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ABSTRACT

Understanding the behavior of the river regime in watersheds is fundamental for water resources planning and management. Empirical

hydrological models are powerful tools for this purpose, with the selection of input variables as one of the main steps of the modeling. There-

fore, the objectives of this study were to select the best input variables using the genetic, recursive feature elimination, and vsurf algorithms,

and to evaluate the performance of the random forest, artificial neural networks, support vector regression, and M5 model tree models in

forecasting daily streamflow in Sono (SRB), Manuel Alves da Natividade (MRB), and Palma (PRB) River basins. Based on several performance

indexes, the best model in all basins was the M5 model tree, which showed the best performances in SRB and PRB using the variables

selected by the recursive feature elimination algorithm. The good performance of the evaluated models allows them to be used to assist

different demands faced by the water resources management in the studied river basins, especially the M5 model tree model using stream-

flow lags, average rainfall, and evapotranspiration as inputs.
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HIGHLIGHTS

• The Recursive Feature Elimination was the best input feature selection algorithm.

• The machine learning models were efficient in the daily streamflow forecasting.

• The performance of the M5 model tree was better than the other models.

• The models are potential tools to assist water resources management.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Brazil is the country with the highest amount of fresh water in the world. This resource has been used mainly in agriculture,

energy production, economic growth, and sanitation (Cantelle et al. 2018). Due to population growth and economic devel-
opment, it is estimated that in the last two decades there has been an increase of 80% in total water withdrawal from
water bodies, and that there will be an increase of 23% by the year 2030 (ANA 2020). Based on the foregoing, understanding

the river system behavior in basins is fundamental to hydroelectricity planning, characterization of grant flows, flood forecast-
ing, and assessment of impacts of climate change and soil use, among others (Bourdin et al. 2012; Tongal & Booij 2018;
Yaseen et al. 2018).

The streamflow forecasting and prognoses of hydrological behavior are often performed using hydrological models, which
can be classified as conceptual or empirical (Debastiani et al. 2019). Conceptual hydrological models are based on physical
characteristics of basins and require large amounts of data, which in many contexts are difficult to be acquired, are unavail-
able or insufficient for covering all the spatial and time variability (Yang et al. 2019). Empirical models, on the other hand, use

a system’s data series for mathematical functions to establish connections between the target variable of the estimate and the
input variables in the system, disregarding the intervening physical processes (Uliana et al. 2019).

Among the empirical models are the machine learning algorithms, which have been used in basins around the world due to

their relatively easy adjustment and practicality, and they are robust tools for analyzing complex systems (Tongal & Booij
2018). Jimeno-Sáez et al. (2018) compared the performance of the Soil and Water Assessment Tool (SWAT) conceptual
model to the artificial neural networks for daily streamflow forecasting in the Miño-Sil and Segura watersheds, Spain, and

concluded that both are efficient tools for forecasting. Further, they concluded that the conceptual model was superior in
the lower streamflows forecasting, whereas the empirical model showed better performance in the highest streamflows fore-
casting. Adnan et al. (2018) analyzed the least square support vector machine (LSSVM), fuzzy genetic algorithm, and M5

model tree models in the daily and monthly streamflow forecasting in the Hunza River basin, Pakistan, and concluded
that these models are efficient for forecasting in the studied river basin, especially the LSSVM model. Kabir et al. (2020) eval-
uated the wavelet-based artificial neural networks, support vector regression, and deep belief network models for hourly
streamflow prediction in three locations in the United Kingdom and observed good performance of the models for a 2-

hour forecast horizon.
The use of empirical hydrological models requires the appropriate input variables selection to make the learning process

less complex, the interpretation of the results simpler, and reduce the computational cost (Dariane et al. 2019). Because of a

large amount of hydrometeorological data available for some basins, the variables selection process is essential to eliminate
correlated variables, noisy or non-significant relationships with the dependent variable (Jain & Zongker 1997; Bowden et al.
2005; Prasad et al. 2017; Hadi et al. 2019; Zhu et al. 2019; Afan et al. 2020; Ren et al. 2020).
://iwaponline.com/ws/article-pdf/22/7/6230/1088640/ws022076230.pdf



Water Supply Vol 22 No 7, 6232

Downloaded fr
by guest
on 28 Septemb
According to the National Water Agency (2009), one of the threats to the Tocantins-Araguaia hydrographic region is the

entry of large enterprises, which can pressure the environment if implemented without proper planning. In view of the need
to support the planning and management of water resources in the Sono, Manuel Alves da Natividade and Palma River
basins, the objectives of this study were to: (i) select the best sets of hydrometeorological variables using selection algorithms,

namely genetic algorithm, recursive feature elimination and vsurf, and (ii) evaluate the performance of the random forest,
artificial neural networks, support vector regression, and M5 model tree models in forecasting daily streamflow of the basins.
2. METHODS

2.1. Basins and hydrometeorological data

The study hydrographic basins are the Sono (SRB), Manuel Alves da Natividade (MRB), and Palma (PRB), located in the
Tocantins-Araguaia hydrographic region, on the right side of the Tocantins River (Figure 1). The Tocantins-Araguaia hydro-
graphic region has an area of approximately 920,087 km2, which starts in the Center-West region and downstream to the bay
of Ilha de Marajó, in the north. It is the largest hydrographic region fully inserted in the Brazilian territory (ANA 2015). Due

to its great water availability, which is equivalent to approximately 6% of the national total, the region has potential for hydro-
electricity, mining, livestock, irrigation, fishing, agriculture, transport, and tourism. The main consumptive water uses are
irrigation and human, animal, and industrial consumption (ANA 2009). The SRB (45,042 km2), MRB (14,344 km2), and

PRB (17,468 km2) are important hydrological and environmental units of the upper and middle courses of the Tocantins
River. Entirely inserted in the Cerrado biome, they also stand out in non-consumptive water uses for the ecosystem’s
Figure 1 | Geographical location of the Sono (SRB), Manuel Alves da Natividade (MRB), and Palma (PRB) River basins in the Tocantins-
Araguaia hydrographic region, Brazil.
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conservation, supply of four hydroelectric reservoirs along the Tocantins River (Peixe Angical, Luís Eduardo Magalhães,

Estreito, and Tucuruí), and tourism (Mauriz 2008; ANA 2009; Rodrigues et al. 2020).
Hydrometeorological data were obtained from the Hydrological Information System (HIDROWEB) of the National Water

Agency (ANA) and the Meteorological Database for Teaching and Research (BDMEP) of the National Institute of Meteor-

ology (INMET). The codes and location of the stations used for obtaining the daily streamflow series (m3 s�1), average rainfall
(mm), and potential evapotranspiration (mm) are presented in Figure 1. In the gauged stations 1, 2, and 3 streamflow series
used in the study of SRB, MRB, and PRB, respectively, were monitored. The spatial average rainfall in the basins was obtained
by the Thiessen Polygon method (Macêdo et al. 2013), considering the rainfall stations n.6 to n.11, n.13 and n.15 for SRB;

n.11 to n.15 for MRB; and n.15 to n.20 for PRB. The weather station data n.4 was used for SRB and n.5 for MRB and
PRB for calculating the evapotranspiration by the Penman-Monteith equation (Allen et al. 1998).

As input variables in the selection and modeling process the Julian day (JD), ordered from January 1, and the observed

values in the previous 3 days of the respective streamflow (Qt�1, Qt�2, Qt�3), average rainfall (Rt�1, Rt�2, Rt�3) and evapotran-
spiration (ETt�1, ETt�2, ETt�3), totaling 10 variables were considered. The use of lagged variables in time, mainly from the
rainfall series (Rt�1, Rt�2, Rt�3), is important in empirical models, because, among other reasons, it covers the time of con-

centration of the basins in the modeling, which for this study are 63.35 (SRB), 37.82 (MRB) and 61.72 hours (PRB)
according to the Giandotti equation (Giandotti 1940).

The periods available and used in the evaluations were from 7/1/1977 to 5/28/2017, 12/30/2017, and 9/25/2006 for SRB,

MRB, and PRB, respectively. Because of the existence of gaps in some series and the large amount of observed data, dates
with missing data were removed from the database, leaving a total of 10,194 (SRB), 12,019 (MRB), and 5830 observations
(PRB). The dataset was divided into training (70%) and validation (30%) sets to assess the efficiency of the models. All stat-
istical procedures were performed in the R Statistical Environment (R Development Core Team 2019).

2.2. Feature selection

The feature selection algorithms used (genetic algorithm, recursive feature elimination, and vsurf) belong to the wrapper
methods, whose approach consists of the search for subsets of variables that minimize the estimation error of a machine

learning algorithm (Kohavi & John 1997). The random forest (RF) machine learning model was used in all feature selection
approaches due to its accurate forecasting and resistance to overfitting (Breiman 2001; Cutler et al. 2012). The selected algor-
ithms are presented below.

2.2.1. Genetic algorithm (GA)

Inspired by evolutionary biology, the GA for feature selection considers a set of variables to be a chromosome/individual, and
a set of individuals to be a population. By a fitness function, the algorithm evaluates and ranks the individuals according to a
specific metric. The ordered individuals go through genetic operators (elitism, selection, crossing, and mutation) for creating

new individuals that will integrate to a new generation, which will be evaluated and ordered by the fitness function recursively
until the stopping criterion is met and the best individual is selected (Holland 1975; Bento & Kagan 2008; Xue et al. 2018).
The algorithm was fitted using the gafs function of the ‘caret’ package (Kuhn et al. 2019), with the RF model as fitness func-

tion and the root mean square error (RMSE) as the objective function to be minimized. The internal parameters used in the
GA configuration were defined through a trial-and-error process, guided by related studies (Dariane & Azimi 2016, 2018;
Afan et al. 2020), and the parameters are the number of generations (20), population size (30), and probability of crossing

(0.8), mutation (0.1), and elitism (0.0).

2.2.2. Recursive feature elimination (RFE)

The RFE algorithm consists of the retroactive process of feature selection, which occurs in the fitting of a machine learning
model, allocation importance to the available features, and removing the least relevant feature in the predictive process. The

recursive elimination of features is gradual, starting from the total set of features for a predetermined maximum number
(Guyon et al. 2002; Granitto et al. 2006). The execution of the algorithm was performed using the rfe function of the
‘caret’ package (Kuhn et al. 2019), with the maximum number of features regressing from 10 to 1.

2.2.3. Vsurf (VS)

The VS selection algorithm operates in three steps: the first one is the classification and ordering of features as to their impor-
tance, according to the results of the RF model, eliminating those considered irrelevant to the process; the second one selects
://iwaponline.com/ws/article-pdf/22/7/6230/1088640/ws022076230.pdf
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the features related to the dependent features that lead to lower forecasting error; and in the third step there is the fitting of

models with the sequential introduction of the features selected in the previous step, evaluating the reduction of the error for
the decision regarding the permanence of each one (Genuer et al. 2015). The algorithm was implemented using the ‘VSURF’
package (Genuer et al. 2019), with 500 trees developed in the RF (ntree) and the standard number of features randomly

sampled for the growth of each tree (mtry). The selected features in the third step were adopted.

2.3. Description of the models and respective parameters

Machine learning algorithms must be able to generalize their estimates from the input data, and an important step is the

appropriate choice of parameters of the model. One of the main methods for selecting the best model with optimization
of parameters is the cross-validation, applied in the models training step (Elshorbagy et al. 2010; Shortridge et al. 2016;
Yang et al. 2017). The cross-validation k-fold was implemented in this study with the ‘caret’ package (Kuhn et al. 2019),
with 10 resamples. The evaluated models were: random forest, artificial neural networks, support vector regression, and
M5 model tree.

2.3.1. Random forest (RF)

Introduced by Breiman (2001), the RF is a classification or regression algorithm that aggregates the results of a set of decision
trees, grown with random variables/features, independently sampled, and equally distributed. For regression problems, the

result of the model is given by the average of the predictions made by all the trees in the forest (Breiman 2001). The RF
models were fitted using the rf function of the ‘randomForest’ package (Liaw & Wiener 2002), in which the optimized
parameter was mtry, which varied from 2 to 10, with ntree equal to 500.

2.3.2. Artificial neural networks (ANN)

ANN are algorithms inspired by the human nervous system. The basic structure has an input layer containing the indepen-
dent variables, one or more hidden layers for processing the data, and an output layer with the results of the iterations. The

neurons are interconnected by weights so that the receiving neuron aggregates the weights of the previous layer, adds a bias,
and forwards the result through a transfer function (Dastorani et al. 2018; Dariane et al. 2019). To fit the ANN, the nnet func-
tion of the ‘nnet’ package were used (Venables & Ripley 2002) with feedforward multilayer perceptron architecture, one

intermediate layer, and linear output units. The input data were normalized by the min-max method to be between 0 and
1 (Riad et al. 2004; Selvi & Huseyinov 2020). The optimized parameters were the number of neurons in the hidden layer
(size), from 1 to 10, and the decay of the weights (decay), used mainly to avoid overfitting the model to the data, considering
0.00, 0.01, 0.05, 0.10, 0.50, 1.00, and 2.00.

2.3.3. Support vector regression (SVR)

The SVR, introduced as support vector machine for classification by Vapnik (1995), is the projection of the features in high-

dimensional space to map data sets by fitting a curve (kernel function) between two marginal hyperplanes, to minimize the
regression error. Among the available kernel functions are linear, polynomial, radial, and sigmoid (Vapnik 1995; Yang et al.
2017; Dastorani et al. 2018; Shamshirband et al. 2020). The function used to fit the SVR was the svmRadialSigma from the

‘kernlab’ package (Karatzoglou et al. 2004), in which the kernel function used is radial and the parameters regularization (C)
and kernel function (sigma) are required. The values for C optimization ranged from 1 to 20 and were tested for sigma 1 10�5,
1 10�4, 1 10�3, 1 10�2, and 1 10�1.

2.3.4. M5 model tree (M5T)

The M5T algorithm, proposed by Quinlan (1992), presents a tree structure developed in two stages. The first step consists of
growing a decision tree using independent variables to homogenize the responses to the variable of interest, using the

reduction of the standard deviation as a criterion for dividing the nodes. Successive divisions generate excessive branches,
which may cause overfitting of the data. Therefore, the second step is pruning the tree grown by replacing the branches
with linear regression functions according to the independent variables used in the divisions of the pruned branch. Thus,

for each homogenized subspace of the target variable, a linear model is fitted (Quinlan 1992; Pal & Deswal 2009; Shamshir-
band et al. 2020). The ‘Cubist’ package (Kuhn et al. 2020) was used to fit the models, with the number of interactive model
trees (committees) ranging from 10 to 100 adding 10.
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2.4. Performance metrics

To evaluate the performance of the models, the root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe
efficiency index (NSE), and its logarithmic version (LNSE) were used as objective functions, according to the equations pre-

sented below. The models were also compared using hydrographs and flow duration curves (FDC):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

(yt � ŷt)
2

vuut (1)

MAE ¼ 1
n

Xn
t¼1

jyt � ŷtj (2)

NSE ¼ 1�

Pn
t¼1

(yt � ŷt)
2

Pn
t¼1

(yt � �y)2
(3)

LNSE ¼ 1�

Pn
i¼1

[log(yt)� log(byt)]2
Pn
i¼1

[log(yt)� log(�y)]2
(4)

where yt is the observed streamflow at time t, byt is the predict streamflow at time t, �y is the average observed streamflow, and n
is the total number of observations in the series analyzed.

The NSE proposed by Nash & Sutcliffe (1970) is one of the main metrics for evaluating the performance of hydrological

models. The classification of the performance of the fitted models with data on a daily scale proposed by Moriasi et al. (2015),
suggests: NSE.0.80 as ‘very good’; 0.70,NSE�0.80 ‘good’; 0.50,NSE�0.70 ‘satisfactory’; and NSE�0.50 as ‘not
satisfactory’.
3. RESULTS AND DISCUSSION

Table 1 presents the sets of total independent variables/features and the selected ones by the selection algorithms for each

basin, with the latter being ordered in descending order according to the importance attributed to them during the selection
processes. The VS algorithm selected a smaller number of variables, followed by the GA, which removed one variable from
the total set of the SRB and MRB and four from the PRB, and RFE which selected nine in each basin. The variables Qt�1 and
Table 1 | Sets of total variables and selected by the genetic algorithm (GA), recursive feature elimination (RFE), and vsurf (VS), in decreasing
order according to the importance attributed by each selection algorithm (SA), for hydrological modeling in the Sono (SRB), Manuel
Alves da Natividade (MRB), and Palma (PRB) River basins

Basin SA Input variables Total

SRB Total JD, Qt�1, Qt�2, Qt�3, Rt�1, Rt�2, Rt�3, ETt�1, ETt�2, ETt�3 10
GA Qt�1, Qt�2, Qt�3, JD, Rt�1, Rt�2, Rt�3, ETt�1, ETt�3 9
RFE Qt�1, Qt�2, JD, Qt�3, Rt�1, Rt�2, ETt�1, ETt�2, Rt�3 9
VS Qt�1, Qt�2, JD, Rt�1 4

MRB Total JD, Qt�1, Qt�2, Qt�3, Rt�1, Rt�2, Rt�3, ETt�1, ETt�2, ETt�3 10
GA Qt�1, Qt�2, Qt�3, Rt�1, Rt�2, Rt�3, ETt�1, ETt�2, ETt�3 9
RFE Qt�1, Qt�2, Rt�1, Qt�3, JD, ETt�2, ETt�1, Rt�2, ETt�3 9
VS Qt�1, Qt�2, JD, Rt�1, Rt�3, ETt�1 6

PRB Total JD, Qt�1, Qt�2, Qt�3, Rt�1, Rt�2, Rt�3, ETt�1, ETt�2, ETt�3 10
GA Qt�1, Qt�3, Rt�1, JD, ETt�1, ETt�2 6
RFE Qt�1, Qt�2, Qt�3, JD, Rt�1, ETt�3, Rt�2, ETt�1, Rt�3 9
VS Qt�1, Qt�2, Rt�1, ETt�1 4

JD, Julian day; and Qt�n, Rt�n, ETt�n, streamflow (m3 s�1), average rainfall (mm), and reference evapotranspiration (mm) n days before the forecasting date, respectively.
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Pt�1 were selected by all algorithms, followed by Qt�2 and ETt�1, selected in eight of the nine selections (3 basins�3 selec-

tion), and JD selected in seven. The variables that were more frequently removed were ETt�2 and ETt�3.
The most important variables by most algorithms were the Qt�1 and Qt�2 streamflows, with only the selection made by the

GA in the PRB presenting the Qt�3 as the second most important variable. Previous streamflows are widely used in empirical

hydrological models due to their strong correlations with the target streamflow (Yang et al. 2017; Liu et al. 2019; Yaseen et al.
2019; Zhu et al. 2019). Following the streamflows, overall, the JD and the lagged average rainfall were the most important,
since the JD temporarily marks the changes in the streamflow, and rainfall provides the main water entry into the basins
(Dinpashoh et al. 2019).

The model parameters, optimized during the cross-validation process, are shown in Table 2, and the results of the perform-
ance of the models using different sets of variables, in the training and validation periods, for the SRB, MRB, and PRB are
present in Tables 3–5, respectively. The models’ performances were classified as very good, according to the classification

proposed by Moriasi et al. (2015), with NSE ranging from 0.849 to 0.926 in the validation. Only the ANN model, fitted
with the set of variables selected by VS for PRB presented a performance classified as good (0.769). The results of the
NSE elucidate the precision of the models in the peak flows forecasting, which has been a challenge for hybrid hydrological

models, such as SWAT, LASH, MGB-IPH among others. Beyond this, the LNSE values ranged from 0.782 to 0.969, revealing
a good accuracy in the forecasting of the baseflow in the basins.

The models presented better performance when fitted with all available variables or with those selected by the GA and RFE

algorithms, corroborating the increasing use of selection algorithms in hydrological studies. Dariane & Azimi (2016) evalu-
ated the GA to select input variables in the ANN model, which was applied for forecasting the monthly streamflows in the
Ajichai sub-basin, Iran, and obtained superior performance using the selected variables (NSE¼0.870) instead of all the vari-
ables (NSE¼0.780). Khan et al. (2020), for forecasting droughts in Pakistan, used the RFE to select variables for the ANN,

support vector machine, and k-nearest neighbor models and obtained results considered satisfactory. Dariane et al. (2019)
using ANN for forecasting rainfall at six stations in Iran, evaluating the selection methods GA, wingamma, and self-organized
map, concluded that the GA is the most reliable for input feature selection.

According to the results presented in Tables 3–5, the performance of the M5T model using the set of variables selected by
the RFE was superior to the other models for SRB and PRB, with lower RMSE (99.254 and 59.671 m3 s�1) and higher NSE
Table 2 | Optimized parameters of the random forest (RF), artificial neural networks (ANN), support vector regression (SVR), and M5 model
tree (M5T) models, fitted with the total set of variables and sets selected by the genetic algorithm (GA), recursive feature elimin-
ation (RFE), and vsurf (VS) for the Sono (SRB), Manuel Alves da Natividade (MRB), and Palma (PRB) River basins

Set of variables

RF ANN SVR
M5T

mtry ntree size decay cost sigma committees

SRB

Total 6 500 1 0.0 20 1 10�3 50

GA 5 500 6 0.0 9 1 10�2 80

RFE 5 500 1 0.0 18 1 10�3 60

VS 2 500 6 0.0 20 1 10�2 40

MRB

Total 6 500 4 1.0 6 1 10�2 90

GA 5 500 7 0.5 9 1 10�2 30

RFE 5 500 10 1.0 6 1 10�2 80

VS 4 500 4 0.5 6 1 10�2 90

PRB

Total 8 500 4 0.0 15 1 10�2 70

GA 3 500 9 0.0 17 1 10�2 60

RFE 6 500 7 0.0 20 1 10�2 100

VS 2 500 3 0.0 20 1 10�2 40
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Table 3 | Performance of the random forest (RF), artificial neural networks (ANN), support vector regression (SVR), and M5 model tree (M5T)
models, fitted with the total set of variables and sets selected by the genetic algorithm (GA), recursive feature elimination (RFE),
and vsurf (VS) in the streamflow forecasting in the Sono River basin

Model Set of variables

Training (07/1977–09/2004) Validation (09/2004–05/2017)

RMSE MAE NSE LNSE RMSE MAE NSE LNSE

RF Total 147.923 66.247 0.928 0.960 121.415 60.721 0.889 0.916
GA 146.483 65.863 0.929 0.960 120.981 60.654 0.890 0.914
RFE 146.756 65.681 0.929 0.960 121.595 60.956 0.889 0.915
VS 149.996 68.365 0.926 0.958 122.519 63.982 0.887 0.908

ANN Total 143.861 66.965 0.932 0.956 103.046 53.124 0.920 0.949
GA 143.169 65.336 0.932 0.958 108.200 67.864 0.912 0.925
RFE 143.729 67.591 0.932 0.955 103.123 53.634 0.920 0.944
VS 142.115 64.400 0.933 0.959 129.661 95.562 0.874 0.843

SVR Total 140.105 66.368 0.935 0.957 100.422 55.144 0.924 0.948
GA 136.128 64.026 0.939 0.959 100.639 55.471 0.924 0.948
RFE 140.404 66.257 0.935 0.957 100.361 54.343 0.924 0.949
VS 143.963 67.897 0.932 0.956 104.608 57.842 0.918 0.945

M5T Total 135.366 59.307 0.940 0.963 99.131 46.794 0.926 0.959
GA 135.096 59.393 0.940 0.963 99.277 46.822 0.926 0.959
RFE 134.045 58.878 0.941 0.963 99.254 46.705 0.926 0.959
VS 142.258 62.681 0.933 0.960 102.942 48.939 0.920 0.957

RMSE, root mean square error (m3 s�1); MAE, mean absolute error (m3 s�1); NSE, Nash-Sutcliffe efficiency index; LNSE, Nash-Sutcliffe efficiency index logarithmic.

Table 4 | Performance of the random forest (RF), artificial neural networks (ANN), support vector regression (SVR), and M5 model tree (M5T)
models, fitted with the total set of variables and sets selected by the genetic algorithm (GA), recursive feature elimination (RFE),
and vsurf (VS) in the streamflow forecasting in the Manuel Alves da Natividade River basin

Model Set of variables

Training (07/1977–08/2005) Validation (08/2005–12/2017)

RMSE MAE NSE LNSE RMSE MAE NSE LNSE

RF Total 68.556 28.425 0.928 0.973 61.954 28.470 0.885 0.909
GA 68.679 28.553 0.928 0.971 58.967 24.850 0.896 0.956
RFE 69.068 28.515 0.927 0.973 61.948 28.429 0.885 0.910
VS 69.693 28.856 0.926 0.972 62.855 28.505 0.882 0.910

ANN Total 80.578 36.345 0.901 0.949 67.316 28.061 0.865 0.939
GA 76.341 34.996 0.911 0.945 64.777 25.090 0.875 0.964
RFE 80.663 36.682 0.900 0.947 67.477 27.960 0.864 0.941
VS 76.373 34.375 0.911 0.954 65.049 27.050 0.874 0.934

SVR Total 63.355 31.251 0.939 0.942 58.134 30.269 0.899 0.881
GA 63.104 30.867 0.939 0.944 58.372 29.165 0.898 0.899
RFE 63.771 31.691 0.938 0.939 58.679 30.742 0.897 0.872
VS 65.909 33.388 0.934 0.928 60.470 32.559 0.891 0.846

M5T Total 56.327 23.690 0.951 0.976 58.039 22.857 0.899 0.969
GA 56.617 23.893 0.951 0.976 57.994 22.954 0.900 0.969
RFE 57.223 24.078 0.950 0.975 57.999 22.951 0.900 0.969
VS 58.903 24.700 0.947 0.974 59.528 23.187 0.894 0.969

RMSE, root mean square error (m3 s�1); MAE, mean absolute error (m3 s�1); NSE, Nash-Sutcliffe efficiency index; LNSE, Nash-Sutcliffe efficiency index logarithmic.
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(0.926 and 0.915) and LNSE (0.959 and 0.964) in the validation periods, respectively. For MRB, the total set of input variables
provided the best fit of the M5T model, considered the best for the basin (RMSE¼58.039 m3 s�1, MAE¼22.857 m3 s�1,

NSE¼0.899 and LNSE¼0.969).
Yin et al. (2018) fitted the SVR, multivariate adaptive regression splines, and M5T models to streamflow forecasting in the

Pailugou River basin, China. They concluded that the M5T model was superior to the others, with an average NSE of 0.890 in
://iwaponline.com/ws/article-pdf/22/7/6230/1088640/ws022076230.pdf



Table 5 | Performance of the random forest (RF), artificial neural networks (ANN), support vector regression (SVR), and M5 model tree (M5T)
models, fitted with the total set of variables and sets selected by the genetic algorithm (GA), recursive feature elimination (RFE),
and vsurf (VS) in the streamflow forecasting in the Palma River basin

Model Set of variables

Training (07/1977–05/1999) Validation (05/1999–09/2006)

RMSE MAE NSE LNSE RMSE MAE NSE LNSE

RF Total 86.295 28.316 0.922 0.958 62.687 24.671 0.906 0.954
GA 85.855 28.524 0.923 0.960 63.552 25.589 0.903 0.957
RFE 86.711 28.457 0.922 0.958 61.347 24.331 0.910 0.956
VS 86.659 29.257 0.922 0.957 62.392 24.743 0.907 0.949

ANN Total 84.351 31.464 0.926 0.947 72.497 50.712 0.874 0.811
GA 84.406 32.818 0.926 0.947 77.110 51.321 0.858 0.823
RFE 81.714 29.990 0.930 0.951 79.465 54.016 0.849 0.806
VS 80.246 30.536 0.933 0.953 98.263 52.479 0.769 0.782

SVR Total 74.401 27.999 0.942 0.958 59.729 27.313 0.915 0.953
GA 79.298 31.206 0.935 0.953 60.540 30.234 0.912 0.945
RFE 74.799 28.194 0.942 0.957 59.738 27.520 0.915 0.952
VS 80.316 31.797 0.933 0.951 61.066 29.601 0.911 0.945

M5T Total 69.306 23.565 0.950 0.967 59.880 22.593 0.914 0.964
GA 71.986 24.473 0.946 0.965 61.413 23.641 0.910 0.962
RFE 70.282 23.809 0.949 0.967 59.671 22.642 0.915 0.964
VS 74.716 25.273 0.942 0.964 60.596 23.153 0.912 0.962

RMSE, root mean square error (m3 s�1); MAE, mean absolute error (m3 s�1); NSE, Nash-Sutcliffe efficiency index; LNSE, Nash-Sutcliffe efficiency index logarithmic.
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the validation. Diverging from this study, Adnan et al. (2019) observed, when evaluating six models in the daily forecasting of

the monitored streamflows in two stations on the Fujiang River, China, lower performance of the M5T model, with average
NSE values of 0.652 and 0.670, evidencing the need to study the models for different basins. Tongal & Booij (2018) verified
the accuracy of the SVR, ANN, and RF models for four river basins in the United States, and they observed that the NSE

varied between 0.880 and 0.980 in the validation, which was evaluated as very good by the researchers and similar to
those obtained in this study. Liu et al. (2019) fitted the Gaussian mixture regression, SVM, and ANN models for forecasting
streamflows in two sections of the Jinsha River basin, China, and obtained NSE indexes between 0.850 and 0.860, corrobor-

ating the results found for the river basins in this study. Regarding the above results, the good performance of statistical
models fitted in this study was confirmed, especially the M5T model.

Figure 2 shows the hydrographs observed and simulated by the models using the variables that provided the least statistical
errors for the SRB, MRB, and PRB basins in the validation. Good adherence of the forecasted hydrographs to those observed

can be seen, mainly in the periods of streamflow recession. According to Rodrigues et al. (2021), the best models for these
periods should be based on the relationship between the groundwater flow, which is predominant in the recession periods,
and the discharge from the aquifer. Peak flows were underestimated by the models, mainly due to the difficulty in capturing

the many variables involved in the streamflow process, the difficult representation of the spatial variability of rainfall over the
basin due to the low density of rain-gauge stations in the basins, and even errors from the extrapolation of the stage-curve of
the river (Viola et al. 2009; Silva Neto et al. 2020).

Figure 3 presents the flow duration curves (FDC) of the observed streamflows and forecasted by the models using the vari-
ables that provided the best fitting for each river basin, considering the validation period. This analysis allows inferring about
the percentage of time in which a given streamflow is exceeded or equalized and to establish reference values for water man-

agement and projects. The FDC forecasted by the M5T and ANNmodels presented a great agreement with the observed FDC
for the SRB and MRB, as well as by the M5T and RF models for the PRB. The inferior performances were observed for the RF
and SVR models for MRB, and ANN for PRB, mainly with overestimates of the lowest streamflows.

Table 6 shows the observed streamflows with 95% (Q95), 90% (Q90), 50% (Q50), 10% (Q10), and 5% (Q5) of exceedance and

forecasted by the models in the validation periods. The Q95 and Q90 streamflows indicate the values that are equaled or
exceeded for 95 and 90% of the time, respectively, and have been used as a reference for water rights in several Brazilian
om http://iwaponline.com/ws/article-pdf/22/7/6230/1088640/ws022076230.pdf

er 2022



Figure 2 | Hydrographs of the observed and forecasted streamflows by the random forest (RF), artificial neural networks (ANN), support
vector regression (SVR), and M5 model tree (M5T) models, fitted with the total set of variables and sets selected by the genetic algorithm (GA)
and recursive feature elimination (RFE), validation periods, for the Sono (a), Manuel Alves da Natividade (b) and Palma (c) River basins.
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Figure 3 | Flow duration curves on a logarithmic scale of the observed streamflows and forecasted by the random forest (RF), artificial neural
networks (ANN), support vector regression (SVR), and M5 model tree (M5T) models, fitted with the total set of variables and sets selected by
the genetic algorithm (GA) and recursive feature elimination (RFE) for the Sono (a), Manuel Alves da Natividade (b) and Palma (c) River basins,
validation periods.

Table 6 | Observed streamflows (m3 s�1) with 95% (Q95), 90% (Q90), 50% (Q50), 10% (Q10), and 5% (Q5) of permanence and percentage errors
of the streamflows forecasted by random forest (RF), artificial neural networks (ANN), support vector regression (SVR), and M5
model tree (M5T) models, fitted with the total set of variables and sets selected by the genetic algorithm (GA) and recursive feature
elimination (RFE), validation periods, for the Sono (A), Manuel Alves da Natividade (B) and Palma (C) River basins

Permanence streamflow

SRB

Observed RF-GA ANN-Total SVR-RFE M5T-RFE

Q95 241.44 2.97% �3.18% 8.40% 0.07%

Q90 258.27 2.19% �0.76% 9.16% 0.73%

Q50 421.05 8.11% 3.36% 4.72% 0.51%

Q10 1100.89 1.85% 0.14% �1.62% �1.67%

Q5 1365.69 �0.34% �2.44% �2.22% �3.14%

MRB

Observed RF-GA ANN-GA SVR-GA M5T- Total

Q95 17.02 36.90% 10.69% 83.20% 7.64%

Q90 22.78 4.87% 4.35% 52.81% 1.67%

Q50 60.49 5.47% 1.42% 19.74% 2.35%

Q10 353.60 1.90% �6.45% �2.45% �1.57%

Q5 532.73 �1.76% �5.72% �7.95% �6.45%

PRB

Observed RF- RFE ANN-Total SVR-Total M5T-RFE

Q95 116.00 1.07% 28.53% 0.45% 0.84%

Q90 119.85 0.11% 27.43% 1.26% 0.82%

Q50 155.20 3.86% 27.01% 7.49% 1.17%

Q10 449.50 0.26% 8.57% �4.76% �4.04%

Q5 696.80 �1.97% 6.30% �5.19% �3.22%
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states and for planning irrigation systems, dams, and hydroelectric plants since they represent the minimum flows (recession
period). The estimated Q95 were close to those observed for the SRB and PRB, with errors ranging from 0.07 to 28.53%, while
for MRB the best forecasts were obtained by the ANN and M5T models, with errors of 10.69 and 7.64%, respectively.
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According to Decree No. 2432 of June 6, 2005, the Q90 streamflow is the reference used for granting in the Tocantins state.

The streamflow forecast with 90% of exceedance was performed satisfactorily by the models, highlighting M5T. Such value
was forecasted for SRB as equal to 260.15 m3 s�1 (observed¼258.27 m3 s�1) and for MRB, 23.16 m3 s�1 (22.78 m3 s�1). The
RF model forecasted this streamflow as 119.98 m3 s�1 for PRB (observed¼119.85 m3 s�1). These results, together with those

found for Q95, showed the precision of the streamflow forecasting by the models for the recession periods and its potential use
as a tool in the management of water resources.

The other reference streamflows (Q50, Q10, and Q5) represent the values with medium and highest values (low durations) in
the basins. These streamflows (Q10 and Q5) were underestimated by most models; however, the forecasts for this complex

hydrological process were satisfactory, with errors between 0.14 and 8.57% for Q10 and �0.34 and �7.95% for Q5. The fore-
cast for the Q50 streamflow resulted in average errors of 4.18% (SRB), 7.25% (MRB), and 9.88% (PRB), with better
performances of the M5T model for the SRB and PRB, and ANN for the MRB. Accurate forecasting of peak flows is necessary

to plan actions to mitigate floods and support the drainage and dam projects (Tucci 2004).
Rodrigues et al. (2021) evaluated the performances of the SWAT and ANN models for forecasting daily streamflow of the

MRB and obtained NSE indexes in the validation step of 0.610 and 0.910, respectively, with errors of �14.10% in estimating

Q90 using SWAT and �10.60% by ANN. For the same basins, Rodrigues et al. (2020) found, by the SWAT model, NSE values
of 0.730 (SRB), 0.810 (MRB), and 0.700 (PRB) in the validation period. In view of these results for the same basins in this
study, the good performance of the evaluated models was confirmed, since they presented results superior to those of the

conceptual SWAT model and values close to that of the empirical ANN, mainly the M5T model using the sets of variables
selected by the RFE for SRB and PRB and total set for MRB. However, although machine learning algorithms showed good
streamflow simulation capabilities, the models are based on pattern recognition and do not consider the hydrological pro-
cesses involved. Therefore, although new data is incorporated, it only operates according to previously learned patterns

and is not recommended for situations in which there are alterations of the physical characteristics of the basin (Rodrigues
et al. 2021).

The analyzed models proved to be suitable for application in the management and planning of water resources. Consider-

ing the short forecast horizon (1 day) the models can be useful tools in the operation of hydraulic works, river navigation,
irrigation, hydroelectric power generation, water supply, flood control, among other purposes requiring short-time streamflow
predictions in the SRB, MRB, and PRB basins.
4. CONCLUSIONS

The random forest, artificial neural networks, support vector regression, and M5 model tree models, fitted with the total set of
variables and sets selected by the genetic algorithm, recursive feature elimination, and vsurf, showed good performances in
the daily streamflow forecasting of the Sono, Manuel Alves da Natividade and Palma River basins.

The performance of the M5 model tree model stood out from that of the other models in the calibration and validation
periods using the variables selected by the recursive feature elimination algorithm for the Sono (Qt�1, Qt�2, JD, Qt�3, Rt�1,
Rt�2, ETt�1, ETt�2, Rt�3) and Palma (Qt�1, Qt�2, Qt�3, JD, Pt�1, ETt�3, Rt�2, ETt�1, Rt�3) River basins, and total set of variables

for the Manuel Alves da Natividade River basin (JD, Qt�1, Qt�2, Qt�3, Rt�1, Rt�2, Rt�3, ETt�1, ETt�2, ETt�3), considered the
best sets of variables for fitting the M5 model tree algorithm in the studied basins.

The hydrographs, FDC, and forecasted reference streamflows confirmed the satisfactory performance of the models, con-

sidering the agreement between the hydrographs (observed and forecasted) and the forecasted and observed FDC, and the
small estimation errors in the peak and recession streamflows periods. In view of these results, it can be concluded that
the evaluated models are potential tools to assist in the different demands faced by the water resources management in
the river basins, especially the M5 model tree model using streamflow lags, average rainfall, and evapotranspiration as inputs.

The main limitation of this study was the difficult representation of the spatial variability of rainfall over the basin due to the
low density of rain-gauge stations in the basins. Due to the successful application of the machine learning algorithms in this
study, it is suggested for further studies cover a longer forecast horizon.
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