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Planck scale modified dispersion relations are one way to capture the influence of quantum gravity on
the propagation of fundamental point particles effectively. We derive the time dilation between an
observer’s or particle’s proper time, given by a Finslerian length measure induced from a modified
dispersion relation, and a reference laboratory time. To do so, the Finsler length measure for general first
order perturbations of the general relativistic dispersion relation is constructed explicitly. From this we then
derive the time dilation formula for the κ-Poincaré dispersion relation in several momentum space bases, as
well as for modified dispersion relations considered in the context of string theory and loop quantum
gravity. Most interestingly we find that the momentum Lorentz factor in the present and future colliders
can, in principle, become large enough to constrain the Finsler realization of the κ-Poincaré dispersion
relation in the bicrossproduct basis as well as a string theory inspired modified dispersion relation, at
Planck scale sensitivity with the help of the muon’s lifetime.
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I. INTRODUCTION

A major difficulty in the search for quantum gravity
effects is that the scale at which they are expected to
become relevant is at the Planck energy EP of order
1019 GeV, respectively at distance of the Planck length
lP of order 10−35 m. Thus, in order to detect Planck scale
effects one either needs to reach very high energies, or,
probe very small lengths scales.
In the absence of a complete theory of quantum gravity,

phenomenological models which shall capture aspects of
quantum gravity often employ Planck scale modified
dispersion relations (MDRs) to effectively capture the
interaction of particles, propagating through spacetime,
with the quantum nature of gravity [1–3]. Such dispersion
relations predict a deviation of particle trajectories from the
general relativistic geodesics, with a leading order term in
powers of the inverse Planck energy. Thus, MDRs lead to
tiny corrections of the predictions of general relativity

(GR), which are in principle detectable. To be able to detect
these effects realistically, they need to be amplified, for
example through accumulation over a long travel time of
the particles. One observable, which meets this requirement
and is accessible, is the time of arrival of high energetic
gamma rays reaching us from gamma ray bursts at high
redshift, for which Planck scale MDRs predict a depend-
ence on the particles’ energy [4–8].
Recently, it was pointed out that in the comparison of

lifetimes of particles and antiparticles (in particular for
muons) Planck scale sensitivity for κ deformations of the
Poincaré algebra [9–11] is at reach [12,13]. In these
considerations the momentum Lorentz factor attained at
particle accelerators plays the role of amplifier of the
Planck scale effect.
Inspired by the promising findings of reaching Planck

scale sensitivity with muons, we study the lifetime of
elementary particles and the time dilation between their rest
frame and a laboratory frame, induced by Planck scale
MDRs. Following the famous clock postulate, that the
proper time an observer measures between two events in its
rest frame is the length of the observer’s worldline between
these events, the first ingredient necessary for our study is
the length measure for wordlines induced by a MDR. In
general, this will be a Finslerian length measure [14–18],
i.e., a function Fðx; _xÞ depending on position and the
velocity of an observer, which is 1-homogeneous with
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respect to the 4-velocity argument _x. Assuming a “flat”
dispersion relation results in a flat length measure, i.e.,
independent of x, from which the derivation of the proper
time along a worldline as function of the lab coordinate
time can be done explicitly.
We derive the time dilation formula between laboratory

frame and particle rest frame for the most general MDR in
first order perturbations of the GR dispersion relation
explicitly, and apply the formula to several Planck scale
MDRs motivated from the κ-Poincaré algebra, string
theory, and loop quantum gravity (LQG).
For the derivation we assume that the dispersion relation

and the resulting length measure is universal for all massive
physical objects, so in particular for the muon and the
observer. On a curved spacetime, this ensures the imple-
mentation of the weak equivalence principle, i.e., that
gravity couples universally to all physical objects, since
the dispersion relation encodes the coupling between
gravity and point particles (or the point particle limit of
fields). Moreover, transformations which leave the
dispersion relation invariant then are candidates for
observer transformations. For MDRs, these are modified
Lorentz transformations. Hence, we are not analyzing
Lorentz invariance violating (LIV) scenarios, for which
it is assumed that observers are still related by Lorentz
transformations.
Throughout our calculations we carefully distinguish

between the velocity Lorentz factor γ ¼ 1ffiffiffiffiffiffiffiffi
1−v2

p and the
momentum Lorentz factor γ̄ ¼ p0

m, which in general do
not coincide in the context MDRs.
Most interestingly, we explicitly calculate the time

dilation of the lifetime of muons with energies available
in facilities like the Large Hadron Collider (LHC), or the
planned Future Circular Collider (FCC), at CERN, from the
κ-Poincaré dispersion relation in the bicrossproduct basis
(which is identically to the MDR derived from a D-brane
string theory model). On the basis of a deformed relativity
principle, which is implied by the Finsler geometric treat-
ment of the modified dispersion relation,1 we find that the
deformation parameter, κ or MQ, could be constrained by
muon lifetime measurements at the colliders at the order of
magnitude of the Planck energy, thus reaching Planck scale
sensitivity for this quantum gravity phenomenology model
with muon lifetimes.
In this article η denotes the Minkowski metric

diagðþ;−;−;−Þ, indices a; b; c;… run from 0 to 3 and
indices i; j; k;… run from 1 to 3. The symbol ∂̄a ¼ ∂

∂pa

denotes derivative with respect to momentum coordinates.

II. THE TIME MEASURE FROM GENERAL
MODIFIED DISPERSION RELATIONS

We briefly review the mathematical procedure to obtain a
time measure from MDRs, before we apply the procedure
to general first order modifications of the GR dispersion
relation.

A. The general algorithm

Point particle dispersion relations are level sets of
Hamilton functions Hðx; pÞ on the point particle phase
space, technically the cotangent bundle T�M of spacetime.
To associate a time measure to massive point particles,
respectively observers, from the dispersion relation one
employs the Helmholtz action of free particles [14–20]

S½x; p; λ�H ¼
Z

dμð_xapa − λfðHðx; pÞ; mÞÞ; ð1Þ

where μ is an arbitrary curve parameter, “dot” means
derivative with respect to this parameter, f is a function
such that f ¼ 0 is equivalent to the dispersion relation
Hðx; pÞ ¼ m2, and λ is a Lagrange multiplier.
To obtain a length measure for massive particle trajec-

tories from this action we use the following algorithm:
(1) Variation with respect to λ enforces the dispersion

relation.
(2) Variation with respect to pa yields an equation _xa ¼

_xaðp; λÞ which must be inverted to obtain paðx; _x; λÞ
to eliminate the momenta pa from the action.

(3) Using paðx; _x; λÞ in the dispersion relation, one can
solve for λðx; _xÞ.

(4) Finally the desired length measure is obtained
as S½x� ¼ S½x; pðx; _x; λðx; _xÞÞ; λðx; _xÞ�H.

The crucial step in this algorithm is to be able to find
paðx; _x; λÞ, i.e., to invert the relation _xa ¼ _xaðp; λÞ. If this
is globally possible, only locally, or not at all, depends on
the dispersion relation under consideration and the choice
of the function f [16,21]. Among others, choices
employed in the literature are fðH;mÞ ¼ lnðHðx; pmÞÞ,
for homogeneous Hamiltonians [16], or,
f ¼ Hðx; pÞ −mn, often with n ¼ 2 [17,19], for nonho-
mogeneous Hamiltonians. Another suggestions for the
inhomogeneous case is fðH;mÞ ¼ lnðHðx;pÞ

mn Þ, which is not
yet investigated in detail.

B. First order modified dispersion relations

Let g be a general Lorentzian metric and hðx; pÞ be a
function on the cotangent bundle T�M of spacetime. A
general first order modification of the GR dispersion
relation is defined by the Hamilton function

Hðx; pÞ ¼ gðp; pÞ þ ϵhðx; pÞ: ð2Þ
The term gðp; pÞ ¼ gabðxÞpapb defines the GR point
particle dispersion relation on a curved spacetime, ϵ is a

1Although the string theory case is related to a LIV scenario, in
contrast to the κ-Poincaré one that deforms Lorentz symmetry, we
show that one can promote it to a deformed relativity scenario and
analyze the resulting muon lifetime phenomenology (an issue that
is further discussed in Sec. III).

IARLEY P. LOBO and CHRISTIAN PFEIFER PHYS. REV. D 103, 106025 (2021)

106025-2



perturbation parameter, counting the first nontrivial cor-
rection to GR, and hðx; pÞ a perturbation function, which
needs to be specified depending on the application in
consideration. In the context of quantum gravity pheno-
menology, ϵ is usually related to the Planck length or
Planck energy and hðx; pÞ can, for example, be obtained
from Planck scale MDRs, such as the κ-Poincaré dispersion
relation and others, whose influence we investigate in the
course of this paper.
The steps of the previously outlined algorithm can now

be performed as follows:
(1) Variation of the action (1) with respect to λ yields

f ¼ 0, which in turn enforces the dispersion relation

gðp; pÞ þ ϵhðx; pÞ ¼ m2: ð3Þ

(2) Variation of the action (1) with respect to pa and
using the perturbative Hamiltonian (2) yields

_xa ¼ λ∂̄aH∂Hf ¼ λð2pa þ ϵ∂̄ahÞ∂Hf; ð4Þ

which can be rewritten as (indices are raised on
lowered with the components of the metric g)

pa ¼
_xa

2λ∂Hf
−
1

2
ϵgab∂̄bh: ð5Þ

Explicitly inverting this equation completely to
obtain paðx; _x; λÞ is not possible, but also not
necessary in perturbation theory, as we will
see soon. We note the following two relevant
relations:

_xapa ¼ λð2gðp; pÞ þ ϵpa∂̄ahÞ∂Hf; ð6Þ

gðp; pÞ ¼ gð_x; _xÞ
4λ2∂Hf2

− ϵ
_xa∂̄ah
2λ∂Hf

; ð7Þ

where we introduced the notation gð_x; _xÞ ¼
gabðxÞ_xa _xb.

(3) Using (7) in the dispersion relation (3), using a first
order expansion of the Lagrange multiplier λ ¼ λ0 þ
ϵλ1 and solving the dispersion relation order by order
leads to

λ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð_x; _xÞp

2m∂Hf
; λ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð_x; _xÞp

4m3∂Hf
h −

_xa∂̄ah
4m2∂Hf

:

ð8Þ

(4) Combining all the results from (6), (7), and (8) in (1)
for the Hamiltonian (3) the action becomes

S½x� ¼
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð_x; _xÞ

p �
m − ϵ

h
2m

�
: ð9Þ

At this order, the function f and its derivatives all
cancel and so the specific choice is not relevant.
The perturbation function h appearing in (9)
has to be understood as h ¼ hðx; p̄ðx; _xÞÞ, with
p̄aðx; _xÞ ¼ m _xaffiffiffiffiffiffiffiffiffi

gð_x;_xÞ
p .

We have proven that the Finsler function which governs
the massive point particle motion of first order MDR is

Fðx; _xÞ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð_x; _xÞ

p
− ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð_x; _xÞ

p hðx; p̄ðx; _xÞÞ
2m

: ð10Þ
As an example, consider an nth order polynomial
modification

hðx; pÞ ¼ ha1a2…:anðxÞpa1pa2…pan ð11Þ

⇒ hðx; p̄ðx; _xÞÞ ¼ mn ha1a2…:anðxÞ_xa1 _xa2…_xan

gð_x; _xÞn2 ð12Þ

which yields

Fðx; _xÞ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð_x; _xÞ

p
− ϵmn−1 ha1a2…:anðxÞ_xa1 _xa2…_xan

2gð_x; _xÞn−12 :

ð13Þ

III. THE MUON LIFETIME FROM MODIFIED
DISPERSION RELATIONS

Next, we analyze how the lifetime of a fundamental
particle is modified by the assumption that it propagates on
a Finsler spacetime [22,23] induced by a MDR. The clock
postulate is implemented in the following way.
The proper time an observer, or massive particle,

experiences between events A and B along a timelike
curve (her worldline) in a Finsler spacetime ðM; FÞ is the
length of this curve between events A and B:

ΔτAB ≐ m−1
Z

μB

μA

Fðx; _xÞdμ: ð14Þ

We aim to investigate the decay of fundamental particles
in accelerators; therefore, we shall discard pure gravita-
tional effects, i.e., the spacetime curvature, and rely
on Finsler-deformations of Minkowski proper time.
Mathematically this is justified by the existence of special
coordinates, which allow one to neglect curvature effects at
small coordinate distance around every point and a given
direction on Finsler spacetimes [24]. Thus to zeroth order
we consider gð_x; _xÞ in Eq. (13) as the usual Minkowski
metric, which we shall label ηð_x; _xÞ. In Cartesian coor-
dinates we simply write

ηð_x; _xÞ ¼ ð_x0Þ2 − δijð_xiÞð_xjÞ: ð15Þ
Since the arc length is invariant under reparametriza-

tions, we transform the arbitrary parameter μ to the time
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coordinate in the laboratory frame, x0 ≐ t in (14). Using
(13), we have the following modification of the proper time
between the events with parameters ðx0ÞA ¼ tA to ðx0ÞB ¼
tB (from now on we omit the label “AB” in ΔτAB):

Δτ ¼
Z

tB

tA

dt

�
γ−1 −

ϵ

2
mn−2γn−1ha1…an

dxa1

dt
…

dxan

dt

�
; ð16Þ

where, for convenience, we introduced the ususal velocity
Lorentz factor

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð17Þ

with vi ≐ dxi=dt and v2 ¼ δijvivj.
Suppose a fundamental particle has its lifetime dilated in

a circular accelerator, like the LHC or the FCC [25]. In this
case, the norm of the three-dimensional velocity v2 is
roughly a constant, which allows for a simplification of the
above expression. In the following, Δt will be the time
measured in the laboratory frame in which the particle is
accelerated, while Δτ is the proper time experienced by the
particle, respectively measured by an observer comoving to
the particle.

A. The κ-Poincaré dispersion relation in bicrossproduct
basis type

For the κ-Poincaré dispersion relation in the
bicrossproduct basis, the first order correction of the
quadratic GR Finsler function is a polynomial of degree
n ¼ 3. The symbols ha1a2a3 for this case are ha1a2a3 ¼
− 1

3
ðδ0a1δijδia2δja3 þ δ0a2δijδ

i
a1δ

j
a3 þ δ0a3δijδ

i
a1δ

j
a2Þ and null

otherwise; see for example [26]. Hence the integrand in
(16) becomes

γ−1 þ ϵ
m
2
γ2v2 ¼ γ−1

�
1þ ϵ

m
2
γðγ2 − 1Þ

�
: ð18Þ

Moreover, ϵ is a parameter expected to be of the order of the
inverse of the energy scale at which quantum gravitational
corrections are expected to take place, which we simply
denote as deformation parameter κ−1, as it is usually done
in the context of the κ-Poincaré algebra.
Therefore, we express the lifetime of a fundamental

particle that probes a Finsler spacetime induced by the
κ-Poincaré dispersion relation in the bicrossproduct basis as
(we define Δt ≐ tB − tA)

Δτ ¼ Δt
γ

�
1þ m

2κ
γðγ2 − 1Þ

�
: ð19Þ

This geometric invariant quantity defined by Eq. (14)
measures the proper time a particle experiences, and is
related to the time which passes in the laboratory, with
respect to which the particle is accelerated. Thus the

measured lifetime of a particle in a laboratory, denoted
by Δt, can be related to the proper lifetime of the particle
Δτ, depending on its coordinate velocity v through the
factor γ. To first order κ−1, we find for the laboratory frame
lifetime of the particle

Δt ¼ γΔτ
�
1 −

m
2κ

γðγ2 − 1Þ
�
: ð20Þ

In order to compare with data from particle accelerators,
we need to express the velocity γ factor defined in (17) in
terms of the energy p0 and mass m of the particles. The
conversion between these dependencies is nontrivial due to
the deviations from the usual relativistic setting. We
derive the 4-momentum of the particles, which satisfies
the MDR:

p0 ¼
∂
∂ _x0 Fðx; _xÞ ¼ mγ −

m2

2κ
ðγ2 − 1Þð2γ2 − 1Þ;

pi ¼
∂
∂ _xi Fðx; _xÞ ¼ mγvi

�
−1þm

κ
γð2 − γ2Þ

�
: ð21Þ

Solving the first relation for γ as a function of p0 yields

γ ¼ p0

m þ m
2κ ð1 − 3

p2
0

m2 þ 2
p4
0

m4Þ. Employing this in (20) gives
us the lifetime as a function of p0

Δt ¼ ΔtSR
�
1þ m

2κ

�
m
p0

− 2

�
p0

m

�
þ
�
p0

m

�
3
��

; ð22Þ

where ΔtSR ¼ p0

m Δτ is the usual special relativistic dilated
lifetime expressed in terms of the particle’s p0 component.
This result leads us to introduce the momentum Lorentz
factor γ̄ ¼ p0

m. We would like to emphasize that for MDRs,
in general, the momentum Lorentz factor is different from
the velocity Lorentz factor, as we have demonstrated by the
derivation of the relation γðγ̄Þ ¼ γ̄ þ m

2κ ð1 − 3γ̄2 þ 2γ̄4Þ.
Before we continue we would like to point out a short

general comment on deformed Lorentz transformations. In
general, the 4-momentum defined as pa ¼ ∂

∂ _xa F satisfies
the deformed dispersion relation. This can be proven by
using the Lagrange multiplier (8) in (5), to express pa as a
function of _x, which coincides with pa ¼ ∂

∂ _xa F when using
F as identified in (10). In fact, for a particle at rest (v ¼ 0,
γ ¼ 1), the dispersion relation implies for the momenta
p0 ¼ m and pi ¼ 0; i ¼ 1, 2, 3. If we consider the
momenta as a function of γ and apply the transformation

p0 ¼ p0ð1Þ → p0
0 ¼ p0ðγÞ ¼

∂
∂ _x0 F and

pi ¼ pið1Þ → p0
i ¼ piðγÞ ¼

∂
∂ _xi F; ð23Þ

then the dispersion relation Hðx; pÞ ¼ Hðx; p0Þ ¼ m2

is satisfied. Therefore, the transformation that links

IARLEY P. LOBO and CHRISTIAN PFEIFER PHYS. REV. D 103, 106025 (2021)

106025-4



the 4-momentum of the particle at rest to the
4-momentum ðp0ðγÞ; piðγÞÞ represents a deformed
Lorentz transformation.
From (22), we are able to identify the dimensionless

quantity δp0;m, depending on the mass and energy of the
particles attained in accelerators, which is responsible for
an effect beyond special relativity and is the one which we
compare with the uncertainty of the most precise
experimental values of the mean lifetime of fundamental
particles:

δp0;m ¼ m
2κ

ðγ̄−1 − 2γ̄ þ γ̄3Þ ≈ m
2κ

γ̄3: ð24Þ

In the last approximation we focused on the term which
dominates for high energetic particles.
For a concrete example, let us consider the case

of the muon particle. The muon mean lifetime amounts
to [27]

τμ ¼ ð2.1969811� 0.0000022Þ × 10−6

s ¼ 2.1969811 μs� στ; ð25Þ

and its most precise measurement was done for low energy
muons in [28]. From (25), we see that the relative
uncertainty of this measurement reads

στ=τμ ≈ 10−6: ð26Þ

In the following, we shall explore the consequences of
assuming that experiments in the LHC or the FCC could
measure the muon lifetime with the same relative uncer-
tainty, which, as we shall demonstrate, would allow one to
set significant constraints on the quantum gravity energy
scale. An analogous prediction was done previously for
the case of the decays of the muon and antimuon, for a
κ-Poincaré basis in which the Hamiltonian is undeformed,
and modifications take place when comparing the lifetimes
of particles and antiparticles in the context of CPT
violation [12,13].
As a matter of fact, had we used the same basis of [12],

i.e., with an undeformed Casimir operator as a Hamilton
function, we would have derived the standard Minkowski
metric, without Finsler modifications, thus producing no
effect beyond special relativity in the lifetime of particles
depending on their relative velocity. We should stress that
this is a general feature of the use of different coordinates in
curved momentum spaces, i.e., different momentum space
bases lead to inequivalent relativistic theories and predic-
tions [29]; see also when we discuss isotropic dispersion
relations in the next section. As we shall see now, we will
be able to increase the estimated bound from lifetime
observations in 2 orders of magnitude in comparison to
previous approaches [13].

Comparing (24) and (26), we can estimate a lower bound
for the κ parameter using the momentum Lorentz factor, γ̄,
achieved in facilities like the LHC (p0=m ∼ 104) or that
shall be achieved in the FCC (p0=m ∼ 105) [13].2 Using the
mass of the muon [27]

mμ ≈ 105.6583745 MeV ð27Þ

and γ̄LHC ¼ 104 we find the LHC upper bound as

κLHC ≥
mμγ̄

3
LHC

2

τμ
στ

≈ 5.3 × 1016 GeV; ð28Þ

which lies 3 orders of magnitude below the Planck energy
EP ≈ 1.22 × 1019 GeV and corresponds to the scale of
some inflationary models [32]. This is already an interest-
ing result, since it is 2 orders of magnitude higher than the
bound proposed in [12,13].
Using the optimal γ̄ factor which can be reached by the

LHC for muons from γ̄LHCopt ¼ 6.5 TeV=mμ ¼ 6.1 × 104

one even reaches

κLHCopt ≥
mμγ̄

3
LHCopt

2

τμ
στ

≈ 1.2 × 1019 GeV ∼ EP: ð29Þ

We should stress that the assumption of reaching these
optimal conditions, like the precision (26) in the LHC, are
maximally optimistic. For instance, the measurement of
short-lived hadrons has been recently performed at the
CMSwith relative uncertainty of orderOð10−2Þ [33]. Some
extra difficulties arise when using the muon decay due to its
very long lifetime.3 However, the decay of exotic long-lived
particles (with lifetimes of the order 10 ps to 10 ns) also
have been searched in some LHC experiments [34], and
there is room for improvement in this analysis [35].
However, latest with the next generation colliders,

such as the FCC, the muon lifetime shall be amplified
by the Lorentz factor γ̄FCC ¼ 4.7 × 105, which alleviates
the needed relative uncertainty to constrain this effect at the
Planck scale: it could be of the order Oð10−4Þ to Oð10−3Þ,
which lies close to current capabilities. Besides that, this
observable represents an unforeseen opportunity for testing
Planck scale physics in prospective facilities like Muon
Colliders [36], where the dilated lifetime could be mea-
sured in longer baselines at the TeV scale.
Before moving on to further MDRs we point out that the

dispersion relation of the type H ¼ ηðp; pÞ þ ϵp0δ
ijpipj

does not only emerge in the context of the κ-Poincaré
algebra, but also in the context of propagation of particles

2These estimates are based on energies 6.5 TeV for the LHC
[30] and 50 TeV for the FCC [31].

3Nevertheless, the deformed muon lifetime is a good candidate
effect due to the smallness of the muon’s mass, which works as an
amplifier.
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in a quantum spacetime modeled by D-brane fluctuations in
string theory [37]. In our approach, the LIV nature of this
string theory dispersion relation gets supplemented by
deformed Lorentz transformations induced by (23). The
bounds (28) and (29) then translate into a bound on the
quantum gravity scale ξ

MQG
, for this LIV to DSR lifted

model, which is obtained by replacing κ by MQG

2ξ . The
bounds do not apply to the original LIV string
theory model.

B. Isotropic modified dispersion relations

We extend our analysis of time dilations to general
MDRs which are rotational invariant, i.e., depend only on

the norm of the spatial momentum q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijpipj

q
. The time

measuring Finsler function (10) becomes

Fð_xÞ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð_x; _xÞ

p �
1 − ϵ

hðp̄0ð_xÞ; q̄ð_xÞÞ
2m2

�
: ð30Þ

Using the relation p̄a ¼ m _xaffiffiffiffiffiffiffiffiffi
ηð_x;_xÞ

p , the reparametrization

invariance of the time measure (14) and the notation from
the previous section for p̄0ð_xÞ ¼ m _x0ffiffiffiffiffiffiffiffiffi

ηð_x;_xÞ
p ¼ mγ and

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijp̄ið_xÞp̄jð_xÞ

q
¼ m

ffiffiffiffiffiffiffiffiffiffi
δij _xi _xj

ηð_x;_xÞ

q
¼ mγv, we obtain the

general time dilation formula for this kind of MDRs

Δt ¼ γΔτ
�
1þ ϵ

2m2
hðmγ; m

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
Þ
�
; ð31Þ

where the units of the leading order perturbation parameter
ϵ must be adopted depending on the choice of h. Often the
leading order terms beyond special relativity are charac-
terized by a polynomial h ¼ P

r;s σrsp
r
0q

s, where σrs are
numerical coefficients and r, s are integers. For these

modifications the time dilation in terms of the velocity
Lorentz factor becomes

Δt ¼ γΔτ
�
1þ 1

2

X
r;s

σrs

�
m
EP

�
rþs−2

γrðγ2 − 1Þs2
�
: ð32Þ

To compare this dilation formula directly with the lifetime
of particles of a certain energy, one needs to rewrite this
expression in terms of the momentum Lorentz factor γ̄.
Therefore it is necessary to derive the relation between γ
and ðp0; mÞ case by case, analogously as we presented in
the previous section before (22).
To conclude, we list several prominent modification

functions h and their particle lifetime prediction in terms of
the velocity Lorentz factor γ in Table I.
With our findings we added another piece to the

systematic analysis of Planck scale MDRs and their
predictions of observables. Surprisingly, for first order in
Plank energy corrections, the Planck scale sensitivity for
muon lifetimes lies in reach already with the LHC, under
optimal conditions, but latest with the planned FCC for
more attainable requirements.
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TABLE I. Time dilation formulas for different MDRs.

Type and theory Perturbation function Time dilation

Monomials
r ¼ 1; s ¼ 2: D-brane recoil [38]
r ¼ 1; s ¼ 2: κ-Poincaré bicrossproduct [26], D-brane foam [37] h ¼ αpr

0q
s Δt ¼ γΔτ½1þ α

2
ðmEP

Þwγrðγ2 − 1Þs2�
w ¼ rþ s − 2

r ¼ 0; s ¼ 3: example from [15], Liouville-String QG [39]
r ¼ 4; s ¼ 0: LQG inspired MDRs [40–42]
p0 powers
r ¼ 1: κ-Poincaré Magueijo-Smolin basis [43] h ¼ αðp2

0 − q2Þpr
0

Δt ¼ γΔτ½1þ α
2
ðmEP

Þrγr�
Metric factor powers
s ¼ 2: κ-Poincaré preferred basis in [44] h ¼ αðp2

0 − q2Þs Δt ¼ γΔτ½1þ α
2
ðmEP

Þ2ðs−1Þ�
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