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Deformed dispersion relations are considered in the study of equations of state of Fermi gas with 
applications to compact objects. Different choices of deformed energy relations are used in the 
formulation of our model. As a first test, we consider a relativistic star with a simple internal structure. 
The mass-radius diagrams obtained suggest a positive influence of deformed Fermi gas, depending of the 
functions employed. In addition, we comment on how realistic equations of state, in which interactions 
between nucleons are taken into account, can be addressed.
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1. Introduction

Despite the many efforts made in recent years, combining grav-
ity with quantum mechanics remains one of the greatest chal-
lenges in theoretical physics. In this context, the study of the 
Lorentz symmetry at Planck scale plays a important role where 
the Plank energy E p = √

h̄c5/G acts as a threshold separating the 
classical and quantum regimes. At this scale, it is possible to pre-
serve the relativity principle by relying on modifications of special 
relativity, that can lead to a deformation of the Lorentz symme-
try. Doubly/Deformed special relativity (DSR) theories take into ac-
count an invariant energy scale in addition to the invariant velocity 
scale producing modifications of the dispersion relation with very 
interesting applications in astronomical and cosmological observa-
tions [1]. Some of these observations, including threshold anoma-
lies in astrophysics data, have been analyzed in [2–5] considering 
deformations of special relativity dispersion relation.

An important feature of DSR is the possibility of incorporat-
ing effects from different theoretical and observational motivations 
in a single scheme. For instance, an ultraviolet cut-of predicted 
by some results in the literature of black holes physics [6,7] can 
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be taken into account in a dispersion relation. In addition, the 
thermodynamics of such a compact object produced by these mod-
ifications can induce an uncertainty in the geometrical location of 
the horizon. [8]. Besides that, effects of uncertainties in the loca-
tion of the horizon of a black hole due to Planck scale Generalized 
Uncertainty Principles can be interpreted, in fact, as due to a hori-
zonless compact object, whose phenomenological possibilities have 
been recently investigated in [9].

In this way, the mentioned consequences suggest a review 
of possible effects on other compact objects as relativistic stars, 
where the high density of matter has important effects on the 
kinetic terms of the equation of state. In order to do that, it is 
possible to consider a free Fermi gas model in which effects of DSR 
modify the relation between energy density and pressure in the in-
terior of the star. In this context, the relation between Fermi gases 
and Lorentz invariance [10–14], and relation in other thermody-
namic systems [15–18] have been studied in recent years. Here, 
we present a modified Fermi gas due to the DSR and study the 
structure of a simple model of Neutron Star (NS). The focus of the 
present work is to investigate the effects of the modified equation 
of state (EoS) on the mass × radius diagram.

In the study of NS it is usual to probe different nuclear interac-
tions, such as Skyrme, Gogny, relativistic mean field (RMF) [19–24], 
while keeping the kinetic contribution to the energy as a Fermi 
gas. In the present work we investigate the effect of the DSR on 
the EoS that describes a Fermi gas without interaction. We analyze 
the effects of this modification on the macroscopic properties of a 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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simple NS model composed by free neutrons only. In addition to 
understanding the modification on the kinetic Fermi energy, which 
is the main objective of the present study, this work is the first 
step towards a more realistic description of a NS in the context of 
DSR.

This paper is divided as follows: in section 2 we introduce the 
DSR formalism and the modified dispersion relation that we will 
study in this paper, in section 3 we apply our modified EoSs to 
relativistic stars that can represent a simple model of NS, in sec-
tion 4 we describe and discuss our results and finally in section 5
we summarise our work and our conclusions.

2. Formalism

The formalism that we use here considers a general expression 
for energy of particles with a broad range of applications. We for-
mulate expressions for the energy density and others quantities of 
interest by assuming deformations both from theoretical and ob-
servational points of view. The low limit energy is investigated, 
where usual relations from especial relativity are recovered.

2.1. Dispersion relations

The starting point in our model is a DSR proposal with an 
invariant energy scale in which the deformation of the usual dis-
persion relation E2 − k2c2 = m2c4 can be written as

E2 f (x)2 − k2c2 g(x)2 = m2c4, (1)

where the argument x = λE/E p involves the ratio of the energy of 
a test particle to the Planck energy E p with λ being a real number 
(and k is the particle’s momentum). This is a general expression 
to the energy and can be written in a particular form depending 
on the nature of physical system. In the literature, the functions 
f (x) and g(x) may be chosen both to reproduce theoretical re-
sults expected from the semi-classical limit of quantum gravity 
and to explain certain phenomenological aspects from astrophys-
ical problems. As a first case, we will analyze the well-known set 
of functions in which the speed of light remains constant along 
the physical energy [25] through the choice of functions

f (x) = 1

1 − x
, g(x) = 1

1 − x
. (2)

As a second case, we will use the following set

f (x) = ex − 1

x
, g(x) = 1, (3)

where the exponential form of these functions is useful to explain 
observational data of gamma ray bursts at cosmological distances 
[26,27].

It is important to note that in the infrared limit the standard 
energy–momentum dispersion relation is recovered in this type of 
theory, i.e., the functions f (x) and g(x) satisfy the conditions:

lim
x→0

f (x) = 1, lim
x→0

g(x) = 1. (4)

2.2. DSR Fermi gas

Here we examine how changes in the dispersion relation affect 
a gas of fermions at zero temperature. It is considered N relativistic 
particles obeying the Fermi–Dirac statistics occupying a volume V . 
Under these assumptions, it turns out the following particle den-
sity [28]

dn = f (E)
g

(2π h̄)3
d3k, (5)
2

where f (E) = (exp((E − μ)/kB T ) + 1)−1 is the Fermi–Dirac dis-
tribution with E, μ, kB , ̄h and T being the energy, chemical poten-
tial, Boltzmann constant, Planck constant temperature, respectively. 
Note that at the time of observations the temperature of NS are 
between 105 to 109 K, which in the nuclear scale (1 MeV = 1.16 
× 1010 K) are quite cold. Therefore we take the zero temperature 
limit in the present study and assume T = 0 in the Fermi-Dirac 
distribution [29]. In this expression, g gives us the number of 
states of a particle with a certain value of k. We may particularize 
Eq. (5) for degenerate fermions assuming g = 2, and then integrat-
ing it, we obtain

n =
k f∫

0

8πk2

(2π h̄)3
dk = k3

f

3π2h̄3
, (6)

where k f is the Fermi momentum. With these results it is straight-
forward to obtain the energy density considering the modified spe-
cial relativity energy Emsr and integrating the relation dε = Emsrdn, 
with the result being given by

ε(k f ) = 8π

(2π h̄)3

k f∫
0

Emsrk2dk. (7)

In a similar way, the pressure dp = n( d
dk Emsr)dk can be written as

p(k f ) = 1

3π2h̄3

k f∫
0

(
d

dk
Emsr

)
k3dk. (8)

The procedure to determine the final form of Equations (7) and 
(8) requires the use of relations in Eq. (1). In our case, we use the 
relations (2) and (3) and then we solve the resulting expression for 
E .

2.3. First case

By substituting Eq. (2) into Eq. (1), we get the energy

Emsr = A1 + A3

√
k2c2 + m̄2c4, (9)

where we have defined the parameters

A1 = − (λ/E p)m2c4

1 − (λ2/E2
p)m2c4

, (10)

m̄2 = A2
2

A2
3

= m2

1 − (λ2/E2
p)m2c4

, (11)

A2 = m

1 − (λ2/E2
p)m2c4

, (12)

A3 = 1√
1 − (λ2/E2

p)m2c4
. (13)

Note that in the limit λ → 0, Eq. (9) reduces to the usual positive 
dispersion relation in special relativity. Indeed, when this consider-
ation it is taken into account, the equations of the modified Fermi 
gas will match standard results in the literature. So, if one sub-
stitutes expression (9) in Eq. (7), and then integrates it, the result 
is the energy density εmsr . In the same way, substituting (9) in 
Eq. (8) we obtain the pressure of the system pmsr . Thus we write 
these expressions as
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εmsr(k f ) = A1
8π

(2π h̄)3

k3
f

3

+ A3
c

8π2h̄3

{
k f

√
k2

f + m̄2c2
(

2k2
f + m̄2c2

)

−m̄4c4 ln

⎡
⎢⎣k f +

√
k2

f + m̄2c2

m̄c

⎤
⎥⎦

⎫⎪⎬
⎪⎭ , (14)

pmsr(k f ) = A3
c

24π2h̄3

⎧⎪⎨
⎪⎩

2k5
f − m̄2c2k3

f − 3m̄4c4k f√
k2

f + m̄2c2

+3m̄4c4 ln

⎡
⎢⎣k f +

√
k2

f + m̄2c2

m̄c

⎤
⎥⎦

⎫⎪⎬
⎪⎭ . (15)

As it was mentioned above, the equations of our model reduce to 
the standard special relativity expressions in the appropriate limit. 
To see this, we observe that in the limit λ → 0 equations (10), (11), 
(12), and (13) reduce to the following results respectively

A1 = 0, m̄ = m, A2 = m, A3 = 1, (16)

and, as a consequence, the energy density εmsr and pressure pmsr
reduce to the well-known values in special relativity εsr and psr , 
respectively. Before we analyze the application of these EoSs in the 
study of NS, we write down the equations of a Fermi gas using the 
deformed functions in Eq. (3).

2.4. Second case

It is important to study the influence of different deformation 
functions on the equations of state in order to obtain scenarios that 
can be applied effectively in astrophysics. For this purpose, we test 
a second set in which the function f (x) has an exponential form. 
Now, functions (3) may used in (1) and then solved for E . The 
resultant expression, that is related to the positive special relativity 
dispersion relation, reads as

Emsr =
ln

[
1 + (λ/E p)

√
k2c2 + m2c4

]
(λ/E p)

. (17)

Unfortunately, it is difficult to solve and obtain the low energy 
limit applying this dispersion relation in Eq. (7) and (8). The best 
way to do this is by separating the energy density in a contribution 
of undeformed special relativity εsr and correction terms εmsr . By 
applying Eq. (17) in (7) and expanding the resulting integral in 
series (up to second order), we obtain

ε(k f ) = εsr(k f ) + εmsr(k f ), (18)

where we have

εsr(k f ) = c

8π2h̄3

⎧⎪⎨
⎪⎩k f

√
k2

f + m2c2
(

2k2
f + m2c2

)

−m4c4 ln

⎡
⎢⎣k f +

√
k2

f + m2c2

mc

⎤
⎥⎦

⎫⎪⎬
⎪⎭ , (19)

εmsr(k f ) = c

8π2h̄3

{
k f

√
k2

f + m2c2 λ2c2

18E2
p

×
(

2k2
f

(
4k2

f + 7m2c2
)

+ 3m4c4
)

3

− m6c6 λ2c2

6E2
p

ln

⎡
⎢⎣k f +

√
k2

f + m2c2

mc

⎤
⎥⎦

− 4λc

15E p
k3

f

(
3k2

f + 5m2c2
)}

. (20)

In a similar form, we can use (17) in (8) and then expand the 
resulting integral in series, the result is

p(k f ) = psr(k f ) + pmsr(k f ), (21)

with

psr(k f ) = c

24π2h̄3

{
2k5

f − m2c2k3
f − 3m4c4k f√

k2
f + m2c2

+ 3m4c4 ln

⎡
⎢⎣k f +

√
k2

f + m2c2

mc

⎤
⎥⎦

}
, (22)

pmsr(k f )= c

24π2h̄3

{
λ2c2

6E2
p

2k5
f

(
4k2

f +5m2c2
)
−m4c4k3

f −3m6c6k f√
k2

f + m2c2

+ m6c6 λ2c2

2E2
p

ln

⎡
⎢⎣k f +

√
k2

f + m2c2

mc

⎤
⎥⎦

− 8λc

5E p
k5

f

}
. (23)

As we can see, the expressions for energy density and pressure 
can be divided in two terms such that in the limit λ → 0, corre-
sponding to the low energy limit, the second term in RHS vanishes. 
In what follows, we will numerically analyze in details these EoSs 
in the context of astrophysics of compact objects.

3. TOV

In this section, we present the Tolman - Oppenheimer - Volkoff 
(TOV) equations. With the use of these equations, it is possible to 
analyze the effects of the relations for the free Fermi gas when it 
is applied to the structure of compact stars.

Einstein’s equations are the basis for the theory of General Rel-
ativity. The solutions of these field equations allow us to obtain 
a description of the hydrostatic equilibrium of isotropic, homo-
geneous, spherically symmetric and static (no rotation) objects 
[29,30], a reasonable approximation for the so-called compact as-
trophysical objects, such as white dwarfs, magnetars, neutron stars 
and others. The birth of these objects coincides with the end of 
the nuclear fusion process of chemical elements inside them. The 
equilibrium conditions are guaranteed by the balance between the 
nuclear degeneracy pressure and the gravitational field. In agree-
ment, the physics of these objects involves two steps: first, the 
construction of an EoS from nuclear physics; second, the use of 
relativistic hydrostatic equilibrium equations obtained from gen-
eral relativity, the TOV equations.

For the description of these relativistic objects, Einstein’s equa-
tions are carefully applied in the outer and inner regions of space-
time. These regions being static and isotropic as a first approxima-
tion. The outer region is an asymptotically flat vacuum solution, 
given in terms of the Schwarzschild metric. These two parts must 
be carefully combined, with the stellar surface characterized by a 
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Fig. 1. Left: EoS for modified free Fermi gas in the first case. Right: mass and radius relation for a family of pure neutron stars. λ0 = 0 recover the (Dirac) Fermi gas.
point where the interior pressure vanishes. Einstein’s equations for 
the stellar interior are given by:

Gμν � Rμν − 1

2
gμν R = 8πG

c4
Tμν, (24)

where, Gμν is the Einstein geometric tensor and Tμν is the energy-
momentum tensor, which is responsible for describing the matter 
in the stellar interior. We can model the matter of the star as a 
perfect fluid, therefore, Tμν in a comoving frame is described as

Tμν = (ε + p)uμuν − pgμν, (25)

where p and ε represents respectively the pressure and energy 
density of the fluid and are functions only of the radial coordinate 
r. The connection between p and ε is provided by means of an 
EoS. Note that we are using the metric signature (+ − −−). Thus, 
combining the results for Gμν and for the tensor Tμν , we obtain 
two coupled differential equations:

M ′(r) = 4πr2ε(r), (26)

p′(r) = − GM(r)ε(r)

r2

(
1 + p(r)

ε(r)c2

)(
1 + 4πr3 p(r)

M(r)c2

)

×
(

1 − 2GM(r)

rc2

)−1

. (27)

Finally, Equations (26) and (27) are the reduction of Einstein’s 
equations to the interior of a static, isotropic and spherical rela-
tivistic compact star. These are the hydrostatic equilibrium equa-
tions for General Relativity, known as TOV [31,32]. This set of 
coupled differential equations (26) and (27) enables us to describe 
some measurable macroscopic astrophysical properties of compact 
stars, such as mass and radius, analyzed in the next section.

4. Results and discussion

In this section we show the numerical results of the EoS and 
TOV equations shown in the previous sections.

As discussed before, NSs are the final stage of the collapse of 
massive stars. During the dynamical process of collapse of these 
stars, nuclear processes occur, such as electron capture, which 
make the stellar matter richer in neutrons, in such a proportion 
that the proton fraction of the star is close to Y p = 0.1 or less 
[29] and most particles are neutrons. Therefore, in a good ap-
proximation, a NS is composed just by neutrons. However, it is 
known that in the NS we also have protons and electrons in beta-
equilibrium with the neutrons, and in the inner core of the star 
4

more exotic states could appear, such as hyperons or quark matter 
[29]. Since the purpose of this work is to analyse the modifica-
tions due to deformed fermionic kinematics, a single species is the 
simpler situation. Therefore we continue our analysis applying the 
DSR equations to pure neutron matter.

Before discussing our astrophysical relevant results, we would 
like to comment that for reasons of simplicity, at this stage, λ is 
redefined as λ = λ0 E p

c2m
. In the following, we analyze the values for 

λ0.
In the left panel of Fig. 1 we show the evolution of the pres-

sure with respect to energy density for the first case (Eq. (2)) of 
the modified Fermi gas. Note that λ0 = 0 recovers the Fermi gas 
within special relativity. We increase the parameter λ0 from 0.025
to 0.125 and note that, for a given energy density, the pressure in-
creases along with increasing values of λ0, i.e., the modified Fermi 
gas has a stiffer EoS compared to the special relativity. The con-
sequence of the stiffer EoS can be seen in the mass × radius 
diagram of a family of NS (right panel of Fig. 1) constructed with 
only kinetic contribution of pure neutron matter. We note that the 
modified special relativity predicts mass and radius higher than 
the special relativity for λ0 > 0.

If λ > 0, from the dependence of the energy with the momen-
tum and mass in the modified dispersion relation, we verify a 
decrease in the energy for given values of momentum and mass 
in first order perturbation. Such reduction is fixed, since it does 
not depend on the momentum, but just on the mass of the par-
ticle, as can be seen from the term A1 of Eq. (9). Physically one 
could interpret that a portion of the particle’s energy is reduced 
due to the interaction with degrees of freedom of the quantum 
spacetime described phenomenologically by the dispersion rela-
tion. On the other hand, a feature of this relation is the fact that 
its group velocity, dE/dk, is undeformed in first order perturbation 
in the Planck scale (corrections start at second order), i.e., it does 
not follow the reduction verified for the energy, or at least it re-
duces much less when analyzing higher order corrections. For this 
reason, for each value of pressure (as it depends on the group ve-
locity from Eq. (8)), one attributes a corresponding smaller value 
of energy. Therefore, we are verifying, in fact, a relative increment 
of the group velocity in comparison to the particle’s energy, and 
this features physically manifests as a stiffness of the EoS when 
we compare the pressure versus the energy density. The opposite 
behaviour should happen if λ < 0.

Finally, in Fig. 2 we analyze the effects for the second case cor-
responding to the set of functions of Eq. (3). Notice that for λ0 = 0
the conclusions are the same as discussed above. In this case, we 
test negative and positive values for λ0, since in this modification, 
negative values of λ0 are the ones that yield stiffer EoS and big-
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Fig. 2. Left: EoS for modified free Fermi gas in the second case. Right: mass and radius relation for a family of pure neutron stars. λ0 = 0 recover the (Dirac) Fermi gas.
ger maximum mass. And unlike the previous case, we note that 
positive values of λ0 reproduce softer EoS, resulting in mass-radius 
relation with slightly smaller maximum mass values when com-
pared to Fermi gas in special relativity. Therefore we decided, for 
reasons of comparison, to show only one positive value of this pa-
rameter, λ0 = 0.025.

From a perturbative analysis, if λ > 0 we verify a momentum-
dependent decrease in the energy at first order, (as can be seen in 
the last term of the RHS of Eq. (20)), which implies in a decrease 
in the group velocity at the same order. Considering this “com-
petition” between the fermion energy and the group velocity due 
to Planck scale effects, we verify a stronger reduction in the latter 
(taking into account the full integrand of Eq. (8)) than the former. 
For this reason, analyzing in a relative way, the fluid manifests as 
being less (more) stiff for positive (negative) values of λ. In sum-
mary, the stiffness of the corrected fermion gas depends on the 
competition between the corrections on the particles’ energies and 
the group velocity measured by the modified dispersion relation.

5. Final remarks

In this paper, we use DSR to obtain the EoS that describes a 
Fermi gas whose constituents obey a modified dispersion relation. 
We derive the new expressions for the pressure and energy density 
within two cases. The first one is given by Eqs. (2) and predicts a 
stiffer EoS for positive values of λ0. Furthermore, the exponential 
function, Eq. (3), of the second case predicts stiffer EoS for negative 
values of the DSR parameter.

Given that NS are mostly composed by neutrons, we use a sim-
plified version of NS that are composed by non-interacting neu-
trons. We note that in a more realistic model for NS in nature, 
it is necessary a nuclear interaction, and the presence of other 
particles, e.g., protons and electrons in beta-equilibrium with the 
neutrons. The simplified model presented in this work brings clear 
signs of the effect of modified special relativity on a free Fermi 
gas, which is a modification of the stiffness of the EoS compared 
to the special relativity one. As a future work, it will be interest-
ing to extend our approach to study an EoS with modified relation 
dispersion, including nuclear interaction applied to TOV, in order 
to understand the effect of DSR in more realistic models. Another 
improvement for a future work is the implementation of DSR at fi-
nite temperature, which is important if one is interested to study 
EoS for supernovae for example. In such case, the Fermi distribu-
tion present on Eq. (5) of our manuscript will be taken with T > 0. 
We expect the effect of temperature on the EoS to be similar of the 
one in special relativity, when, at a given density, the pressure in-
creases due to the thermal energy.
5

The two main aspects of the present work are: (i) while most 
of current works on EoS investigates modifications in the nuclear 
force, we approach the kinetic contribution of the nuclear EoS, 
which is usually taken either by a non-relativistic Fermi gas or by 
a relativistic one described by special relativity; (ii) we note that 
DSR predicts stiffer EoS and higher NS maximum mass depending 
on the phenomenological models.
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