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Abstract: This paper proposes a methodology for establishing base values for short-term voltage
variation indices. The work is focused on determining which variables best describe the disturbance
and based on that, establish clusters that allow a more adequate definition of base values for the
indices. To test the proposed methodology, real data from 19 distribution systems belonging to a
Brazilian electricity utility were used and consequently the index presented in the country standard
was considered. This study presents a general methodology that can be applied to all distribution
systems in Brazil and could serve as a guide for the regulatory agencies in other countries, to establish
base values for their indices. Furthermore, the objective is to show through the results that, with the
database used is possible to establish clusters of distribution systems related to the voltage sag and
with these establish a base impact factor, distinct for each distribution system.

Keywords: power quality; voltage sag; clustering analysis; index

1. Introduction
1.1. Relevance

Due to technological advances, always based on improving the productivity of in-
dustrial processes and providing well-being to all people, electro-electronic devices have
had a great entry in the domestic sector but mostly at manufacturing sector. However,
in general this electronics-based equipment has greater sensitivity to disturbances that
affect the power quality, especially those related to short-term voltage variations. When
there is a voltage sag in the electrical system, some industrial plant equipment may present
malfunctions that could compromise the production process, or in extreme cases, it could
cause a complete cessation of operations. Regardless of the type of interruption that occurs
in the industrial process, there will always be losses due to lost productivity, loss of raw
materials and the repair and replacement of damaged equipment [1].

The standard [2] presents methods for assessing the severity of individual voltage
sag events (single-event characteristics) and identifies voltage sag indices to quantify the
performance of multiple events in a specific location (single-site indices) or for the whole
system (system indices), as an example the SARFI indices, voltage sag tables, voltage
sag energy and voltage sag severity. References [3,4] do not present an index to assess
voltage sags, and only suggest a way to account for voltage sags, using a table divided into
residual voltage ranges and event duration ranges. Document [5] aims to standardize the
approach in South Africa to the characterization of voltage sag performance, seven voltage
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sag categories have been established (Y, X1, X2, S, T, Z1, Z2), based on a combination of
customer load compatibility and network protection characteristics. This standard also
presents characteristic values for the number of sag events in each category obtained
from a historical of the monitored sites. Currently [6] establishes an index called impact
factor (IF in Equation (10)) to assess the severity of the incidence of short term voltage
variations on substation buses and proposes a single reference value for this index of
1 p.u. One of the most controversial issues among the electricity sector agents was the
reference value of 1 p.u. suggested for the IF index, as generally, large consumers of energy,
have pointed out that the proposed value is soft and does not reflect the real needs of
industrial consumers, because it allows many process stoppages to happen. Despite the
numerous ways of assessing the voltage sags proposed in the standards [2–6], none of them
establishes a compliance criterion, that is, they do not present limit values for their indices.
Therefore, although voltage sags have a major negative economic impact for companies,
electricity utilities are not penalized if the industrial consumer suffers process stoppages.
For that reason, the question is how to properly establish limits for the IF index, since Brazil
has a large territorial extension, it is one of the countries with the largest interconnected
electrical system, has a great diversity of vegetation and climate. As distribution systems
of different regions are prone to different levels of variables influencing the voltage sags
occurrence, a credible way is to set distinct limits according to the characteristics of each
distribution system. Regarding to the improvement of the standard, this work is proposing
a methodology for the establishment of the base impact factor, considering distribution
system clusters that have similar characteristics in relation to the variables that influence
the occurrence of voltage sags, it is worth mentioning that the proposed methodology
is generic and can be applied by regulatory agencies in other countries to establish base
values for their indices.

1.2. State of Art

A survey of the main research databases in the field of electrical engineering, found
articles that use cluster analysis to characterize the power quality phenomena. The fol-
lowing is a summary of each of these works. In [7] a method for the evaluation of the
events of power quality considering different network operating conditions was proposed.
The measured data may depend on the load changes, generation and different network
configurations. For this reason, the author of the paper uses clustering techniques to divide
acquired data into groups that reflect operating conditions. In work [8], a technique based
on graphical cluster analysis was developed to be implemented in a smart power quality
analyzer, to monitor electrical networks. In the presence of a fault, the equipment starts the
measurement procedure and higher order statistics are calculated in the time domain to
allow classification. The results showed the division into two groups of events (voltage
sags and transients), with an accuracy of 80%. The paper [9] presents an algorithm that uses
the k-means method to recognize and classify the voltage sags of measurement data from
a large power grid in Shenzhen (China). The results showed that nearly all voltage sags
disturbances can be classified into 11 clusters that probably represent the characteristics
and causes of most events occurring in typical distribution systems. In [10], a method
developed to determine the optimal number of groups to be formed in power quality
measurement data is presented using a data mining algorithm based on the minimum
message length (MML) technique. To test the proposed method, three different databases
were used, and the test results confirmed the effectiveness of the proposed method, finding
the optimal number of groups. A new approach to identify the severity profile of busbar
voltage sags was introduced in [11], Voltage sags data caused by faults in all nodes of
the system are separated into clusters using the k-means technique. By implementing
the method, as a result, information is obtained from the buses that have the lowest oc-
currence of severe events, hence allowing the choice of installation of sensitive loads at
such points of the system. In addition, knowing the most affected buses, the allocation
of attenuation devices such as dynamic voltage restorers (DVRs) can be better evaluated.
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It is presented in [12] a hybrid model for power quality analysis composed by a modifi-
cation of the fuzzy min-max neural network (FMM) method added to a modification of
the clustering tree (CT) technique. The results were compared with those obtained when
applying other clustering algorithms, indicating a better accuracy of the proposed new
method. A methodology for detecting and classifying power quality disturbances using a
Stockwell transform was developed in [13]. The disturbances were generated by MatLab
according to the standards established in the IEEE—1159. Several signal characteristics
were extracted from the S-transform based multiresolution analysis. These characteris-
tics are used to classify the disturbances by the fuzzy c-means clustering method. The
effectiveness of the proposed algorithm was verified by satisfactory results from several
case studies, showing an assertiveness of 99%. Reference [14] proposes a new method for
reducing the training set size for the K–nearest neighbors (KNN) algorithm. The proposed
method is based on an iterative process. Experimental results showed that the accuracy
after sample reduction by recursive process had no difference compared to the original
training set. However, the classification of a new signal became faster. For a signal from a
real measuring device, the classification time has been reduced from 1.35 s to 0.09 s. The
work [15] proposes a method to comprehensively evaluate the power quality based on the
maximum tree (MT) algorithm for clustering by the fuzzy method. For the test, 4 indicators
were selected: voltage deviation, frequency variation, voltage unbalance and harmonic.
The results achieved in a practical case proved the viability of the method, which provides
some scientifically based guidelines for the consumer to select the electricity utility and
adjust the price paid for the energy according to the quality offered. The paper [16] pro-
poses a methodology to locate the source of voltage sags, initially cluster analysis is used
to divide data of voltage signals measured in different nodes into groups. Then, the set
of decision rules is defined using the partial decision trees algorithm, which will confront
the characteristics of each cluster and define which group the location of the disturbance
source fits into. The IEEE 34-bus test feeder system was used to evaluate the methodology
and the results showed a hit rate greater than 98%. The work [17] proposes and evaluates
an alternative methodology to characterize and classify voltage sags. PCA and K-means
clustering technique are applied to identify RMS voltage patterns and reduce the number
of RMS voltage profiles representative of the events considered. Real data from 300 events
collected at a wind farm in Spain were used to validate the methodology. The proposed
methodology proved to be efficient to assess a large number of events. The paper [18] based
on a statistical procedure that considers the correlation between the index and the number
of equipment trips, proposes a methodology to determine different sensitivity regions and
weighting factors from those established in [6]. Therefore, it proposes an improvement
of the standard [6]. The research conducted in [19] shows a methodology for clustering
distribution systems considering the variables related to voltage sags. The methodology
is summarized in four processes: selection of the variables by their correlation with the
frequency of voltage sags, implementation of the cluster analysis considering various
methods for further investigation of the most appropriate, evaluation of the methods that
generated the best clusters through analysis of variance between the response and the
generated membership and finally robustness analysis made by including small noises in
the input variable, observing which of the methods is more assertive in this condition. The
results showed that Ward’s method was the most appropriate to the considered database.
In the paper [20] it is proposed to apply principal component analysis (PCA) to reduce
32 variable input data (with some level of redundancy) by seven principal components
(PCs) which account for 97.9% of the information from the original variables, and from
these PCs form clusters of substations, using the Ward’s method, considering the Euclidean
distance between the elements. The formed clusters allowed to classify the distribution
systems in three categories regarding the number of occurrence of voltage sags (high,
medium and low levels). Studies conducted in [21] show a novel methodology to increase
discriminatory power in the estimation of voltage sag patterns using ellipsoidal functions.
Ward’s method was used to form clusters of substations with a similarity level to voltage
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sags, three distinct groups were found with small, medium and large amount of voltage
sags. The work [21] is an evolution of that presented in [20]. The method showed results
that are more precise, stable and reliable.

In articles [7–17], clustering techniques are used for purposes different from the
objective of this paper, such as monitoring, identification and classification of events,
location of the source and pattern recognition of voltage sags. These references were
presented to identify the application of cluster analysis in the power quality area.

The paper [18] focuses on proposing different sensitivity regions and weighting factors
from those established in [6]. While this paper, assuming that the regions of sensitivity
and weighting factors established in [6] are adequate, using cluster analysis, proposes new
values for the maximum frequency of occurrence of voltage sags and consequently a new
base impact factor. Therefore, the works are distinct, although complementary.

Articles [19–21] test several methods of clustering, with the objective of evaluating
which one is best suited to form groupings of distribution systems regarding the frequency
of voltage sags. These works are the ones that are most related to this paper, but they
are focused only on forming the groups, while this paper besides forming the groups,
uses this information to establish a base value for the voltage sag index, distinct for each
distribution system according to the performance of similar systems. Therefore, this paper
complements the studies conducted in [19–21] with the aim of promoting improvements
in [6]. None of the papers found use clustering techniques to determine the base values for
short-term voltage variation indices, showing the innovation of the proposed methodology.

2. Theory
2.1. Multiple Regression Analysis

A regression model that contains more than one predictor is called a multiple re-
gression model [22]. The purpose of multiple regression analysis is to use independent
variables which values are known to predict the values of the dependent variable selected
by the researcher. Typically, the dependent or response variable, y, may be related to k
independent or predictor variables. The generic model of multiple linear regression with k
variables is presented in Equation (1):

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (1)

Equation (1) describes a hyperplane in the k-dimensional space of the predictor
variables. The parameters βj are called partial regression coefficients [22]. βj can be
interpreted as the expected change in y due to the increase of one unit in xj, with the
other variables xk, k 6= j fixed. Suppose there are k predictor variables and n observations.
This model is a system of n equations, which can be expressed in matrix notation by
Equation (2):

y = Xβ+ ε (2)

where y =


y1
y2
...

yn

X =


1 x11 · · · x1k
1 x21 · · · x2k
...
1

...
xn1

...
· · · xnk

β =


β0
β2
...
βk

ε =


ε1
ε2
...

εn

.

The least-squares method can be used to estimate regression coefficients in the multiple
regression model. Equation (3) gives the least squares estimate for β [23]:

β̂ =
(
X′X

)−1 X′y (3)

The adequacy of the model is evaluated through hypothesis tests related to its param-
eters. Therefore, the hypothesis test is given by Equation (4):

H0 : βi = 0 H1 : βi 6= 0 i = 0, 1, . . . , k (4)
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If the p-value corresponding to the coefficient of a variable is inferior than or equal to a
predetermined significance level α, H0 is rejected and it is concluded that this coefficient is
non-zero, i.e., the variable in question is a significant addition to the model. Otherwise, H0
is not rejected and it is concluded that such variable has a non-significant effect. Another
way of expressing the forecast accuracy level is with the coefficient of determination (R2),
as shown in Equation (5):

R2 =
SQReg

SQT
=

∑n
i=1(ŷi − y)2

∑n
i=1(yi − y)2 (5)

Thus R2 is a global statistic to evaluate how much of the response variability of y
is explained by the independent variables. In most surveys, there are a large number of
independent variables available that can be chosen for inclusion in the regression equation.
The step of selecting which variables will be part of the model is an important point in
the model estimation process [23]. This research tested three sequential search methods to
select variables called stepwise, forward and backward. Probably the most used variable
selection technique is stepwise regression. A sequence of regression models is constructed
iteratively, adding or removing variables at each stage. The criteria for removing or adding
a variable at any stage are expressed in terms of a partial F test. To begin the process, the
independent variable with the highest correlation coefficient with the dependent variable
is chosen to generate a simple regression model. The next independent variables selected
are based on their incremental contribution (partial correlation) to the regression equation.
Each new independent variable introduced in the model is examined by the F test if the
contribution of the variables that are already in the model remains significant, given the
presence of the new variable. If not, the stepwise estimation allows variables already in
the model to be eliminated. The procedure continues until all independent variables not
yet present in the model have their inclusion evaluated and the reaction of the variables
already present in the model is observed when these inclusions occur [23].

In the forward selection procedure, variables are added to the model one at a time, as
long as their partial value of F exceeds a previously established limit. That is, this technique
can be considered a variation of the regression stepwise.

The backward elimination algorithm begins with all k model predictors. Then the pre-
dictor with the lowest F statistic is removed if that F statistic is insignificant. Subsequently,
the model with k–1 predictors is adjusted and the next predictor for potential elimination
is found. The algorithm ends when no more predictors can be eliminated [22].

2.2. Cluster Analysis (Dynamic Method)

Cluster analysis is the set of multivariate techniques whose main purpose is to aggre-
gate objects, items or individuals based on their characteristics [23]. The basic criteria used
to group objects is their similarities. In this manner, objects belonging to the same cluster
are similar to each other concerning the variables that were measured in them, and the
elements of distinct clusters are dissimilar for these same variables [24].

To decide whether two database elements can be considered as similar or not, math-
ematical metrics are used. In this study, Euclidean distance was used as a measure of
dissimilarity. Considering two elements Xl and Xk, l 6= k, the Euclidean distance between
them is defined by Equation (6):

d(Xl, Xk) =

[
p

∑
i=1

(Xil − Xik)
2

] 1
2

(6)

Clustering techniques are classified into two types: non-hierarchical and hierarchical,
and these are again classified into agglomerative and divisive [24]. Although hierarchical
and non-hierarchical methods have certain advantages, its application may not produce



Energies 2021, 14, 149 6 of 17

good results when analyzing the elements located at the borders between the different
groups, as shown in Figure 1.
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In Figure 1, it is noted that elements I and L belong to cluster 1 and the element F
belongs to cluster 2. Therefore, such elements will be represented by the characteristics
of their respective centroids. However, it is evident that the elements I, L and F are much
more similar to each other than to their own centroids. To get around this problem [25]
has created a new method, which works by establishing dynamic (changing) clusters from
each element. In the dynamic method, for each element taken as reference, a grouping of
elements that are most comparable to the so-called reference element will be formed.

In this method there is no formation of fixed clusters, as if there were distinct clusters
for each element. This method is very appropriate when the sense of belonging to each
cluster is extremely relevant. The algorithm for this technique consists of:

• Each element is adopted as the centroid of a group to be created;
• Once the centroid is defined, the distance of all elements to this centroid is determined;
• A cut-off criterion is established for the degree of similarity between the centroid and

the elements;
• Each centroid is grouped with the most representative elements based on their simi-

larities;
• The process is repeated for each of the elements.

The drawback of the dynamic method is that each sample element will generate a
cluster. Consequently, for applications that have many elements, the algorithm must be
implemented computationally.

2.3. Short-Term Voltage Variations and Index

Short-term voltage variations are defined as random events characterized by signifi-
cant deviations in the voltage RMS value over a short period and are divided into voltage
sags, swells and interruptions.

Voltage sags are the most frequent events among short-term voltage variation (STVV),
having a much higher occurrence rate than voltage swells. The IEEE 1564 standard recom-
mends that the handling of voltage sag and voltage swell events be done separately, due to
the different effects they cause on equipment [2]. Therefore, this paper will prioritize the
study of voltage sags. Although there are many studies and standards focused on voltage
sags, there is no international consensus on which index best characterizes the disturbance.
Standard [6] presents as parameters of an STVV the event amplitude (Equation (7)), the
event duration (Equation (8)) and as an index of a bus or system the frequency of occurrence
of events (Equation (9)):

Ve =
Vres

Vref
× 100 (7)



Energies 2021, 14, 149 7 of 17

where Ve is the event amplitude (in %), Vres is the residual voltage of the event (in Volts)
and Vref is the reference voltage (in Volts):

∆te = tf − ti (8)

where ∆te is the event duration, tf is the event end time and ti is the event start time:

fe = n (9)

where fe is the frequency of events and n is the number of events recorded in the period.
Some standards such as [2–5] propose that event stratification be done in tables with

certain amplitude and duration ranges.
Taking into consideration the particularities of the electrical system, the standard [6]

establishes as shown in Table 1, nine sensitivity regions, to correlate the importance of each
event with the sensitivity levels of different loads [18].

Table 1. Stratification based on sensitivity levels of various loads.

Magnitude
(p.u.)

Duration

[16.67 ms–
100 ms] (100 ms–300 ms] (300 ms–600 ms] (600 ms–1 s] (1 s–3 s] (3 s–1 min] (1 min–3 min)

>1.15
REGION H REGION I

(1.10–1.15]

(0.85–0.90]
REGION A

(0.80–0.85]
REGION G

(0.70–0.80]
REGION B

REGION D
(0.60–0.70]

REGION F

(0.50–0.60]
REGION C

(0.40–0.50]

(0.30–0.40]

REGION E
(0.20–0.30]

(0.10–0.20]

<0.10

To describe the severity of the incidence of events in a single index, the Impact Factor
(IF) index was established in [6], which has a 30 consecutive days calculation period, and is
calculated by Equation (10):

IF =
∑I

i=A(fei × fpi)

IFbase
(10)

where fei is the frequency of events over 30 consecutive days for each sensitivity region
i, with i = A through I, fpi is the weighting factor for each sensitivity region and IFbase
is the base impact factor, calculated considering the weighting factors and the maximum
frequency of occurrence for each sensitivity region. The maximum frequency of occurrence
for each sensitivity region is presented in Table 2.
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Table 2. Monthly maximum frequency of occurrence in the sensitivity regions [6].

Sensitivity Regions Maximum Frequency of Occurrences

1 kV < Vnominal < 69 kV

A -
B 5
C 4
D 3
E 2
F 1
G 4
H 1
I 1

The weighting factors were stipulated by the regulatory agency in order to consider
in the equation the sensitivity of the loads normally present in the industries, giving more
weight to severe events, which have a high probability of causing equipment shutdowns
and less weight for mild events, with a low probability of causing shutdowns. The weight-
ing factor (fp) for each sensitivity region and also the base impact factor are shown in
Table 3.

Table 3. Weighting factors and base impact factor [6].

Sensitivity Regions Weighting Factor (fp)
Base Impact Factor (IFbase)

1 kV < Vnominal < 69 kV

A 0.00

2.13

B 0.04
C 0.07
D 0.15
E 0.25
F 0.36
G 0.07
H 0.02
I 0.04

The base impact factor currently adopted is the same for all distribution systems,
not considering the levels of the variables that influence the occurrence of the event. The
reference value set in [6] for the impact factor index for distribution systems is 1.0 p.u.

Therefore, the objective of this work is to define different base impact factors for
each distribution system taking into account the performance of distribution systems that
have similar characteristics with respect to the variables that influence the occurrence of
voltage sags.

3. Material and Methods
3.1. Material

To make the proposed methodology applicable to all distribution systems with
1 kV < Vnominal< 69 kV in Brazil, starting from a larger database that is mandatorily sent
by all electricity utilities to the regulatory agency were chosen by a specialist 9 attributes
that include technical information of the distribution network that may be related to the
occurrence of voltage sags. Besides the attributes, it is necessary the information that will
serve as a goal to form clusters, which in the specific case of this research considered the
frequency of occurrence of the phenomena. The average monthly frequency of voltage
sag was obtained from measurements in 19 distribution systems belonging to a Brazilian
electricity utility.
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The complete database containing the values of the considered attributes and the
frequency of voltage sags measured in each distribution system (DS) is shown in Table 4.
The meaning of each abbreviation is listed in the Abbreviations section below.

Table 4. Database (attributes and frequency of voltage sags).

DS NF NRCU D_DESC PC_VRA PC_TD_1F PC_TD_R AFL FR VA FREQ

1 4 262 3.00 0.03 0.86 0.96 489.45 6.48 535.17 19
2 4 405 3.00 0.01 0.46 0.53 103.91 12.54 74.33 4
3 4 310 3.00 0.01 0.74 0.86 221.65 5.76 74.41 5
4 2 389 2.78 0.01 0.31 0.32 79.46 21.09 41.37 5
5 4 82 2.83 0.04 0.60 0.61 68.74 20.64 129.87 15
6 2 297 3.00 0.01 0.87 0.93 553.56 4.24 174.43 14
7 3 538 3.00 0.05 0.78 0.92 204.33 10.25 388.72 11
8 5 422 2.97 0.05 0.70 0.94 237.46 7.62 93.71 5
9 5 644 3.00 0.01 0.61 0.81 177.86 11.40 175.78 11

10 4 261 3.00 0.44 0.56 0.87 164.38 7.38 240.34 16
11 11 461 3.31 0.01 0.76 0.93 209.25 6.18 194.76 6
12 3 189 3.00 0.01 0.94 0.97 83.50 3.40 113.89 12
13 17 998 3.00 0.01 0.75 0.89 211.08 6.57 174.96 13
14 4 435 3.00 0.03 0.76 0.97 327.05 6.40 251.92 13
15 4 474 3.00 0.11 0.84 0.95 418.09 8.48 142.81 15
16 6 392 3.01 0.22 0.86 0.95 232.65 9.10 160.37 17
17 6 539 2.92 0.01 0.61 0.68 159.67 16.84 278.59 14
18 1 171 3.00 0.01 0.90 0.93 777.61 4.43 135.82 13
19 3 395 3.00 0.01 0.88 0.97 292.89 5.15 235.71 13

The number of feeders, is obtained by counting in the substation diagram, the number
of rural consumer units provided by the electricity utility, the atmospheric discharge density
was estimated from historical meteorological data, the percentage of remaining vegetation
was established by processing satellite images, the percentage of single-phase transformers
was obtained by the ratio of the number of single-phase transformers to the total number of
transformers in the distribution system, the percentage of rural transformers was obtained
by the ratio of the number of rural transformers to the total number of transformers in
the distribution system, the average feeder length was obtained by the ratio of the total
length of the distribution network to the number of feeders, the fault rate was obtained
by averaging historical data, the vulnerability area refers to the substation bus and it
was calculated considering failure impedance equal to zero. With the distribution system
modeled in a simulation software, short-circuits are applied to all nodes in the network
while the voltage on the substation bus is monitored, to check for voltage sag. All types
of short circuit were considered and weighted by the typical probability of occurrence.
The average monthly frequency of voltage sags was obtained through meters that were
installed in the substations and measured during one year.

3.2. Methods

The proposed methodology can be summarized in the following steps:

• Variables selection through sequential search methods (explained in Section 2.1).
• Formation of distribution systems clusters through the dynamic method, using as

input variables those selected in the previous step (explained in Section 2.2).
• Establishment of the base impact factor for each distribution system by averaging the

frequency of occurrence found in similar distribution systems, this is the main point
of the proposed methodology and will be exemplified in Section 4.3.

The flowchart in Figure 2, presents in more detail the process of the proposed method-
ology.
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4. Case Study and Results
4.1. Variable Selection

Given the number of variables available for analysis, and knowing the sensitivity that
the clustering method has when considering a large number of input variables, a step in
variable selection has been performed to define the smallest possible set that has a good
capacity to explain the variability of the response. For this step, the stepwise regression,
backward elimination, and forward selection procedures were tested. Considering a level
of significance for entry and removal of variables in the model equal to 0.1 and applying the
three regression techniques tested, the same model was obtained, whose main parameters
(R2, coefficients, regression equation) are shown in the Table 5.
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Table 5. Regression analysis for the frequency of voltage sags.

Analysis of Variance

Source DF Adj SS Adj MS f -Value p-Value

Regression 4 271.26 67.816 9.98 0.000
PC_VRA 1 79.71 79.709 11.73 0.004

PC_TD_1F 1 106.12 106.123 15.61 0.001
FR 1 60.99 60.991 8.97 0.010
VA 1 36.81 36.810 5.42 0.035

Error 14 95.16 6.797
Total 18 366.42

Model Summary

R2 R2 adj
74.03% 66.61%

Coefficients

Term Coef SE Coef t-Value p-Value VIF
Constant −16.25 6.16 −2.64 0.020
PC_VRA 20.88 6.10 3.24 0.004 1.10

PC_TD_1F 25.89 6.55 3.95 0.001 3.11
FR 0.589 0.197 3.00 0.010 2.81
VA 0.01321 0.00568 2.33 0.035 1.18

Regression Equation

Freq = −16.25 + 20.88 PC_VRA + 25.89 PC_TD_1F + 0.589 FR + 0.01321 VA

The generated model shows that all the selected variables presented P-Value below
the 0.05 threshold, indicating to be significant in the model. Also, the VIF values are all
less than 5, showing low multicollinearity between the selected variables. However, the
parameter normally used to verify the adequacy of the model is R2, the model adjusted
for the number of occurrences of voltage sags, presented R2 = 74% (satisfactory value),
representing a model that although parsimonious (a small number of variables) still ex-
plains the variability of the response. Thus, in the subsequent steps of the methodology,
the variables (PC_VRA—“percentage of remaining vegetation”, PC_TD_1F—“percentage
of single-phase transformers”, FR—“fault rate” and VA—“vulnerability area”) will be used.
It is noteworthy that any model found by the statistical method should be appreciated
by a specialist, to verify the selected variables and their coefficients, as to the physical
meaning they have with the phenomenon under analysis. Making this critical analysis of
the obtained model, it is valid to select the variable “percentage of remaining vegetation”,
since a short circuit source in the networks is the trees that can touch it. The variable
percentage of single-phase transformers indirectly brings information on the percentage of
rural networks, since single-phase transformers are commonly used in these. This way, the
variable also has an explanation from electrical engineering, since rural networks are more
exposed to the action of animals and tend to have less frequent maintenance compared to
urban networks. The fault rate variable is also related to the occurrence of voltage sags, as
some faults generate these events. The variable vulnerability area is strongly related to the
occurrence of the phenomenon since it represents the area under which the occurrence of a
fault will generate voltage sag. It is also noted that the coefficients linked to the variables
present in the model are in agreement with the expected since these selected variables have
a direct relation, i.e., an increase in the value of some predictor increases the value of the
response.

4.2. Clustering Analysis

For the implementation of the dynamic method, it is necessary to create tables by
increasingly sorting the distances between elements for each element taken as reference. For
example, considering DS 8 as a reference, Table 6 shows the distances between elements.
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Table 6. Distance and heterogeneity between elements (reference DS 8).

DS Distance Heterogeneity

8 0.00 0.00%
3 0.60 9.96%
13 0.87 14.49%
11 1.04 17.32%
15 1.08 17.97%
9 1.19 19.80%
14 1.42 23.69%
18 1.46 24.32%
6 1.47 24.51%
12 1.73 28.78%
19 1.75 29.21%
2 1.80 29.96%
16 1.98 33.00%
17 2.46 40.99%
5 2.57 42.91%
7 2.61 43.50%
4 3.53 58.87%
1 3.89 64.88%
10 3.96 65.94%

Percent heterogeneity is obtained by dividing the distance values by the maximum
distance (denominator of Equation (11)). The maximum distance will be the distance
between the reference DS and a hypothetical DS whose standardized attributes are three
times the value of the reference DS attributes, in other words, a DS that is 3 standard
deviations from the reference DS. Thus, the percentage heterogeneity formula is presented
in Equation (11):

Heterogeneity =
Distance√

k·32
=

Distance√
4·32

=
Distance

6
(11)

where k is the number of attributes. From the analysis of Table 6, considering maximum
percentage heterogeneity of 30%, DS 8 has 11 similar DSs.

4.3. Setting the Base Impact Factor

To establish the base impact factor, it is proposed to use the average of the values of the
monthly average frequency of voltage sags in each sensitivity region in the DSs that most
closely resemble the DS taken as reference. Starting with a determination of the maximum
expected number of occurrences in each sensitivity region, with these values and using the
weighting factors used by [2], a different IFbase is calculated for each distribution system.
The differentiation of IFbase from each system allows the reference value set by [6] of 1 p.u.
be maintained, but each DS will have a different goal according to the characteristics that
most contribute to the occurrence of the phenomenon and according to the performance
of systems that have similarities concerning these characteristics. Taking as an example
the DS 8, Table 7 shows the average monthly frequency of voltage sags measured in these
distribution systems stratified in sensitivity regions A to G.
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Table 7. Frequency of voltage sags in the sensitivity regions.

DS
Frequency of Voltage Sags in the Sensitivity Regions

A B C D E F G

8 3.08 0.00 0.00 0.50 0.25 0.50 0.58
3 3.25 0.08 0.00 0.50 0.00 0.17 1.25

13 6.67 0.67 0.33 1.92 1.75 0.42 1.42
11 2.08 0.75 0.17 0.83 0.67 0.92 0.83
15 8.55 1.36 0.09 2.73 0.18 0.18 1.45
9 3.58 0.17 0.08 1.33 0.33 1.50 1.25

14 7.60 0.40 0.00 1.10 0.30 0.70 2.70
18 6.13 0.75 0.13 4.25 0.38 0.63 0.88
6 7.08 0.67 0.33 3.58 0.33 1.00 0.92

12 6.00 0.75 0.42 2.25 0.67 1.58 0.67
19 8.89 0.33 0.22 1.33 1.11 0.56 1.00
2 1.83 0.50 0.25 0.92 0.08 0.25 0.25

16 9.25 2.25 0.17 1.67 1.42 1.25 0.75
17 7.09 1.18 0.09 1.55 0.64 1.73 1.18
5 4.73 0.91 0.36 4.18 0.73 2.82 1.09
7 5.09 1.55 0.00 1.73 0.45 0.82 1.45
4 2.33 0.17 0.08 0.50 0.67 1.08 0.50
1 11.80 1.60 0.30 2.20 0.50 0.90 1.30

10 7.67 0.50 0.00 0.75 0.58 2.25 3.42

Considering the average of the data in bold type present in each column of Table 7, the
maximum number of occurrences expected for each sensitivity region is obtained for DS 8.
Table 8 shows the sensitivity regions A to G considered in the Impact Factor calculation,
the weighting factor and the maximum number of occurrences relative to each sensitivity
regions used by [6] and the calculated by the proposed procedure.

Table 8. Weighting factors and limits for voltage sag frequency at sensitivity regions.

Sensitivity Regions Weighting Factor Maximum Frequency of
Occurrences (ANEEL)

Maximum Frequency of
Occurrences (DS 8)

A 0.00 - 5.40
B 0.04 5 0.54
C 0.07 4 0.17
D 0.15 3 1.77
E 0.25 2 0.50
F 0.36 1 0.70
G 0.07 4 1.10

Base Impact Factor (IFbase) 2.07 0.75

With the values of the maximum occurrences of DS 8, the new base impact factor
for this system is calculated by summing the weighting factor products by the maximum
occurrences, resulting in 0.75.

It is observed that the base impact factor found for the distribution system analyzed
is lower than that established by [6], due to the lower maximum number of occurrences
of voltage sags calculated for such a system. Using this calculation methodology, the
IFbase(new method), IF(new method), IFbase(current) and IF(current) of the other DSs of
this case study are shown in Table 9.
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Table 9. IFbase and IF of distribution systems.

DS IFbase(New) IF(New) IFbase(Current) IF(Current)

1 0.89 1.07 2.07 0.46
2 0.53 0.57 2.07 0.15
3 0.79 0.28 2.07 0.11
4 - - 2.07 0.33
5 1.56 1.26 2.07 0.95
6 0.84 1.30 2.07 0.53
7 0.81 1.02 2.07 0.40
8 0.75 0.48 2.07 0.17
9 0.68 1.37 2.07 0.45

10 - - 2.07 0.64
11 0.79 0.91 2.07 0.35
12 0.78 1.51 2.07 0.57
13 0.79 1.29 2.07 0.49
14 0.80 0.87 2.07 0.34
15 0.84 0.81 2.07 0.33
16 0.95 1.28 2.07 0.58
17 1.34 0.85 2.07 0.56
18 0.78 1.35 2.07 0.51
19 0.79 0.99 2.07 0.38

The graph in Figure 3 shows the IF (new method) and the IF (current) compared to
the reference value of 1 p.u.
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As shown in Figure 3, considering the current IFbase the index IF of all distribution
systems are below the reference value of 1 p.u., showing that this IFbase is soft, because all
distribution systems would be in accordance with the standard, not requiring actions by
the electricity utility. Therefore, a hypothetical industrial consumer who is connected to
any of these distribution systems and has a process sensitive to voltage sags characterized
by regions D, E, F, G (Table 1), can suffer up to 13 process stoppages per month without the
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impact factor exceeding 1p.u. In many industrial sectors, this number of process stoppages
would result in high financial losses.

On the other hand, with the calculation of the new IFbase considering the average of
the voltage sags frequency of the cluster, about 53% of the DSs had an Impact Factor above
the reference value of 1 p.u, if it was the methodology applied in the regulation, some
distribution systems would need improvements, such as pruning the vegetation nearby the
network, increasing the isolated compact network to adapt the index to the reference value.
Therefore, for electricity utilities, the proposed methodology establishes hard values for
the index, however it takes into account that similar distribution systems have to present
similar performances and generates base impact factors that are aligned with the power
quality demanded by industrial consumers.

5. Conclusions

Voltage sags cause major monetary losses to industrial consumers with sensitive loads.
Hence, it is expected that in the future there will be changes in the standard for proposing
limits and it is believed that the most appropriate procedure to be adopted should be
the establishment of a distinct base impact factor for each DS according to the systems
performance that it most resembles. In this context, this work is aligned with the aspirations
of the electrical sector, presenting in a didactic way a methodology for the establishment
of the base impact factor that is used in the calculation of the index that regulates voltage
sags in Brazil.

The results showed that the proposed methodology was able to select the variables
that are most related to the occurrence of voltage sags, to generate clusters of distribution
systems in relation to these variables and to establish the base impact factor for each DS.
The values found for the new base impact factors were lower than the current value, so it is
tighter, if adopted it guarantees a better power quality for consumers.

The regulatory agency is able to implement the methodology for all distribution
systems in Brazil, requesting the input data used from the electricity utilities. Other coun-
tries may adopt the proposed methodology to assign base values to their indices, even
if the available variables are different, or if the chosen clustering technique is different,
the suggested steps can be followed to find base values that take into account the perfor-
mance of the similar systems with respect to the variables that influence the occurrence of
voltage sags.

If the necessary data is available, in future research, the proposed methodology can be
reevaluated considering a larger sample of distribution systems and other variables that
may be relevant for the formation of clusters.
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Abbreviations
AFL Average feeder length [km];
ANEEL National Electricity Agency;
D_DESC Atmospheric discharge density [lightning/km2];
DS Distribution system;
FR Fault rate [faults/100 km/year];
FREQ Frequency of occurrence of voltage sags;
IEEE Institute of Electrical and Electronics Engineers;
IF Impact Factor;
NF Number of feeders;
NRCU Number of rural consumer units;
PC_TD_1F Percentage of single-phase transformers;
PC_TD_R Percentage of rural transformers;
PC_VRA Percentage of remaining vegetation;

PRODIST
Documents to standardize the technical activities related to the operation and
performance of the electricity distribution systems in Brazil;

RMS Root mean square;
STVV Short-term voltage variation;
VA Vulnerability area [km];
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