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Abstract: Geographic information systems make it possible to obtain fi ne scale maps 
for environmental monitoring from airborne sensors on aerial platforms, such as 
unmanned aerial vehicles (UAVs), which offer products with low costs and high space-
time resolution. The present study assessed the performance of an UAV in the evaluation 
of the seasonal behavior of fi ve vegetation coverages: Coffea spp., Eucalyptus spp., Pinus
spp. and two forest remnants. For this, vegetation indices (Excess Green and Excess Red 
minus Green), meteorological data and moisture of surface soils were used. In addition, 
Sentinel-2 satellite images were used to validate these results. The highest correlations 
with soil moisture were found in coffee and Forest Remnant 1. The Coffea spp. had 
the indices with the highest correlation to the studied soil properties. However, the 
UAV images also provided relevant results for understanding the dynamics of forest 
remnants. The Excess Green index (p = 0.96) had the highest correlation coeffi cients 
for Coffea spp., while the Excess Red minus Green index was the best index for forest 
remnants (p = 0.75). The results confi rmed that low-cost UAVs have the potential to be 
used as a support tool for phenological studies and can also validate satellite-derived 
data.

Key words: Coffea spp., Eucalyptus spp., Forest Remnants, Pinus spp., vegetation Indices.

INTRODUCTION

Unmanned aerial vehicles (UAVs) have 
dynamized Earth’s surface studies by collecting 
data at low altitudes (Getzin et al. 2012). The 
combination of these platforms with computer 
vision algorithms ensures the generation of high-
quality products, such as orthophotomosaics 
and three-dimensional (3D) models, which 
have the potential to detect and identify 
wildlife and flora classes. These parameters 
are diffi cult to distinguish using conventional 
platforms (Franke et al. 2012, Vermeulen et al. 
2013, Zhang et al. 2014). Thus, UAVs represent an 
important tool in agro-environmental studies, 
considering the imminent needs for conserving 

natural resources and promoting food security 
(Anderson & Gaston 2013, Koh & Wich 2012).

In this scenario, these platforms appear 
to be a potential new option for monitoring 
vegetation phenology (Zeng et al. 2020, 
Klosterman et al. 2018, Dandois & Ellis 2013) 
since they offer new opportunities for the 
scale-appropriate measurement of ecological 
phenomena, delivering fi ne spatial resolution 
data at user-controlled revisiting periods with 
relatively low cost (Hardin et al. 2019, Anderson 
& Gaston 2013). In addition, UAVs allow the 
assessment of vegetation structure, such as 
the detection and monitoring of natural gaps 
and species identifi cation for forest inventory 
and agricultural mapping by vegetation indices 
(Beniaich et al. 2019, Wallace et al. 2016, Jorge et 
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al. 2014, Raymond et al. 2011, Ferrier & Drielsma 
2010). This information is relevant to maximize 
yields and adjust conservation practices (Bendig 
et al. 2015, Croft et al. 2014, Torres-Sánchez et al. 
2013).

Several studies have applied sensors 
onboard UAVs to obtain time series data in 
seasonal vegetation patterns (Klosterman et al. 
2018, Klosterman & Richardson 2017, Berra et 
al. 2016), which can be justified by the fact that 
the collection of this information is similar to 
the operations of satellite sensors but at low 
altitudes (Zeng et al. 2020, Zhang et al. 2017). 
Therefore, UAV time series can be useful for fine-
scale measurements of vegetation phenology 
as well as satellite-based product validation 
(Klosterman et al. 2018).

However, a few studies have shown that 
these data are not being properly validated 
(Berra et al. 2019), and one of the main 
challenges in multitemporal studies is still the 
radiometric calibration of UAV imagery (Berra et 
al. 2017). Therefore, despite the potential of UAVs 
to fill the gap between the spatial resolution of 
satellites and the field scale (Pineux et al. 2017), 
monitoring large areas remains a significant 
challenge (Hufkens et al. 2012, Morris et al. 2013).

Thus, overcoming these limitations is a way 
of strengthening not only the monitoring of 
the landscape by UAVs but also contributing to 
reducing the worldwide loss of remaining forests 
and managing and conserving ecosystems. 
According to the FAO (2018), dominant trends of 
deforestation persist, and forested areas have 
decreased 130 million ha worldwide in the last 
25 years.

In this context, this study aimed to (i) 
validate the performance of a RGB sensor 
carried on a low-cost multirotor UAV for the 
seasonal study of vegetation and (ii) assess the 
potential for the use of UAV imagery to validate 
satellite-derived data. For these objectives, two 

vegetation indices were utilized: (i) Excess Green 
and (ii) Excess Red minus Green, in addition 
to superficial soil samples (0 - 20 cm) and 
Sentinel-2 satellite images.

MATERIALS AND METHODS
Study area
The study area is located in the municipality of 
Lavras State of Minas Gerais (Figure 1).

Forest Remnant 1 has the largest area 
(5.8 ha) and has the highest diversity index 
(Shannon – H’ = 3.90), and it is characterized 
by a flat topography and an open canopy of 
approximately 15 m. There are several natural 
gaps, and the most representative species 
are Copaifera langsdorfii, Xylopia brasiliensis, 
Sclerolobium rugosum, Ocotea corymbosa, 
Cryptocarya aschersoniana, Tapirira obtusa 
and Ocotea odorifera  (Aubert & Oliveira-Filho 
1994). Forest Remnant 2 is smaller (2.81 ha) and 
has a typical Cerrado (Savanna) physiognomy. 
This area has 19 families, 38 species, and 
38 genera (H’ = 3.28), with the exclusive 
occurrence of individuals such as  Bowdichia 
virgiloides, Dalbergia miscolodium, and Qualea 
grandiflora (Pereira et al. 2010).

The areas dominated by Pinus  spp. 
and Eucalyptus  spp. are composed of old 
homogeneous plantations with mature 
undergrowth. These areas are strongly 
influenced by the surrounding forest remnants 
since they represent their connecting units. In 
addition, they have been severely impacted by 
fires (Pereira et al. 2010, Aubert & Oliveira-Filho 
1994).

The coffee area has a slight declivity of 12% 
with leveled planting, and crop management 
makes use of mulching by covering the soil 
with grass and the implementation of minimum 
tillage, which creates protective conditions 
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against erosion and superficial rainfall runoffs 
(V.L. Naves et al., unpublished data).

According to the Köppen classification 
system, the climate of the study area is 
mesothermal tropical (Cwb) (Sparovek et al. 
2007). The average elevation is 918 m and the 
mean annual precipitation is 1529.7 mm, and all 
soils are classified as dystroferric Red Latosols, 
characterized by a clayed texture, a deep extent 
and a high level of Fe2O3, MnO and TiO2 (FEAM 
2010).

The region is part of the upstream portion 
of the Rio Grande watershed and makes up the 
geomorphological Atlantic Plateau unit with 
rolling relief in Varginha Complex crystalline 
rocks (Pinto & Silva 2014). The vegetation is 

characterized by the transition of the Atlantic 
Forest to the Cerrado (Savanna), with the 
presence of the remnants of Montana Semi 
Deciduous Forest in the Atlantic Forest domain 
(Oliveira-Filho et al. 2001).

Procedure
The research was organized into five stages 
(Figure 2).

Unmanned aerial vehicle (UAV)
In the first stage, we used the UAV Phantom 3 
(Professional) with a RGB sensor, camera model 
Sony EXMOR ½.3”, which captures images in real 
color with lens 94° FOV 20 mm.

Figure 1. Location map of the study area with the demarcation of the coverages studied in the municipality of 
Lavras, south of Minas Gerais. FR1: Forest Remnant 1; FR2: Forest Remnant 2; EU: Eucalyptus spp., PI: Pinus spp. and 
CO: Coffea spp.
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Flights were scheduled to run in the middle 
of each season (2017-2018) to detect seasonal 
patterns at a height of 60 m and with 80% forward 
and side overlap. Two grids were adopted: a 50 
x 50 m in the remaining forests and another 100 
x 50 m in the areas containing Coffea spp., Pinus 
spp. and Eucalyptus. Mapping of the areas was 
conducted from 20 autonomous flights that were 
planned and executed using the Pix4DCapture 
software.

The images were processed using the 
commercially available structure-from-motion 
(SfM) Agisoft Photoscan Professional® v1.2.7 
software. A reconstructed mesh surface was 
derived from the point cloud by using the 
automatic classification of points procedure 
based on (i) max angle, (ii) max distance, and 

(iii) cell size (Panagiotidis et al. 2017). No ground 
control points (GCPs) were used for image 
orthorectification.

Satellite
The Sentinel-2 images in Level-2 were obtained 
from the Earth Explorer portal (USGS), which 
has a resolution of 10 m in the visible spectrum, 
processed using the SNAP 2.5 (Sentinels 
Application Platform) software for atmospheric, 
terrain and reflectance correction through the 
sen2cor tool. The dates, sun elevation and sun 
azimuth for the Sentinel imagery are in Table I. 
Images from April and June were not analyzed 
due to the presence of clouds.

Figure 2. Flowchart with the five stages of study development: (1) Mapping with UAV; (2) Field sampling; (3) 
Obtaining and correction of Sentinel-2 images; (4) Application of vegetation indices and (5) results.
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Ground truth
In the field study (stage 3), georeferenced 
samples were collected from the soil surface (0 
- 20 cm) in five areas using a GPS model: GARMIN 
eTrex Vista H.

A previous pilot study was carried out to 
determine the representative number of soil 
samples needed to conduct the research. Thus, 
250 surface layer soil samples for each cover 
were collected from transects in autumn with 

50 samples from each covering; it was possible 
to determine from regression, using weather 
station data, that 10 samples from each cover 
type were significant.

Soil sampling campaigns were carried out 
on the same day as the flights with the collection 
of 50 samples for organic matter, texture and 
moisture analysis. However, because coffee 
harvesting during the summer occurred days 
before collection, it was not possible to study 
this vegetation cover in this particular season.

Sampling was carried out randomly 
along the flight grids. The organic matter was 
determined by the volumetric method with 
potassium dichromate (EMBRAPA 1998), while the 
soil texture was obtained by the densitometer 
method (Black 1986). The standard moisture 
was measured by the gravimetric method (Hillel 
1998), and field measurements were carried out 
for soil moisture and temperature using sensor 
reflectometry (Time Domain Reflectometry, TDR 
- 5, TM Decagon Devices). Principal component 
analysis (PCA) was conducted to investigate 
the relationship between soil attributes and 
coverages.

To assess the seasonality of the vegetation 
indices, climate information, such as 
temperature, mean rainfall, and insolation, were 
obtained from a climatological station located 
in Lavras from January 2017 to March 2018.

Vegetation indices
The vegetation indices Excess Green (Woebbecke 
et al. 1995) (Equation 1) and Excess Red minus 
Green (Meyer & Neto 2008) (Equation 2) were 
tested in stage 4 using ArcGIS 10.4.1 (Esri 2017).

ExG = (2 * (green) – (red) – (blue))	 (1)

ExRmG = (2 * (green) – (red)) - (1.4 * (red) – (green))	 (2)

These vegetation indices were selected 
according to Torres-Sánchez et al. (2013) and 

Table I. Date, sun zenith angle mean, sun elevation and 
sun azimuth angle mean of satellite Sentinel-2.

Date Sun zenith 
angle mean

Sun 
elevation

Sun 
azimuth 

angle 
mean

Autumn

05/02/2017 44.31 45.69 35.83

Winter

07/01/2017 51.51 38.49 32.09

07/21/2017 49.57 40.43 34.64

07/26/2017 - - -

08/15/2017 - - -

08/30/2017 39.48 50.52 42.99

09/04/2017 - - -

09/19/2017 32.78 57.22 49.51

Spring

09/24/2017 - - -

10/09/2017 26.49 63.51 59.25

10/14/2017 25.20 64.80 62.44

11/13/2017 20.96 69.04 85.09

Summer

12/28/2017 23.54 66.46 99.55
01/22/2018 27.02 62.98 91.62
02/16/2018 29.53 60.47 76.08
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Saberioon et al. (2014) who assessed their 
accuracy with UAVs and presented relevant 
results. As the aim of this study was to evaluate 
the potential of low-cost tools based on RGB 
sensors, indices that had already presented 
results in similar study applications were 
chosen (Rasmussen et al. 2016, Beniaich et 
al. 2019, Zheng et al. 2020). Considering that 
these indices seek to enhance the influence of 
vegetation and reduce that of soil, they were 
suitable for this study’s goals.

The mean value of each vegetation index 
was extracted from polygons delimited according 
to the soil sample points georeferenced on 
the ground, and the threshold scope of the 
samples under each cover was determined. The 
orientation of this process was based on three 
vectors: the translation vector “t”, the rotation 
vector “r” and the vector of size “s”, which were 
accessed from elements addressed with the x, 
y and z suffixes (Esri 2017) (see Supplementary 
Material - Appendix S1 (Tables SI, SII and Figure 
S1)). Posteriorly, a mesh of 10 x 10 m was created, 
a dimension similar to the spatial resolution of 
the Sentinel-2 images, to extract the mean values 
from each vegetation index. This procedure 
minimized the differences due to the different 
spatial resolutions of these platforms.

Mean values for the cells of each mesh were 
obtained from a table by considering the number 
of pixels in the polygons and its maximum, 
medium and minimum values as well as the 
sum and standard deviation. The values used 
for the study are the means for each polygon.

To normalize the orthophotomosaics, 
Flight 1 (05/02/2017) was used as a reference. 
Thus, common targets with no significant 
variation in reflectance were identified among 
all orthophotomosaics of vegetation indices. 
Therefore, targets were mainly selected from 
exposed soil, roofing and asphalt and are 
represented by a circular geometry of varied 

sizes. Upon the detection of these areas, 
the mean values for each were determined 
using the same methodology adopted in the 
extraction of vegetation indices, and these 
values were subjected to a linear regression. 
Therefore, these equations were applied on the 
orthophotomosaics for final calibration, and the 
R² illustrates the procedure effectivity (Table II).

The extraction method of the mean values 
of each vegetation index in the Sentinel-2 
images was similar to the aforementioned 
methods. Thus, in stage 5, means were analyzed 
by Pearson’s correlation using the data obtained 
from both platforms to determine the best 
performance rate in each cover.

Table II. Equations applied to normalize 
orthophotomosaics per cover.

Cover Equation R²

ExG

Coffea spp.
y = 1.0631*MEAN + 8.3589
y = 0.8444*MEAN + 26.545

0.93
0.99

FR1
y = -0.2487*MEAN - 22.449
y = -0.2539*MEAN - 11.256
y = -0.5918*MEAN - 18.31

0.14
0.10
0.36

FR2
y = -0.2335*MEAN - 21.952
y = -0.3339*MEAN - 12.852
y = -0.6766*MEAN - 19.608

0.14
0.14
0.48

ExRmG

Coffea spp.
y = 0.9409*MEAN - 64.895
y = 0.8978*MEAN - 26.023

0.83
0.88

FR1
y = 0.4662*MEAN - 322.15
y = 0.566*MEAN - 277.13
y = 0.6077*MEAN - 237.1

0.76
0.78
0.76

FR2
y = 0.4824*MEAN - 319.26
y = 0.5804*MEAN - 271.74
y = 0.6184*MEAN - 232.34

0.77
0.74
0.73

ExG: Excess Green; ExRmG: Excess Red minus Green; FR1: 
Forest Remnant 1 and FR2: Forest Remnant 2.
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RESULTS
Ground analysis
A total of 190 soil samples were collected for 
the PCA. The PCA results (Figure 3) showed a 
high correlation between the soil attributes and 
coverages, suggesting that the vegetation type is 
considered a soil property indicator.

As observed in Figure 3, the cover type 
that showed the strongest association with soil 
moisture were Coffea spp. and Forest Remnant 
1; these were expected to have the highest 
correlation to the proposed vegetation indices.

Table III presents the variability of moisture 
and temperature for each coverage per season, 
which were similar between each areas, except 

for the Eucalyptus spp., while Figure 4 shows the 
variability of climatic data in 2017 and 2018.

Orthophotomosaics
Regarding the orthophotomosaics, Pinus spp. 
and Eucalyptus spp. areas have not been 
evaluated by UAV due to the difficulty of these 
platforms in mapping homogeneous coverings 
(Matese et al. 2015, Pádua et al. 2017) formed 
by vegetal clones. Another factor that may also 
justify this shortcoming was flying altitudes: 
because tests were performed at an altitude up 
to 110 m they did not provide satisfactory results, 
likely due to the morphology of the small leaves 
(Matese et al. 2015).

However, in other areas, the aerial surveys 
reached 2 cm spatial resolution (mean value) 

Figure 3. Principal component analysis (PCA) of cover and soil properties. It is possible to detect that the soil 
moisture variability of Pinus spp. was similar to Forest Remnant 1 and Forest Remnant 2. (a) Autumn, (b) winter, 
(c) spring and (d) summer. Filled circle: Coffea spp., Triangle: Eucalyptus spp., X: Pinus spp., Open circle: FR1 and 
Square: FR2. OM: Organic matter.
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and allowed the detection and individualization 
of natural gaps and trees. (Figure 5).

Vegetation indices
The mean values of each vegetation index per 
season (Table IV) represents seasonal variability 
and highlights the differences between the two 
platforms, although they both indicated similar 
correlation between vegetation dynamics and 
soil moisture (Figure 6, Table V and Table VI).

The index with the highest correlation to 
Coffea spp. was Excess Green (p = 0.96), although 

Excess Red minus Green also performed well (p 
= 0.94). Regarding the forest remnants, highest 
correlation was in Forest Remnant 1 with the 
Excess Red minus Green index (p = 0.75), while 
this relationship for Forest Remnant 2 was not as 
high (p = 0.37). The Excess Green index (p = - 0.29 
and p = - 0.30) was similar for both coverings 
and did not perform well.

Table III. Mean values and standard deviation of soil moisture and temperature.

Season Date
SM ST
% o C

Coffea spp.
Autumn May 2nd, 2017 32.08 (1.89) 22.05 (1.06)
Winter August 24th, 2017 24.99 (2.36) 23.69 (2.46)
Spring November 23rd, 2017 32.11 (2.63) 24.74 (1.73)

Summer January 30th, 2018 - -
FR1

Autumn May 2nd, 2017 25.15 (1.46) 19.35 (1.80)
Winter August 24th, 2017 22.51 (2.61) 23.62 (0.89)
Spring November 23rd, 2017 31.59 (1.54) 21.3 (0.49)

Summer January 30th, 2018 34.19 (1.32) 23.6 (0.63)
FR2

Autumn May 2nd, 2017 30.92 (6.39) 18.19 (1.00)
Winter August 24th, 2017 28.27 (2.63) 22.45 (1.02)
Spring November 23rd, 2017 33.02 (2.38) 21.24 (0.34)

Summer January 30th, 2018 33.81 (4.30) 23.03 (0.52)
Pinus spp.

Autumn May 2nd, 2017 27.26 (4.61) 21.00 (0.96)
Winter August 24th, 2017 23.11 (1.70) 20.13 (2.06)
Spring November 23rd, 2017 31.16 (0.62) 21.06 (0.38)

Summer January 30th, 2018 32.96 (1.68) 22.95 (0.70)
Eucalyptus spp.

Autumn May 2nd, 2017 19.44 (2.76) 21.50 (0.60)
Winter August 24th, 2017 18.93 (1.95) 23.79 (1.23)
Spring November 23rd, 2017 22.57 (3.97) 22.02 (0.46)

Summer January 30th, 2018 25.01 (5.20) 23.84 (0.38)
SM: Soil Moisture; ST: Soil Temperature; FR1: Forest Remnant 1 and FR2: Forest Remnant 2.
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Figure 4. Climatic 
variables and flight 
in the study period 
(2017/2018).

Figure 5. The aerial surveys allowed the detection of natural gaps and trees, which are necessary data for the 
sustainable management and ecological stability of these areas. In this orthophotomosaic of Forest Remnant 2 in 
the summer, the tree canopies are indicated in red and natural gaps in blue.
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Table IV. Mean values of vegetation indices across seasons of 2017/2018.

Vegetation Indices
Season

Autumn Winter Spring Summer

ExG UAV S-2 UAV S-2 UAV S-2 UAV S-2

Coffea spp. 44.04 37.70 -05.74 109.00 77.11 63.00 - -

FR1 -12.20 85.50 -24.16 70.85 13.46 183.30 -29.21 214.00

FR2 78.00 77.34 62.00 12.00 96.86 156.6 45.03 217.44

Pinus spp. - 100.85 - 15.37 - 64.53 - 199.00

Eucalyptus spp. - 22.03 - - - 12.68 - 98.27

ExRmG

Coffea spp. -49.87 -168.92 -157.26 -211.09 10.49 -167.90 - -

FR1 -225.24 -131.90 - 464.00 -133.36 -350.37 -131.72 -241.30 -103.30

FR2 -206.80 -121.49 -286.24 -156.57 -234.50 -122.16 -241.30 -98.57

Pinus spp. - -128.01 - -147.54 - -146.34 - -110.58

Eucalyptus spp. - -129.37 - - - -139.79 - -107.27

ExG: Excess Green; ExRmG: Excess Red minus Green; UAV: Unmanned Aerial Vehicle; S-2: Sentinel-2; FR1: Forest Remnant 1 and 
FR2: Forest Remnant 2.

DISCUSSION AND CONCLUSION

The results obtained in this study are noteworthy 
because the vegetation indices indicated 
the correlation between vegetation dynamics 
and soil moisture, i.e., that the availability of 
moisture is related to evapotranspiration. This 
facilitates the understanding of the behavior 
of different vegetable covers in the regional 
climatic extremes.

The strong associat ions between 
meteorological data and vegetation indices 
are illustrated in Figure 4 and Table IV. In the 
autumn and summer, during periods of high 
rainfall and low sunlight, the values were larger 
and smaller, respectively, than the vegetation 
indices in other seasons. In winter and spring, 

the index standards were opposite, explained 
by the fact that there is a considerable loss of 
leaves in this period, which adversely affects the 
spectral response (Ponzoni et al. 2015).

The coffee crop presented the highest 
correlat ion ,  val idat ing the proposed 
methodology of the research, which leads to 
important applications of UAV for precision 
agriculture studies, especially south of the 
Minas Gerais State (Silva & Alves 2013). These 
results can be expanded to other areas of 
agricultural interest, and the vegetation indices 
can contribute to monitoring coffee production 
on a regional scale. Jeger & Pautasso (2008) 
and Khanal et al. (2017) also yielded promising 
results for monitoring soil moisture from UAVs, 
although these authors employed more robust 
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sensors with mid-infrared channels. Thus, the 
results of this study are also interesting since 
they allow the collection of consistent data 
from platforms with less sensitive sensors 
and can also contribute to the progress in 
coffee production. In this scenario, these 
platforms could contribute to the development 
of technologies that improve and standardize 
the local farming techniques, which are still 
very heterogeneous with different cultivation 
methods, sizes and management practices of 
cultivated areas.

Although native remnants have a higher 
correlation with soil moisture (Figure 3), this was 
not observed in the vegetation indices. This fact 

may be explained by the effect of anthropogenic 
disturbances which are capable of affecting the 
spectral response of the vegetation (Pawar et 
al. 2014, Silveira et al. 2019). This was confirmed 
by observing the results of Forest Remnant 
2, located in a highly anthropized region with 
roads, trails, constructions and technogenic 
deposits (inside and on the edges of the 
remnants) (Pereira et al. 2010), which reported 
a less significant correlation when compared to 
Forest Remnant 1, which is located in a slightly 
more isolated area, and Coffea spp. (Figure 
1). Another critical point to consider is if this 
anthropization reflects the heterogeneity of the 
natural conditions of the Cerrado (Savanna) 

Figure 6. Correlation between soil moisture and vegetation indices obtained by the Sentinel-2 and UAV images. 
(a) Excess Green from Sentinel-2, with the Pinus spp. and Eucalyptus spp. showing lower correlation in relation to 
the others; (b) Excess Red minus Green from Sentinel-2, the persistence of the low correlation of Pinus spp. and 
Eucalyptus spp.; (c) Excess Green from UAV, the better correlation of Coffea spp.; (d) Excess Red minus Green, the 
vegetation index that showed the highest correlation to Forest Remnant 2, although presented the best answer in 
Coffea spp. FR1: Forest Remnant 1; CO: Coffea spp.; EU: Eucalyptus spp.; FR2: Forest Remnant 2 and PI: Pinus spp.
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remnants in the state of Minas Gerais (Scolforo 
et al. 2015).

Conversely,  the orthophotomosaics 
showed great potential to help understand 
the remnant’s dynamics. The aerial surveys 
allowed the detection of natural gaps and the 
individualization of the trees (Figure 5) which 
are necessary data to inform the sustainable 
management to ensure the ecological stability 
of these forest remnants as they influence the 
composition, distribution, and species richness 
and promote natural regeneration (Burton et al. 
2014, Ward et al. 2018). Other studies have also 
implemented the use of UAVs to evaluate these 
forest attributes and confirmed the potential 
use of these platforms in collecting rapid, cheap 
and accurate data at different scales (Getzin et 
al. 2014, Chianucci  et al. 2016), which are not 
compatible with conventional aerial or satellite 
imagery as the spatial resolutions of these data 
traditionally are inherently coarse and contain 
pixels with mixed cover (Herrmann & Tappan 
2013).

It should be noted that the Cerrado 
(Savanna) represents a vital type of dryland and 
supports abundant wildlife and large human 
populations. In the state of Minas Gerais, this 
biome occupies approximately 33 million ha 
(Scolforo et al. 2015), and the deforestation 
rate is currently approximately 1.6% per year 
(Arantes et al. 2016) which has already affected 
more than 40% of the original area of this biome 
(Sano et al. 2010, Lathuillière et al. 2016). Thus, 
these results also confirm that the use of high 
precision tools, such as UAVs, can contribute 
to planning the conservation and maintenance 
of the Cerrado (Savanna) remnants, which are 
highly threatened by the conversion of native 
vegetation into agricultural areas.

Therefore, the response of vegetation cover 
to soil moisture and climatic variables has been 
confirmed, despite the areas of Pinus spp. and 
Eucalyptus spp. having not been monitored by 
the UAV due to homogeneities of these stands. 
The results of the Excess Green and Excess 
Red minus Green indices obtained with the 
Sentinel-2 also did not provide valid results, even 

Table V. Correlation between soil moisture and 
vegetation indices obtained by the Sentinel-2 images.

Sentinel-2 Linear regression R²

ExG

Coffea spp. y = 20.986x - 633.55 0.99

FR1 y = 25.197x - 663.26 0.80

FR2 y = 13.265x - 237.17 0.98

Pinus spp. y = 8.6473x - 138.65 0.37

Eucalyptus spp. y = 11.331x - 206.38 0.62

ExRmG

Coffea spp. y = 55.494x - 3494.6 0.99

FR1 y = 48.989x - 2732.4 0.69

FR2 y = 30.437x - 2154.5 0.75

Pinus spp. y = 32.448x - 2282.6 0.49

Eucalyptus spp. y = 46.495x - 2309 0.57
ExG: Excess Green; ExRmG: Excess Red minus Green; FR1: 
Forest Remnant 1 and FR2: Forest Remnant 2.

Table VI. Correlation between soil moisture and 
vegetation indices obtained by the UAV images.

UAV Linear regression R²

ExG

Coffea spp. y = 3.6071x - 104.94 0.51

FR1 y = 26.737x - 713.86 0.84

FR2 y = 10.212x - 187.3 0.46

ExRmG

Coffea spp. y = 13.632x - 496.29 0.98

FR1 y = -2.7811x + 411.08 0.05

FR2 y = 4.851x - 477.84 0.07

ExG: Excess Green; ExRmG: Excess Red minus Green; FR1: 
Forest Remnant 1 and FR2: Forest Remnant 2.
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with the soil moisture variability of Pinus spp. 
being similar to that of Forest Remnant 1 and 
Forest Remnant 2. However, for future research 
aimed at the specific mapping of Pinus spp. and 
Eucalyptus spp., the results are relevant because 
it enabled the recommendation of higher flight 
altitudes than those tested.

Last, the contribution of this study is 
to corroborate the feasibility of UAV and free 
satellite images as a low-cost alternative for 
seasonal monitoring of natural and planted 
vegetable coverings, with potential to have 
positive impacts on precision agriculture and 
the conservation and maintenance of forest 
remnants.

This proposal was not to compare the 
performance of the two platforms but to validate 
the potential of UAVs for studies on vegetation 
cover. The results confirm that, despite the 
spatial resolution being a differential of the 
UAVs in local analyses, satellites are still a 
steadier alternative to access the seasonality of 
different vegetation types on a regional scale. 
However, this does not prevent the integrated 
use of these platforms in agri-environmental 
research.

Thus, the conclusions of this research are 
as follows:
1)	 Vegetation indices derived from sensors 

onboard unmanned aerial vehicles were 
effective in the seasonal monitoring of 
vegetation and affirmed the application of 
this work in precision agriculture for Coffea 
spp.

2)	 Monitor ing the conservat ion and 
management of forest remnants can be 
effectively done through the combination of 
vegetation indices and orthophotomosaic 
analyses since the finer scale of these 
products facilitates the identification and 
monitoring of natural gaps and tree canopies, 

which are essential for understanding forest 
dynamics.

3)	 Although not being evaluated by from 
unmanned aerial vehicles, for areas of 
Pinus spp. and Eucalyptus spp., the tests 
performed on these coverages are relevant 
for future research that seeks to monitor 
of these specific species due to the 
homogeneity of these canopies.

4)	 The highest correlation coefficients for 
Coffea spp. was the Excess Green index 
and the Excess Red minus Green index was 
highest for Forest Remnant 1 and Forest 
Remnant 2. The performance of these 
visible spectrum indices has confirmed 
the potential of low-cost tools in meeting 
agricultural and environmental needs, 
which can lead to appropriate ecological 
management and conservation practices 
as well as strengthen national coffee 
productivity.

5)	 Finally, it was confirmed that UAV imagery 
has the potential to validate satellite-
derived data and that low-cost platforms 
can strengthen large-scale monitoring.
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