = 2.0 $	_	_	
$Ca_NC_{039918,1} Ca_NC_{039918,1} Ca_NC_{039918,1} Ca_NC_{039918,1} Ca_NC_{039918,1} Cbr_{11c_phr_{22}} Ca_NC_{039918,1} Cbr_{11c_phr_{22}} Ca_NC_{039918,1} Cbr_{11c_phr_{22}} Ca_NC_{039918,1} Cbr_{11c_phr_{22}} Ca_NC_{039918,1} Cbr_{11c_phr_{22}} Ca_NC_{039918,1} Cbr_{11c_phr_{22}} Cbr_{11c_phr$	-	-	
C_{a} NC 030018 1 Chr 11c nhr 54	-	-	
Ca_IVC_030918.1 Chr 111_1II_34	-	-	
C9_IAC_0233T0'T_CUIL_TTC_UIL_D5	-	-	

Ca_NC_039919.1_Chr_11e_nlr_102	-	-	
Ca_NC_039919.1_Chr_11e_nlr_104	-	-	
Ca_NC_039919.1_Chr_11e_nlr_109	-	-	
Ca_NC_039919.1_Chr_11e_nlr_111	-	-	
Ca_NC_039919.1_Chr_11e_nlr_112	-	-	
Ca_NC_039919.1_Chr_11e_nlr_20	-	-	
Ca_NC_039919.1_Chr_11e_nlr_23	-	-	
Ca_NC_039919.1_Chr_11e_nlr_38	-	-	
Ca_NC_039919.1_Chr_11e_nlr_42	-	-	
Ca_NC_039919.1_Chr_11e_nlr_49	-	-	
Ca_NC_039919.1_Chr_11e_nlr_56	-	-	
Ca_NC_039919.1_Chr_11e_nlr_66	-	-	
Ca_NC_039919.1_Chr_11e_nlr_7	-	-	
Ca_NC_039919.1_Chr_11e_nlr_75	-	-	
Ca_NC_039919.1_Chr_11e_nlr_77	-	-	
Ca_NC_039919.1_Chr_11e_nlr_85	-	-	
Ca_NC_039919.1_Chr_11e_nlr_90	-	-	
Ca_NC_039919.1_Chr_11e_nlr_92	-	-	
Ca_NC_039919.1_Chr_11e_nlr_93	-	-	
Ca_NW_020848476.1_nlr_1	-	-	
Ca_NW_020850474.1_nlr_1	-	-	
Ca_NW_020850474.1_nlr_2	-	-	
Ca_NW_020850474.1_nlr_4	-	-	
Ca_NW_020850474.1_nlr_7	-	-	
Ca_NW_020850474.1_nlr_8	-	-	
Ca_NW_020850885.1_nlr_2	-	-	
Ca_NW_020851092.1_nlr_1	-	-	
Ca_NW_020851248.1_nlr_1	-	-	
Ca_NW_020851248.1_nlr_3	-	-	