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Abstract: Light field (LF) imaging has multi-view properties that help to create many applications
that include auto-refocusing, depth estimation and 3D reconstruction of images, which are required
particularly for intelligent transportation systems (ITSs). However, cameras can present a limited
angular resolution, becoming a bottleneck in vision applications. Thus, there is a challenge to
incorporate angular data due to disparities in the LF images. In recent years, different machine
learning algorithms have been applied to both image processing and ITS research areas for different
purposes. In this work, a Lightweight Deformable Deep Learning Framework is implemented, in
which the problem of disparity into LF images is treated. To this end, an angular alignment module
and a soft activation function into the Convolutional Neural Network (CNN) are implemented. For
performance assessment, the proposed solution is compared with recent state-of-the-art methods
using different LF datasets, each one with specific characteristics. Experimental results demonstrated
that the proposed solution achieved a better performance than the other methods. The image quality
results obtained outperform state-of-the-art LF image reconstruction methods. Furthermore, our
model presents a lower computational complexity, decreasing the execution time.

Keywords: light field imaging; deep learning framework; image quality; computational complexity;
intelligent transportation systems

1. Introduction

A light field describes the distribution of light rays in the space; thus, more infor-
mation from our environment can be used to build an image. However, due to the high
dimensionality of the data, to obtain a scene is a difficult task [1].

Currently, the Light Field (LF) imaging [1] area has been explored by many stud-
ies [2,3] in the field of Virtual Reality (VR), Augmented Reality (AR) and different in-
dustrial applications, such as the commercial plenoptic cameras. In addition, different
image-based solutions are used in Intelligent Transportation Systems (ITSs) for several
applications [4–10], which use different machine learning techniques. ITS solutions aim
to improve safety, mobility and efficiency of transport services, and to accomplish these
goals, visual information plays an important role in the development of these services.
Nowadays, there are many proposals of deep learning models [11–19] that are applied to
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image or video processing applications in order to obtain better performance results in
terms of classification accuracy or used to improve the image content quality.

Research on microlens array (MLA) [20] has involved the intertwining with the LF
imaging with the aim to obtain four-dimensional information. Thus, with the microlens
array between the main lens and the image sensor, the plenoptic cameras can capture
the direction information of rays and intensity in real-world scenes [21]. However, some
problems with the trade-off between angular and spatial resolution cause conflicts in
dividing limited sensor resolution and restrictions on LF imaging. In some image scenes, the
use of more information of spatial resolution in relation to angular resolution may present
some advantages, but in other scenes more angular resolution may be more useful. Spatial
resolution is an important factor for visual realism in 2D and 3D displays [22]. Angular
resolution is related to the quality of the parallax effect, if it is insufficient, important details
of the presented information negatively impact the viewing experience. Thus, both spatial
and angular resolutions contain relevant properties to obtain a robust LF image content.

For improving the angular resolution of LF images, the view synthesis can be per-
formed, and Sub-Aperture Images (SAIs) can be synthesized from a set of input views
extracted from the plenoptic cameras. Some view synthesis studies [23,24] break down
the view synthesis into the disparity estimator and a color predictor is performed by a
Convolutional Neural Network (CNN) [25–28]. These studies obtain better results than
other methods [29,30] that require depth information for view warping and image regis-
tration. However, there are limitations in [23,24] for reconstructing LF scenes [31] as the
non-Lambertian surfaces and occluded regions.

The view methods are commonly concerned with the geometry data of the scenes,
with inaccurate depth estimation [32]. In [33], the advantage of the clear texture structure
of the echo planer image (EPI) is taken in the LF data, and the study models the problem of
LF reconstruction from a sparse set of views as a CNN-based angular detail restoration on
EPI. A blur–restoration–deblur framework is proposed, and the estimation of the geometric
scene is not performed, and the EPIs are 2D slices of 4D LF. Additionally, in [33], the
proposal is highly time-consuming because the task of blur–restoration–deblur is executed
several times before synthesization. In [34], an extension of the framework of [33] is
performed, in which ghosting effects are suppressed. However, the structure of both
framework are equal.

Despite the large advances in the image processing research area in the last few
years, many challenges need to be addressed [35–40]. The LF imaging requires the ability
to capture higher dimensional data as opposed to simply recording a 2D projection in
photography. Additionally, for acquiring a high-dimensional data and resolution, a trade-
off between the dimensions is imposed; therefore, the computational complexity is also a
challenge for the design of the algorithms.

In addition, 4D LF data are correlated in ray space, containing abundant information
on the scene and consequent computational complex. Unlike the manipulation of 2D
matrix or 3D volume-like videos, the high-dimensional LF data manipulation with plain
CNN becomes a difficult challenge because of the amount of data to be processed.

Many times, high-resolution (HR) images are required in various LF applications [41].
Thus, it is necessary to perform the reconstruction of HR images from low-resolution (LR)
data to LF super-resolution (SR) image [42]. For obtaining an acceptable SR performance,
information containing a single view, such as spatial data and different views, such as an-
gular information is very important. A few models have been proposed in this area [43–46];
however, these studies are limited due to their poor spatial information data.

Other methods using deep-learning-based algorithms [47–51] have improved the
spatial information data through convolutions layers, obtaining better results as compared
to traditional methods. However, these studies have not resolved the problem of disparity
in LF image SR.

In this context, the present research proposes a lightweight deformable convolution
network to treat the problem of disparity in LF SR images. An angular alignment approach
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is performed for angular data incorporation. Feature extraction containing rich spatial
data is performed to align with their original features, and a soft activation function is
also used in the CNN model to decrease the computational complexity of the proposed
deformable deep learning framework. Consequently, the proposed framework obtains an
improvement on the final image quality.

The main contributions of this paper are listed below.

1. An improved framework, which considers the feature extraction and angular align-
ment using the deformable convolution network approach, ruling out the use of
applying a loss function.

2. To reduce the computational complexity for LF SR images, a novel activation function
is utilized, which is performed in the proposed CNN model. Thus, a lightweight
solution to process LF SR images is obtained.

3. The performance assessment of the proposed model is tested using recent databases.
Experimental results demonstrated that our proposal reached a high accuracy for
image reconstruction, obtaining a better performance in image quality than other
similar works.

4. Our proposed framework improves the image content and its perceptual quality,
which are obtained with a reduced computational processing and execution time that
is relevant for different applications in the ITS research area [52–54].

Experimental results showed that our proposed CNN architecture obtain a low com-
putational complexity, reducing, on average, 37% of the training time and, on average, 40%
of the execution time. Moreover, image quality was also evaluated, and the results demon-
strated a superior performance of the proposed model in terms of objective image quality
metrics, such as Structural Similarity Index Measure (SSIM) and peak signal-to-noise ratio
(PSNR), reaching score values of 0.99 and superior to 45, respectively.

The remainder of this paper is organized as follows. In Section 2, related works
are presented. The methodology and the details of the proposed method is presented in
Section 3. Experimental results are presented in Section 4. Finally, the conclusions are
presented in Section 5.

2. Related Works

In this section, some works about LF image representation, as welll as frameworks
based on Deep Learning algorithms, are treated.

2.1. Light Field Representation and Images

The most common solution for the representation of a 4D LF is the light rays param-
eterized by the coordinates of their intersections with two planes in arbitrary positions.
Thus, the coordinate system is represented by (u, v) for the first plane, and (s, t) is the
representation for the second one.

The plenoptic function that describes a LF is reduced from seven to only four dimen-
sions, and it is represented by Equation (1).

L(u, v, s, t) (1)

A 4D LF can be visualized in two ways, through an integral LF structure, and 2D
slices [55,56]. Thus, the 4D LF can be represented as being a 2D array of images. For LF
rendering, the capture of insufficient samples can cause the ghosting effect in the views.
However, it is impractical to acquire many samples of a LF [1]. The minimum number of
samples needed for light field rendering is studied in [57,58], which concluded that the
pixels must at least touch each other to render the views without producing the ghosting
effect. Thus, a large number of samples are needed for producing a noise-free output, what
is computationally expensive, even now.

Many methods and models have been developed for working with LF images. An
approach was developed in [59], to estimate disparity from a LF images. Farrugia et al. [43]
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proposed a linear subspace projection approach for LF image SR. In [60], a LFBM5D for LF
image denoising is proposed, extending the state-of-the-art Block-matching and 3D filtering
(BM3D) image denoising filter to LFs. Another method was used to achieve LF image SR
in [44], using a graph-based method via graph optimization. Although the LF images are
well encoded in these cited studies, the spatial information is not fully exploited. Recently,
deep learning methods [61] are achieving superior results when compared to traditional
methods in spatial information exploitation. However, the computational models are much
more complex and time-consuming for processing.

In our work, the feature extraction and angular alignment are performed to improve
the image quality, reducing noise effects, and a soft activation function was used in the
CNN model for decreasing computational expenses.

2.2. Frameworks Using Deep Learning Algorithms

Deep-learning methods [62–64] have been used for several applications [65,66], such
as classification, detection, and recognition of images. For Single Image Super-Resolution
(SISR), a framework is proposed in [67], which learns the mapping from LR to HR im-
age using three layers, patch representation, non-linear mapping and reconstruction.
Dong et al. [68] use the SRCNN structure [67] to achieve a speed up of more than 40 times
with even superior restoration quality. A DRCN structure is proposed in [69], which
improves the SR results without introducing new parameters. Lai et al. [70] propose a
method that adopts a Laplacian pyramid to reconstruct residuals of high-resolution images.
Hu et al. [71] propose a method to solve SISR of arbitrary scale factor with a single model.
The cited studies work on obtaining a high-resolution image. However, they still have a
large computational expense.

Currently, novel SISR methods are demonstrating superior performance to traditional
methods in spatial information exploitation. The LFCNN approach is used in [72], improv-
ing both the efficiency of training and the quality of angular SR results by using weight
sharing. In [73], the authors attempt to measure the degree of their LF coherence (LFC),
obtaining consistent performance. Yuan et al. [47] use the LF-DCNN model for improving
the LFCNN via a SISR network EDSR [74] and a specific EPI-enhancement network.

A bidirectional recurrent network LFNet is proposed in [49] by extending BRCN
to LFs. Wang et al. [75] proposed another method, named LF-InterNet, for interacting
spatial and angular information for LF image SR. LF-ATO [76] and LF-InterNet [75] has
achieved a high reconstruction accuracy. Although the recent studies have improved the
network performance, the problem of disparity problem has not been well explored in the
literature. In the LFSSR [50] and LF-InterNet model [75], the LF features are organized,
and the angular information is incorporated in the model. However, the disparity problem
continues to occur in these studies. The LFNet [49] works with a video SR framework to
address the problem of disparity in recurrent networks, but it considers only SAIs from the
same row or column as its inputs.

The configuration in regular CNNs, which consider a fixed kernel, does not explore
long-range information. For resolving this problem, a deformable convolution is proposed
in [77] considering additional and learned offsets to make the convolution kernel distant
from its neighborhood. However, the deformable convolutions have been applied to video
SR [78,79] or more complex computational systems [77].

3. Methodology

In this section, the main steps followed in building the proposed framework are
described. We introduce the framework topology, used datasets and evaluation of the
proposed method through comparison to other methods.

3.1. Proposed Framework

Figure 1 shows the topology of the Lightweight Deformable Deep Learning Frame-
work, including the feature extraction, angular alignment (AA) using the deformable
convolution approach, and the reconstruction step. The input LR data serve as input in
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the CNN model, which performs the feature extraction and, posteriorly, the AA using
the deformable approach; then, reconstruction is performed. The deformable convolution
network approach considers constrained pooling layer models to treat the information
related to angular resolution in order to improve the image content and perceptual quality.
By the end, the reconstructed data are generated, in which the LF data are represented as
L(x, y, s, t).

Figure 1. An overview of the proposed lightweight deformable deep learning framework.

3.1.1. Feature Extraction

The feature representation containing a rich spatial context information is useful to
the subsequent alignments and reconstruction steps. Thus, in this work, spatial pyramid
pooling is used for performing the feature extraction.

The inputs are processed with a 1× 1 convolution, for generating initial features.
The residual modules and blocks are used for performing deep feature extraction. Then,
3× 3 convolutions are combined in the residual blocks. Later, features of these branches
are added in 1× 1 convolution.

The activation function used in this work is defined by Equation (2).

SR(t) =
t

t
α + e−

t
β

(2)

in which, α and β are a pair of trainable positive parameters. The activation function
presents a non-monotonic region, and t < 0 has the property with zero mean. In the case
of t > 0, it avoids and rectifies the output distribution.

In the experiments, other activation functions are used, such as Leaky ReLU for
comparison with the SR function.

3.1.2. Angular Alignment

After the feature extraction, an angular alignment using a deformable convolution
network approach is performed, in which a bidirectional alignment incorporates angular
data. Side-view features are put to the center view, and then they are aligned with the center-
view feature. In this work, a deformable convolution occurs for performing the feature
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collection and another for distribution. The first convolution considers the (k− 1)th side-
viewRk−1

i and offsets ∆Pk
i for generating the k-th featureRk

i→c, as shown in Equation (3).

Rk
i→c = Hk

dcn

(
Rk−1

i , ∆Pk
i

)
, (3)

where Hk
dcn is the deformable convolution in the kth block, ∆Pk

i = {∆pn} ∈ RH×W×C′

represents the offset ofRk−1
i fromRc.

An offset generation branch is used in this work, learning the offset ∆Pk
i . The side-

view featureRk−1
i is added to the center-view featureRc, going to a 1× 1 convolution for

performing a feature reduction. After, a residual module is applied to enlarge the receptive
field, maintaining a dense sampling rate. Thus, the residual module improves the angular
dependencies between the center and side views. By the end, another 1× 1 convolution is
used for generating an offset feature.

A 1× 1 convolution is performed, adding the angular data in the aligned features.

Rk
c = Hk

1×1

([
Rk

1→c,Rk
2→c, · · · ,Rk

(A2−1)→c,Rc

])
, (4)

where [· , ·] represents the concatenation, and Hk
1×1 represents the 1× 1 convolution.

To super-resolve all LF images, the incorporated angular information need to be
encoded into each side view. Consequently, we perform feature distribution to propagate
the incorporated angular information to the side views. Since the disparities between the
side-view features and center-view features are mutual, we do not perform additional offset
learning. Instead, we use the opposite offset ∆P̄k

i = −∆Pk
i to warp the fused center-view

featureRk
c to the i-th side view. That is,

Rk
i = Hk

dcn

(
Rk

c , ∆P̄k
i

)
. (5)

Posteriorly, the center-view feature Rk
c and side-view Rk

i , (i = 1, 2, · · · , A2 − 1) are
generated by the k-th.

In the proposed model, the alignment is performed among the center views and each
side view. It is important to note that the number of alignments can influence the network
model. Thus, the performance of the proposed model was analyzed according to the
variations’ number of alignments.

3.1.3. Reconstruction

For high reconstruction accuracy, spatial and angular data are used in the framework,
and a reconstruction step was necessary to add the features for the LF image. Thus,
multi-distillation blocks are used with a mechanism to extract and process hierarchical
features with the aim to achieve a small number of parameters and, consequently, a low
computational cost.

The outputs of the feature extraction and each alignment are processed by a 1× 1
convolution. The coarsely fused feature goes to the stacked information blocks. In each
information block, the input feature is processed by a 3× 3 convolution and an activa-
tion function.

The narrow feature fed to the bottleneck of the information block and the wide feature
goes to a 3× 3 convolution. Posteriorly, features of different stages are processed by a
1× 1 convolution, and the feature of the last information block is processed by a 3× 3
convolution for reducing its depth from 128 to 32.

A 1× 1 convolution is used for the reconstructed features, extending the depth to
α2C. The α is an upsampling factor. A pixel shuffle is used for upscaling the reconstructed
feature, with a resolution αH × αW. Thus, a 1× 1 convolution is used to compress the
number of feature channels.



Electronics 2021, 10, 1136 7 of 15

Moreover, we have justified in additional experiments that the detail–restoration
network can be certainly substituted by a deeper or more complex network structures,
which will further improve the performance of LF reconstruction.

3.2. Model of the Network

In this work, input sparse views S0(x, y, s, t) with the resolution of (H, W, n, n) are
used and one angular dimension t = t∗, t∗ ∈ {1, 2, ..., n} extracts 3D volume, containing a
resolution of (H, W, n) as shown in Equation (6).

Blt∗(x, y, s) = L0(x, y, s, t∗) (6)

Blt∗(x, y, s) are interspersed as Blt∗(x, y, s) ↑ to the resolution (H, W, N). Thus, the
details of Blt∗(x, y, s) ↑ are restored as Fr3d(·), forming the intermediate LF in Equation (7).

Blinter(x, y, s, t∗) = Fr3d(Blt∗(x, y, s) ↑) (7)

An angular domain conversion is performed to transform from t to dimension s. Using
s = s∗, s∗ ∈ {1, 2, ..., N} are extracted from Slinter(x, y, s∗, t) as is shown in Equation (8).

Bls∗(x, y, t) = Slinter(x, y, s∗, t) (8)

The resolution of (H, W, n) is interspersed to Bls∗(x, y, t) ↑ at same resolution in
Blt∗(x, y, s) ↑. Thus, the detail–restoration network is used for recovering details of
Bls∗(x, y, t) ↑, as Fc3d(·). The output Slout(x, y, s, t) as the resolution of (H, W, N, N) is
shown in Equation (9).

Slout(x, y, s∗, t) = Flc3d(Bls∗(x, y, t) ↑) (9)

3.3. Details of Implementation of the CNN Model

In this work, a model of an angular resolution of 5× 5 was used. The learning rate of
our model was set to 4× 10−4, and then it was decreased by a factor of 0.5. This occurred
for every 10 epochs. The training phase finished at 50 epochs.

The optimization of the training of the CNN model is performed by the mini-batch
momentum Stochastic Gradient Descent (SGD) approach, and the filters of the CNN are
initialized through a zero-mean Gaussian distribution.

Our model was implemented using the deep learning API written in Python called
Keras, on a workstation with an Intel 3.6 GHz CPU and a TiTan X GPU.

Tests are performed with the SR function and, for comparison, we also used the
well-known activation function, Leaky ReLU.

3.4. Datasets

Some public LF datasets, such as INRIA [80], HCInew [81], EPFL [82], and HCIold [83],
were used in this work. They are presented in Table 1 with the main characteristics. These
datasets were chosen because they are the most used in the related works [24,75].

Table 1 presents the number of scenes for training and for testing of each dataset used
in this work. Each dataset presents a total number of scenes available, represented by the
column-named Scenes. The LFs of the datasets have an angular resolution, AngRes, of 9× 9.
In the training stage, each SAI was cropped into HR patches with stride of 32. The bicubic
downsampling approach was used for generating the LR patches containing a resolution
of 64× 64. It is important to note that a random horizontal and vertical flipping, 90-degree
rotation was performed in this work, augmenting the training data by eight times.
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Table 1. Public datasets used in this work and its characteristics.

Dataset Training Test Type Scenes AngRes SpaRes (Mpx) GT Depth

EPFLa [82] 70 10 real (lytro) 119 14 × 14 0.034 no
HCInew b [81] 20 4 synthetic 24 9 × 9 0.026 yes
HCIold c [83] 10 2 synthetic 12 9 × 9 0.070 yes
INRIA d [80] 35 5 real (lytro) 57 14 × 14 0.027 no

a École polytechnique fédérale de Lausanne, b Heidelberg Collaboratory for image processing—new DB, c Heidel-
berg Collaboratory for image processing—old DB, d French National Institute for Research in Computer Science
and Control.

3.5. Evaluation of the Proposed Method through Comparison with Others’ Methods

Our method was compared to some state-of-the-art methods, including single image
methods, such as EDSR [74], RCAN [84], and SAN [85], and some LF image SR methods,
such as LFNet [49], LFSSR [50], resLF [48], LF-ATO [76], and LF-InterNet [75].

According to the related works [48,49,75], the Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM) were used as quantitative metrics for image
quality assessment.

The PSNR is determined using the following relation:

PSNR = 10 log10
(2d − 1)2WH

∑W
i=1 ∑H

j=1(p[i, j]− p′[i, j])2
(10)

where d represents the bit depth of pixel, W represents the image width, H is the im-
age height, and p[i, j], p′[i, j] represent the ith-row jth-column pixel in the original and
reconstructed image, respectively.

The SSIM is computed by:

SSIM(P) = 2∗µ1(P)∗µ2(P)+C1
µ1(P)2+µ2(P)2+C1 ∗

2∗cov(P)+C2
s1(P)2+s2(P)2+C2 (11)

where µ1(P) and µ2(P) represent the mean value of seq1 and seq2 computed in a window
located around P image; s1(P) and s2(P) represent the standard deviation of seq1 and
seq2 computed over the same window; cov(P) is the covariance between seq1 and seq2
computed over the same window; C1 = (K1 ∗ L)2 and C2 = (K2 ∗ L)2 represent the
regularization constants, in which K1, K2 are the regularization parameters, and they must
be > 0; L is the dynamic range of the pixel values.

For measuring the computational efficiency, our proposed method was compared to
same methods used in the image quality assessment. For this performance comparison,
the number of parameters, #Params, for measuring the model size, and the FLOPs for
measuring the memory cost were captured.

Additionally, the training and execution time of our proposed method and other
related proposals are measured. It is important to note that the efficiency of our proposed
method will be measured for 4 × SR scale.

4. Experimental Results

In this section, the main results about the use of AA in the network model, and the
proposed model performance compared to other state-of-the-art models are presented.

4.1. Angular Alignment in the Network Model

In this subsection, we investigate the tests for definition of the network model of our
proposed solution, through the AA.

The relation between the number of alignments (#AA), average PSNR (Avg PSNR),
and average SSIM (Avg SSIM) are studied; this is shown in Figure 2. Here, the average
values of each dataset: INRIA [80], HCInew [81], EPFL [82], and HCIold [83] are shown.
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Figure 2. Relation between the number of alignments and average image quality scores using PSNR
and SSIM, which were applied to the datasets INRIA [80], HCInew [81], EPFL [82], and HCIold [83].
(a) PSNR, and (b) SSIM.

It can be observed from Figure 2a,b that the number of AA converged to the value of
five for both metrics PSNR and SSIM. It is important to note that the number of alignments
represents the deformable convolutions in the feature distribution step, being an important
role a scenario of LF image SR. The reconstruction accuracy is improved in the moment
that the number of AA increases. However, the performance saturated in the #AA = 5.

4.2. Image Quality Assessment

Images generated by our proposed method and related methods are shown in Figure 3,
which were generated using an image extracted from the INRIA [80] dataset.
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Figure 3. Visual results of the methods and the proposed one of 4 × SR.

It is important to note that the perceptual quality of the images generated by our
proposed model, considering 4 × SR scale is compared with the groundtruth images.

The image quality assessment is quantitatively evaluated using objective metrics. In this
test, all the images available in each dataset were used. Table 2 presents the PSNR scores
obtained by our proposed model and other methods used for performance comparison.

Table 2. PSNR values achieved by different methods and our proposed model model in differ-
ent datasets.

Method EPFL HCInew HCIold INRIA

EDSR [74] 33.01 35.29 42.01 34.33
RCAN [84] 34.22 35.02 42.14 35.12
SAN [85] 33.11 35.39 42.41 34.43
LFNet [49] 32.09 34.01 40.17 33.02
LFSSR [50] 35.19 37.23 44.11 37.37
resLF [48] 33.49 36.11 43.19 34.33
LF-ATO [76] 34.10 38.03 44.29 36.21
LF-InterNet [75] 34.36 38.09 45.33 36.37
Proposed model with Leaky ReLU 34.41 38.22 45.49 37.51
Proposed model with SR 35.83 39.91 46.89 38.59

As can be observed in Table 2, the proposed model with the SR activation function
achieved the highest PSNR scores.

Similar results are obtained using SSIM, in which our proposed method achieved the
best performance as can be observed in Table 3.

Table 3. SSIM values achieved by different methods and our proposed model in different datasets.

Method EPFL HCInew HCIold INRIA

EDSR [74] 0.943 0.940 0.960 0.942
RCAN [84] 0.945 0.942 0.962 0.948
SAN [85] 0.947 0.942 0.963 0.948
LFNet [49] 0.940 0.936 0.964 0.940
LFSSR [50] 0.951 0.949 0.963 0.951
resLF [48] 0.943 0.944 0.960 0.952
LF-ATO [76] 0.950 0.952 0.961 0.964
LF-InterNet [75] 0.950 0.950 0.964 0.964
Proposed model with Leaky ReLU 0.953 0.956 0.964 0.966
Proposed model with SR 0.985 0.988 0.997 0.997
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4.3. Computational Efficiency

The comparison of our method to other methods was performed in terms of the
number of parameters, #Params, and FLOPs in GFLOPs unit, whose results are shown in
Table 4. As can be seen, our method uses a small number of parameters and a medium
number of FLOPs.

Table 4. Comparisons of our method to others, using number of parameters, #Params, as well as
FLOPs, using the SR activation function.

Method #Params. FLOPs (G)

EDSR [74] 14.18 M 15.33 × 25
RCAN [84] 14.39 M 15.71 × 25
SAN [85] 14.56 M 16.05 × 25
LFNet [49] 5.83 M 36.18
LFSSR [50] 6.23 M 36.87
resLF [48] 6.29 M 36.96
LF-ATO [76] 1.39 M 569.33
LF-InterNet [75] 4.58 M 46.18
Proposed model 3.17 M 43.41

In addition, the simulation time of our proposed model is compared to other methods,
and the results show that the training takes to converge, using the activation function
Leaky ReLU, around 7 hours and, using our method with the SR activation function, takes
around 5 h. Thus, Table 5 shows a reduction, on average, of 37% of the training and, on
average, of 40% of the execution time using the SR activation function when compared
to the related works. The execution time is measured as an average for running in the
datasets LF datasets, such as INRIA [80], HCInew [81], EPFL [82], and HCIold [83]. It is
worth noting that all methods used for performance comparison were run on the same
workstation with an Intel 3.6 GHz CPU and a TiTan X GPU.

Table 5. Simulation times achieved by different methods and the proposed one for training and to
execute in the LF datasets, such as INRIA [80], HCInew [81], EPFL [82], and HCIold [83].

Method Training (h) Execution (h)

EDSR [74] 8.2 0.9
RCAN [84] 8.3 0.9
SAN [85] 9.1 1.1
LFNet [49] 9.8 1.3
LFSSR [50] 9.7 1.3
resLF [48] 8.9 1.1
LF-ATO [76] 8.4 1.0
LF-InterNet [75] 8.3 0.9
Proposed model with Leaky ReLU 7.2 0.7
Proposed model with SR 5.1 0.6

5. Conclusions

In this work, we propose a new method for better visual quality, and to decrease the
problem of disparity in LF images. The procedure of feature alignment incorporates angular
data as well as improves the image quality. Moreover, the experimental results verified the
benefits of the proposed framework for the problem of depth estimation into LF images. In
order to obtain more reliable and representative results, all methods used for comparison
purposes were evaluated in datasets with different characteristics. Experimental results
showed that our proposed framework obtained the best performance in relation to other
methods. This fact demonstrated the versatility and good response in different image
conditions. For the training and execution time of our proposed model, we verified a
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reduction, on average, of 37% of the training and, on average, of 40% of the execution time
using the SR activation function when compared to the related works. For the PSNR metric,
we achieved values of 46.89 and, for the SSIM metric, we achieved values of 0.997 in the
determined dataset used in this work. Such values were achieved by the learning capacity
through the multi-scale feature representation and the activation function application.

The choice of the number of AA proved to have great importance in this work.
Additionally, to increase the performance in relation to the training and execution time, the
training function, SR, played a very important role in the network model.

In future work, we intend to explore the proposed model in the area of Biometrics
LF Data, comparing the efficiency of our proposed model and recent state-of-the-art
approaches. In addition, different activation functions will be tested to continue decreasing
the time during the training and execution phases of the proposed framework.
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