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ABSTRACT. Multicollinearity is detected via regression models, where independent variables are strongly 

correlated. Since they entail linear relations between observed or latent variables, the structural equation 

models (SEM) are subject to the multicollinearity effect, whose numerous consequences include the 

singularity between the inverse matrices used in estimation methods. Given to this behavior, it is natural 

to understand that the suitability of these estimators to structural equation models show the same 

features, either in the simulation results that validate the estimators in different multicollinearity 

degrees, or in their application to real data. Due to the multicollinearity overview arose from the fact that 

the matrices inversion is impracticable, the usage of numerical procedures demanded by the maximum 

likelihood methods leads to numerical singularity problems. An alternative could be the use of the Partial 

Least Squares (PLS) method, however, it is demanded that the observed variables are built by assuming a 

positive correlation with the latent variable. Thus, theoretically, it is expected that the load signals are 

positive, however, there are no restrictions to these signals in the algorithms used in the PLS method. 

This fact implies in corrective areas, such as the observed variables removal or new formulations of the 

theoretical model. In view of this problem, this paper aimed to propose adaptations of six generalized 

ridge estimators as alternative methods to estimate SEM parameters. The conclusion is that the evaluated 

estimators presented the same performance in terms of accuracy, precision while considering the 

scenarios represented by model without specification error and model with specification error, different 

levels of multicollinearity and sample sizes. 
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Introduction 

The existence of a strong correlation between the variables involved in the estimation of parameters of a 

model characterizes the multicollinearity problem, whose main consequence is the high estimates of 

standard coefficients and errors, compromising conclusions related to statistical inference (Mori & Suzuki, 

2018). In view of this problem, numerous alternatives to detect and solve this problem are reported in 

literature. Tarka (2018), in a review article, mentions that despite the potentially severe consequences for 

statistical inference, the issue of multicollinearity, as well as the impact of omitting variables, has been 

little studied about the effects on the analysis of structural equation models (SEM) . Corroborating this 

statement, some studies on this problem are addressed. Yang and Yuan (2019) mention that the presence of 

multicollinearity involves obtaining operations of approximate or badly conditioned inverse matrices, 

causing a problem of numerical nature related to obtaining the estimates of maximum likelihood of a SEM.  

Due to numerical convergence problems, Can, Schoot, and Hox (2015) proposed a study that includes the 

parameter estimates in multilevel structural equations models (MLSEM), obtained by the maximum 

likelihood and Bayesian methods specifying different degrees of correlation between and among the levels, 

so that, given a value above 0.80, multicollinearity was detected. 

When considering the maximum likelihood approach, the solutions obtained as a result of numerical 

non-convergence were called as inadmissible solutions. In this way, both methods were compared, having 

as reference the Bayesian procedure, in which, all solutions were admissible. In view of the above, it was 

observed that the effect of multicollinearity has a greater impact on the estimates of the intraclass 

correlation coefficients in both methods, however, a greater amount of inadmissible solutions was found 

when multicollinearity was specified between the levels. 
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Leeflang (2011) mentions that, in general, the effect of multicollinearity observed in a SEM model, refers 

to high correlations between the latent exogenous variables and, as a consequence, specifically the 

validation of these models becomes complex. Can et al. (2015) point out that the effect of multicollinearity 

generates a correlation matrix between poorly conditioned predictors so that there is no single 

mathematical solution to estimate the model’s coefficients, referring to the model identifiability problems.  

Lan and Maguire (2012) emphasize that the interpretation of direct and indirect effects must be made with 

caution when the variables are multicolinear since these effects express a cause-and-effect relationship. 

Among the solutions addressed and feasible to be applied, given the presence of multicollinearity in 

SEM, ridge modeling has been little explored. Nyrhinen and Leskinen (2014) studied two methodological 

procedures involving the ridge trace, namely method A and B. Method A consisted of assigning a constant k 

in all elements on the diagonal of the model correlation matrix. Method B characterized the assignment of 

this constant to the corresponding elements of the endogenous and exogenous variables in the model 

correlation matrix. In this context, in simulation studies, the authors concluded that in both methods, the 

coefficient estimates were the same; however, method B produced lower standard errors. 

Yuan, Wu, and Bentler (2011) showed by means of empirical results that the Ridge procedure for SEM 

with ordinal data presents a better convergence rate, lower bias, lower mean squared error and better 

general model evaluation than the widely used procedure of maximum likelihood. 

Given that the formation of an SEM model involves linear relations between independent and dependent 

variables, either observed or latent, with or without measuring errors (Marsh, Morin, Parker, & Kaur, 2014; 

Larina, 2015; Neelaveni & Manimaran, 2016), the adaptation of different ridge estimators becomes applicable, 

for example, the generalized ridge regression likelihood and other alternatives proposed by Kibria (2003). 

Based on the assumption that the variables involved in structural equation modeling present different 

correlation levels, it is reasonable to assume the existence of multicollinearity. Given this motivation, this 

study aimed to incorporate the ridge estimators listed in Table 1 into structural equation modeling, as well 

as to evaluate them regarding the properties of accuracy and precision by means of the Monte Carlo 

simulation. Finally, an application to real data is presented, providing the script of the function used in the 

application and simulation of the parameter estimates. 

Material and methods 

The methodology proposed for the adaptation of ridge estimators in structural equation modeling is 

described in the following stages: i) Estimators of generalized ridge regression and alternatives; ii) 

specification of the structural equation model; iii) adaptation of ridge estimators to the structural equation 

model and iv) scenarios and parametric values used in the Monte Carlo procedure to validate the 

generalized ridge estimators in structural equation models. 

Estimators of generalized ridge regression and its alternatives 

Defining the linear regression model (Equation 1). 

         (1) 

where: 

     is the vector of independent observations,      is the parametric vector of regression coefficients to be 

estimated,      is a known matrix of explanatory variables and      is the vector of errors, with each 

component being           . Supposing the existence of an orthogonal matrix  , by means of 

decomposition         , where   is the diagonal matrix of eigenvalues of matrix       , model (1) is 

rewritten in canonical form as Equation 2. 

          (2) 

where: 

        and        . 

Note that   depends on  , according to Kibria (2003) recommendations , the mean square error (MSE) 

will be minimized when   is considered as the normalized eigenvector, corresponding to the highest 

eigenvalue of matrix  , respecting the restriction        . With these specifications, the generalized ridge 

estimators are obtained by Equation 3. 
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Table 1. Summary of some ridge regression estimators found in the literature. 

Notation Estimators  

           
    

     
    

    

     
  

          
    

       
   

              
       

 

        
  

   

          
 

 
  

   

   
   

          
   

     
  

 
 

  

                  
   

   
    

Source: Kibria (2003). 

                        (3) 

where: 

                   ;     ;   equals the number of independent variables involved in the model, and  

             is the estimator of minimum squares of  . Estimators    and       are obtained, respectively by 

the inverse transformation of    and      . Kibria (2003) mentions that an estimated value of    Equation 4, 

which minimizes the mean square error (MSE) Equation 5 of       is defined by: 
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error variance     is estimated by the residual mean square;     is the     eigenvalue of matrix   and     the     

element of   . Following this methodology, several estimators were proposed in the literature by different 

authors, as illustrated by the summary described in Table 1. 

Specification of the structural equation model 

Consider the structural model (Bollen, 2012; Mai, Zhang, & Wen, 2018) Equation 6.  

         (6) 

       referred to a vector of endogenous latent variables;            is a partitioned matrix, containing 

the coefficients that correlate the   endogenous factors and relate the   exogenous factors to the   

endogenous factors;            represents a partitioned vector of endogenous latent variables and 

exogenous latent variables and        is an error vector. As a matrix, the system is defined in Equation 7.  
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Consider subsystem Equation 8 referring to the exogenous variables. 

          (8) 

       corresponds to the observed exogenous variables vector;        
 is a matrix of regression coefficients 

that relates the   exogenous factors to each of   observable variable assigned to measure them;        

represents a vector of exogenous latent variables and        is a vector of measurement errors in X. 

Following these specifications, the matrix representation is given in Equation 9. 
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Adaptation of ridge estimators to the structural equation model  

Following the structural model given in Equation 6, the adaptation of ridge estimators is initially made 

by obtaining an orthogonal matrix D, by means of0 the decomposition         , where   is the matrix 

containing the eigenvalues of        . Therefore, the structural model was rewritten in canonical form as 

Equation 10: 

          (10) 

where: 

        and        . 

In relation to the measurement model (8), representative of exogenous variables, the decomposition 

performed to obtain the orthogonal matrix   was done using equation  

        , where   is the matrix containing the eigenvalues of        . Therefore, the model of 

measurement in x rewritten in canonical form is given as Equation 11. 

           (11) 

where: 

        and          .  

Following the structural model Equation 10 and the measurement model Equation 11, the generalized 

ridge estimators were obtained by means of Equation 12 and 13. 

                        (12) 

                         (13) 

where: 

  is a diagonal matrix of       order for the structural model, and of     order for the measurement model 

in  , where each element     . The estimations of ordinary minimum squares of   and    are given 

respectively by Equation 14 and 15. In comparison to Equation 4, the estimated value of ki is described in 

Equation 16 and 17. 

             (14) 
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As with the Equation 5, the mean square error is defined in Equation 18 and 19, respectively for each 

model and minimized with the estimation of   . 
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where:  
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  and    

  refer to the estimations of error variances of Equation 10 and 11;    
  the     estimation of   ; and 

    the     estimation of  . Therefore, following these specifications, the generalized ridge estimators listed 

in Table 1 and adapted to structural equation modeling, following the methodology proposed herein, are 

described in Table 2. 

Concerning the measurement model related to the endogenous variables, the adaptations of the 

generalized ridge estimators are made as with the measurement model in   described in this study. 

Scenarios and parametric values used in the Monte Carlo procedure to validate the generalized 

ridge estimators in structural equation models 

After defining the generalized ridge estimators (Table 2), two thousand (     ) Monte Carlo simulations 

were used, based on the structural equation model, with the parametric values specified as illustrated in 

Figure 1. 

Mantaining the usual assumptions of the structural model, where the expectations of error vectors and latent 

variables equal zero,   and    (i = 1, 2, 3) are not correlated;    (j = 1, 2, 3, 4) are not correlated to  ,    and   ; and    

(i = 1, 2, 3) are nor correlated to   ,   and   . The indicators of exogenous latent variables will be considered 

multicollinear in different levels, being generated by       Monte Carlo simulations, according to the procedure 

proposed by Pereira, Milani, and Cirillo (2014) [Equation 20]. 

Table 2. Generalized ridge estimators adapted to structural equation models. 

Structural Model Measurement Model X 

        
        

     
          

    

      
  

  

       
   

       
         

   

        
  

  

           
       

 

        
   

            
        

  
 

         
  

 
 
  

       
 

     
  

   

   
         

 

 
  

   

    
  

  

       
   

     
  

 
     

         
   

      
  

 
 

 
 

  

               
   

   
                   

   

    
  

    

 

 

Figure 1. Graphical representation of structural equation models to be used in the Monte Carlo simulation process: (A) The structural model 

with continuous arrows indicates the model with correct specification; (B) The model with dotted arrow indicates a model with a specification 

error in the joint omission of    and   . Source: Adapted from Cirillo and Barroso (2012) and Maydeu-Olivares, Shi, & Rosseel (2019).   
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                                                  (20) 

where: 

          ,   is specified so that the correlation between both explanatory variables is given by   ;   is the 
sample size; and   is the number of observed exogenous variables to be generated. Thus, the 
multicollinearity level between variables, controlled and classified in levels, is: weak (         ), moderate 
(          and     ) and strong (          and     ), for sample sizes evaluated in        ,     and 
     , therefore, a identifiability of the model due to the number of parameters required as a function of 
sample size (Cirillo & Barroso, 2017) for each estimator (Table 2).  

For all estimators, and for each configuration between sample size and multicollinearity level, the mean 
square error Equation 18 and 19 was computed considering the mean estimations obtained in       Monte Carlo 
iterations. For this purpose, a function will be built and implemented in the software R (R Core Team, 2018). 

Result and discussion 

Accuracy and precision of generalized ridge estimators considering a structural equation model 

without specification error 

According to the methodology, in view of the evaluated scenarios (Section iii), given the approaches of 

estimations of mean square errors due to Monte Carlo oscillations, the results described in Table 3 show 

that all estimators were accurate and precise for all levels of multicollinearity evaluated. 

Diamantopoulos, Riefler and Roth (2008) mention that the presence of multicollinear variables in models 
with formative indicators may induce the researcher to exclude insignificant indicators, thus altering the 
construct definition. Therefore, considering that results are similar, generalized ridge estimators can be 
recommended as an alternative method for estimation of the model parameters in relation to their 
competitors, once their accuracy and precision have been confirmed through the low values of the mean 
square error. Concerning the effect of sample size, the accuracy and precision of the generalized ridge 
estimators (Table 3) were in accordance with the studies conducted by Cassel, Hackl, and Westlund (1999) 
by using the PLS estimation method, where it was concluded that the bias estimations were not affected by 
the increase in sample size. However, comparing to the results obtained by Jung (2013), where the ridge 
regression incorporated to the square minimum method in two stages was considered, the authors 
concluded that, for small sample sizes, the estimations obtained by a ridge method were more stable and 
precise, but associated with the greatest biases. 

Table 3. Estimation of Mean Square Errors (MSE) of the structural model without any specification error, considering different sample 

sizes ( ) and different multicollinearity levels ( ). 

    = 0.09  

n  OLS                                       

100  1.3182  0.0106  0.0115  0.0113  0.0113  0.0106  0.011  

200  1.3008  0.0057  0.0059  0.0058  0.0058  0.0059  0.0058  

1000  1.2978  0.0012  0.0012  0.0012  0.0012  0.0013  0.0012  

   = 0.49  

n  OLS                                     

100  1.3296  0.0107  0.0116  0.0114  0.0114  0.0107  0.0111  

200  1.2939  0.0056  0.0058  0.0058  0.0058  0.006  0.0057  

1000  1.2961  0.0012  0.0012  0.0012  0.0012  0.0014  0.0012  

   = 0.64  

n  OLS                                      

100  1.3352  0.0108  0.0116  0.0114  0.0115  0.0108  0.0112  

200  1.2848  0.0056  0.0058  0.0057  0.0058  0.0059  0.0057  

1000  1.3038  0.0012  0.0012  0.0012  0.0012  0.0012  0.0012  

   = 0.81  

n  OLS                                        

100  1.3203  0.0108  0.0117  0.0115  0.0115  0.0108  0.0112  

200  1.3025  0.0057  0.0059  0.0058  0.0058  0.006  0.0058  

1000  1.2872  0.0012  0.0012  0.0012  0.0012  0.0013  0.0012  

   = 0.98  

n  OLS                                        

100  1.3366  0.0108  0.0117  0.0114  0.0115  0.0108  0.0112  

200  1.3362  0.0058  0.0060 0.0060  0.0060  0.0062  0.0059  

1000  1.2968  0.0012  0.0012  0.0012  0.0012  0.0013  0.0012  
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Given that the residues were generated by assuming normality, there are statistical evidences to state 

that accuracy and precision are reached by generalized ridge estimators. The equality between estimations 

of mean square errors was certainly influenced by the fact that residues were generated by a symmetric 

distribution, in this case, normal distribution. This statement is confirmed through studies obtained by 

Cirillo and Barroso (2012) by considering robust estimators LMS and LTS for the same model (Figure 1), but 

generated with symmetric and asymmetric errors. The results related to biases were quite discrepant. In 

relation to the accuracy of estimations, for all sample sizes, the LMS method showed a trend of 

overestimating parametric values; and the LTS method, a trend of underestimating them. 

Given the same scenarios evaluated by the Monte Carlo simulation, the results described in Table 4 

showed that, by considering the specification error, omitting    and    simultaneously, mean square error 

estimations were accurate and precise, for all generalized ridge estimators with small oscillations due to the 

Monte Carlo error. It is important to note that the results obtained for these estimators are coherent with 

studies conducted by Maydeu-Olivares et al. (2019), who compared a structural model without specification 

error to a model considering the omission of two causal relations simultaneously. In this context, the 

authors concluded that there are no significant differences between models with or without specification 

error in relation to the adjustment quality. 

Application to real data 

Based on data related to the profile description of coffee consumers in relation to brand and quality, a 

questionnaire was applied using a 5-point Likert scale involving demographic and economic questions in a 

sample of    individuals (Table 5). 

As these are categorical and ordinal questions, the authors chose to transform the data into a continuous 

scale between   and  . For such, the transformation given in Equation 21 was used, referring to the     

response to the     question. 

   
    

       
       

 (21) 

where: 

    and     are, respectively, the lowest and highest responses. Aiming to identify latent variables   and  , an 

exploratory factorial analysis was performed, using the data transformed in continuous scale (Equation 21), 

justifying the Pearson correlation matrix used in the analysis. Results are listed below in Table 6. 

Table 4. Estimation of Mean Squared Error (MSE) of the structural model with a specification error in joint omission of    and   , 

considering different sample sizes (n) and different degrees of multicollinearity ( ). 

          

n  OLS                                      

100 1.1560 0.0112 0.0112 0.0137 0.0112 0.0112 0.0112 

200 1.1491 0.0058 0.0058 0.0065 0.0058 0.0058 0.0058 

1000 1.1408 0.0011 0.0011 0.0012 0.0012 0.0011 0.0011 

          

n OLS                                      

100 1.1495 0.0111 0.0111 0.0135 0.0111 0.0111 0.0111 

200 1.1546 0.0057 0.0057 0.0065 0.0057 0.0057 0.0057 

1000 1.1404 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 

          

n OLS                                      

100 1.1497 0.0111 0.0111 0.0135 0.0111 0.0111 0.0111 

200 1.1551 0.0058 0.0058 0.0065 0.0058 0.0058 0.0058 

1000 1.1479 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 

          

n OLS                                      

100 1.1523 0.0111 0.0111 0.0135 0.0111 0.0111 0.0111 

200 1.1494 0.0057 0.0057 0.0064 0.0057 0.0057 0.0057 

1000 1.1435 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 

          

n OLS                                      

100 1.1639 0.0114 0.0114 0.0138 0.0114 0.0114 0.0114 

200 1.1521 0.0058 0.0058 0.0065 0.0058 0.0058 0.0058 

1000 1.1420 0.0011 0.0011 0.0012 0.0011 0.0011 0.0011 
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The selection of the variables to be used in constructing each construct was determined according to the 

variables that had higher estimations of factorial loads (Table 6). Therefore, the set of equations 

constituting the structural model is represented by Equation 22. 

       
   

    
   

    
       

   
    

   
    

   
    

       
   

    
   

    
       

   
    

   
    

                          

 (22) 

The results in Table 7 validate the model adjustment because they have low values  

for the mean square error of generalized ridge estimators in comparison to square minimum 

estimations. 

The generalized ridge estimators showed inferior results to those of the MSE obtained by the square 

minimum method. Another important result is the proximity of estimations obtained in each method, 

corroborating the results obtained in simulation. Subsequently, the estimations of the model 

parameters for each evaluated method are described in Table 8, along with the coefficient of 

determination   . 

Considering the estimates of model parameters, the results in Table 8 showed that all generalized 

regression ridge methods have similar estimations, including results related to the mean square error 

(Table 6). Therefore, there is statistical evidence to state that the inferential procedures, which can be 

applied to model adjustment, will provide similar results to those of the estimators evaluated in this 

study. 

Table 5. Categorical Questions and observed variables (X) used in the research. 

Social Class 

 Questions Description of categories 

   1- Scholarly Scholarly levels: 1; 2; 3; 4; 5. 

   2-Family income Wage income levels: 1; 2; 3; 4; 5. 

Importance assigned 

 Questions Description of categories 

   3- How important do you attribute the brand when choosing coffee? Degree of importance: 1; 2; 3; 4; 5 

   4- The coffee quality depends more on the roaster firm and not the farmers. Score for quality: 1; 2; 3; 4; 5 

   5- The coffee producer directly affects the quality of coffee. Degree of importance of producer: 1; 2; 3; 4; 5 

   6- The region where coffee is produced interferes with the quality. Degree of importance to region: 1; 2; 3; 4; 5 

   7- When I buy coffee, I look for information on the production region. Degree of importance to region: 1; 2; 3; 4 ; 5 

   8 - I prefer coffee with identification of the origin, even if they are more expensive. Degree of importance for the preference: 1; 2; 3; 4 ; 5 

   9- I prefer coffee of superior quality, even if they are more expensive. Degree of importance for the price: 1; 2; 3; 4; 5 

Table 6. Factorial loads obtained in the factorial analysis through the varimax criterion. 

Constructs  Variable  Factor1  Factor2  Factor3  Factor4  

Social Class (  )  
  
   0.106  0.963  0.174  0.164  

  
     0.543  0.160    

Origin/Region (  )  

  
   0.684  0.208    0.322  

  
   0.805      0.443  

  
   0.955  0.113  0.263    

Price/Brand (  )  
  
     0.267  0.638    

  
   0.258  0.189  0.844    

Production (  )  
  
   -0.110  -0.233  0.354  0.489  

  
     -0.135  0.139  0.575  

Table 7. Mean Squared Error (MSE) estimations for the structural model. 

Estimator MSE 

OLS 1.416441 

      0.024535 

     0.023308 

      0.022168 

     0.022947 

     0.033156 

      0.022153 
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Table 8. Parameter estimations for the structural model given in Equation 22. 

   (           ) 

Estimates 

   OLS                                     

  
  0.4104 0.4033 0.4103 0.4066 0.4087 0.3834 0.4069 

  
  0.5424 0.5239 0.5421 0.5321 0.5376 0.4813 0.5329 

  (           ) 

Estimates 

   OLS                                     

  
  -0.3945 -0.3058 -0.3930 -0.3623 -0.3806 -0.3877 -0.3571 

  
  -0.2914 -0.2707 -0.2917 -0.2907 -0.2925 -0.2885 -0.2897 

  
  -0.2657 -0.2264 -0.2649 -0.2507 -0.2588 -0.2587 -0.2485 

  (           ) 

Estimates 

   OLS                                     

  
  0.4118 0.4035 0.4117 0.4074 0.4097 0.3691 0.4077 

  
  0.5029 0.4846 0.5026 0.4930 0.4981 0.4252 0.4935 

  (           ) 

Estimates 

   OLS                                     

  
  -0.5097 -0.4314 -0.5079 -0.4682 -0.4876 -0.4696 -0.4673 

  
  0.5246 0.4435 0.5227 0.4816 0.5016 0.4712 0.4806 

 (           ) 

Estimates 

  OLS                                    

   0.1928 0.1705 0.1924 0.1872 0.1914 0.1823 0.1871 

   -0.4253 -0.3521 -0.4238 -0.4050 -0.4199 -0.3825 -0.4043 

   0.2713 0.2231 0.2703 0.2577 0.2677 0.2470 0.2573 

   0.4173 0.3408 0.4157 0.3956 0.4114 0.4013 0.3950 

 

Conclusion 

Our results support the conclusion that the generalized ridge estimators adapted to structural equation 

models can be applied to real situations, including problems involving a strong multicollinearity between 

the observed variables. The generalized ridge estimators showed the same performance in relation to 

accuracy, precision, model specification error, multicollinearity level and sample size. 

Regarding the situations in which the model was generated considering the specification error of the 

latent variables, the ridge estimators presented accurate and precise results, showing robustness in relation 

to the omission of the latent variables.  
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