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ABSTRACT: This article is a direct consequence of the authors’ desire to discuss the

role of statistics in data analysis. The analysis of coronavirus (COVID-19) databases are

used as to show simple, but powerful statistical frameworks. We do believe that models

for assessing future trends in temporal data in general, and in cases and/or deaths

of COVID-19, belongs to the area of (Bio)Statistics. Just as engineers use knowledge

of physics, chemistry and often architecture, when constructing bridges, buildings and

roads, statisticians use knowledge of mathematics, computer science and even physics for

modelling, analysing, and forecasting in order to transform data into information. While

the statistician’s contribution is rarely acknowledged, everyone knows that a building is a

work of an engineer. Nonetheless, nowadays statistics has been gaining the attention that

it deserves due to the rise of big data and data science that was built on the foundations

of statistics. This article shows that, even with only basic knowledge of statistics, one

can adequately collaborate with the community in dealing with very important issues

such as the COVID-19 numbers. In order to model and to obtain predictions we use

well-known distributions to statisticians working on survival analysis: gamma, Weibull

and log-normal distributions. We also make use of singular spectrum analysis, a simple

non-parametric time series methodology, for an analogous purpose. Survival analysis

is a research area widely used in Biostatistics and even in Reliability, while time series

analysis is widely used across areas where the data is measured along the time.
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1 Introduction

Statistical concepts have been used since the beginning of civilization, where
census were conducted by empires and the trade of commodities was recorded. On
the 18th century, the term “statistics” was used in the context of official statistics,
mostly in terms of demographic and economic data. In the current days, after many
major developments in terms of methodology, but also in terms of computational
power, statistical science is of utmost importance in most areas of science and
society, including policy maker, health and environment. In the modern world, with
the current generation and collection of immense amounts of data, from many areas
and in many formats, the quantitative ability to analyse and to transform them into
information and decision making, provided by statistical analyses, is essential. On
the one hand, statistics uses important mathematical concepts without being part
of mathematics. On the other hand, statisticians use important computer science
concepts and programming without being part of computer science. Statistics, as
a discipline, includes methodological and applied work, being the recent concept of
“data science”, in its majority, similar to applied statistics.

In this paper we present two simple statistical techniques (DEGROOT and
SCHERVISH, 2011), part of two major statistical sub-areas: survival analysis and
time series analysis. The use and usefulness of these techniques are illustrated with
daily sequence of the frequency of COVID-19 deaths. Other important information
such as contamination rates, ages of deaths, type of housing, etc. are left for future
work because this study does not intend to be exhaustive, but illustrative.

The motivation for the type of modelling developed here comes from
the techniques of survival analysis (biostatistics), failure analysis (reliability) of
production systems, and time series analysis.

Let us imagine that the future purchase of lamps for an industry will be carried
out by competition among sellers. Information is being collected on the lifetime of
the lamps in use at the largest factory in this industry. The objective is to develop
a model of probabilities that well describes the performance of the set of lamps.
To measure the expected lifetime of a lamp, the statistician bases his analysis on a
report containing the moments when each lamp came into operation, the moment
when each of the burnt out lamps stopped working and the final moment of data
collection with the number of lamps that were still working. Of course, the number
of lamps under test is, in this case, known. In the statistician’s view, the sampling
units are the lamps and the variable to be studied is the lamps survival times.

The above example served as an analogy for the statistical analysis of the
pandemic data that currently plagues us. The individual corresponds to a light
bulb, the sampling unit, and the number of days, D, that an individual lived until
death is the random variable under study, whose baseline is the moment of the first
notified death. Information, in our case, is the day of death and not the moment
when death occurred. Censorship is done when it is observed that the individual
died within the 24 hours of the day of recording. An observation in the sample is
the number of days from baseline up the death day of an individual. As in the case
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of lamps, the observations are already ordered. For instance, the event observed
on the 20th is the frequency of deaths that have already occurred until the 20th;
Thus, it is observed the number of times, the frequency, that the event {D < 20}
occurred.

With these observations, our goal is to find a distribution function for variable
D that adequately represents the behaviour of this variable. It is important to
remember that our observations do not cover all the support for the possible values
of D, but an observation of the tail of the distribution function. The difficulty then
is to estimate the parameters of any function in a family of distribution functions.
To draw the empirical tail of the distribution, divide the accumulated frequencies
obtained in each day by the accumulated frequency of the last observational
day. Thus, an empirical distribution function conditional to the data of the last
observation day is obtained. We may call this function as the empirical conditional
distribution.

Here, we use three families of distributions: gamma (WALCK, 2007), Weibull
(RINNE, 2009), and log-normal (AITCHISON and BROWN, 1957). Our job is to
find among members of a specific family of distributions the one whose conditional
distribution function is the closest to the corresponding empirical conditional
distribution function: conditional is on the last day being observed.

The measure of approximation between conditional distributions used in this
article is Aitchison’s compositional distance (AITCHISON, 1986). After obtaining
the best conditional functions of the models, one may compare them and choose
the one that has better adjustment for the empirical one.

As a second approach, the non-parametric time series technique singular
spectrum analysis (SSA; GOLYANDINA et al. 2001; GOLYANDINA and
ZHIGLJAVSKY, 2013; HASSANI and MAHMOUDVAND, 2018) is considered to
fit the individual time series, and to illustrate how to estimate the maximum number
of deaths. SSA is a simple technique that combines elements of time series analysis,
matrix algebra and multivariate statistics. It allows to decompose a given time series
into a set of components that can be interpreted as trend components, seasonal
components or noise components.

The data used in the paper corresponds to the daily sequence of the frequency
of COVID-19 deaths in Brazil and Italy. For Brazil, besides the total number of
daily deaths, we also consider the daily number of deaths for each of the 26 states
plus the federal district.

The rest of this paper is organised as follows. Section 2 presents a short
description of the data, the concepts of probability necessary to adjust the models
for the survival analysis and a brief description of SSA. Section 3 presents the results
for both survival analysis and time series analysis. On the one hand it illustrates the
survival analysis based methodology using the COVID-19 data from Italy, chosen
for having a complete database with the entire first phase of contamination and
with the important inflection points already observed, and from São Paulo. On the
other hand the time series based methodology is illustrated with the data from all
26 Brazil states plus the federal district. The paper ends in Section 4, where some
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final considerations are given.

2 Materials and methods

2.1 The data

The data used in the paper includes the official daily number of deaths by
COVID-19 in Brazil, as a whole and for each of its 26 states and the federal
district, obtained from https://github.com/wcota/covid19br/blob/master/

cases-brazil-states.csv. The first observation was considered to be the day
of the first death, on March 17, 2020, and the last observation was considered to
be August 20, 2020, with a total of 157 observations. Figure 1 shows the number
of daily deaths, per state and globally. Moreover, we also consider the official daily
number of deaths by COVID-19 in Italy from the day of first death, February 20,
up to August 20, 2020, with a total number of 182 observations, obtained from
https://www.worldometers.info/coronavirus/country/italy.
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Figure 1 - Number of daily deaths by COVID-19 in Brazil, between March 17,
2020 and August 16, 2020. The top-left plot includes the states in
the North region – AC: Acre, AP: Amapá, AM: Amazonas, PA: Pará,
RO:Rondônia, RR: Roraima, and TO: Tocantins. The top-right plot
includes the states in the Northeast region – AL: Alagoas, BA: Bahia,
CE; Ceará, MA: Maranhão, PB: Paráıba, PE: Pernanbuco, PI: Piaúı,
RN: Rio Grande do Norte, and SE: Sergipe. The mid-left plot includes
the states in the Mid West region – DF: Distrito Federal, GO: Goiás,
MS: Mato Grosso do Sul, and MT: Mato Grosso. The mid-right plot
includes the states in the Southeast region – ES: Esṕırito Santo, MG:
Minas Gerais, RJ: Rio de Janeiro, and SP: São Paulo. The bottom-left
plot includes the states in the South region – PR: Paraná, RS: Rio Grande
do Sul, and SC: Santa Catarina. The bottom-right plot includes the
overall Brazil.
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2.2 Survival analysis

The data analysed in this paper are the daily frequency of deaths – the
frequency di of deaths at the ith day and the accumulated frequency of deaths, Di,
up to the day. The data consists of non-negative integer numbers. Our first step
is to define a conditional empirical distribution function (CEDF). The second step
is to look for a statistical model whose conditional distribution function (MCDF),
adjusts well the CEDF.

Suppose that we are at the mth day of observation. As explained above, for
every i ≤ j, Dj =

∑j
i=1 di and now the CEDF of Di given Dj can be defined as

Em(Di|Dj) = Di/Dj.
In order to find the member of the family such that F (i|j) is close to

Em(Di|Dj) we use the Aitchison distance (AITCHISON, 1986), A(F ;Em), to
choose the F with smaller A, building a mesh in the parametric space to find the
optimal point. It is noteworthy here that the finer the mesh, the better the result,
but unfortunately at a much higher cost. The Aitchison compositional distance
can be understood as a standard deviation of the natural log of the ratio of the
corresponding elements of two vectors. For more details about the Aitchison’s
distance, please see Appendix A.

Once the optimal F for the current observation day is found, this probability
distribution is used to cover the entire sample space and make predictions associated
with its probabilities. Note that for each new data coming from the following
observation day, all work must be redone, and the fitted model must produce a new
set of forecasts with additional information being incorporated.

In this analysis we considered the gamma, Weibull, and log-normal families,
which cumulative distribution functions are given by

• Gamma distibution

F (y|α, β) =
γ(α, y/β)

Γ(α)
,

where α > 0 is a shape parameter, β > 0 is a scale parameter and γ(α, y/β) =∫ y/β
0

tα−1e−tdt is the lower incomplete gamma function.

• Weibull distribution

F (y|λ, k) = 1− exp

[
−
( y
λ

)k]
,

where λ > 0 and k > 0 are the scale and shape parameters, respectively.

• Log-normal distribution

F (y|µ, σ2) = Φ

(
log y − µ

σ

)
,

where −∞ < µ < ∞ is a location parameter, σ > 0 is a scale parameter
and Φ(·) is the cumulative distribution function of the standard normal
distribution.
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2.3 Singular spectrum analysis

Techniques for time series analysis are a natural choice for data modelling
and forecasting when the measurements are conducted across time. Despite
the many possible approaches and models, in this paper we will consider a
non-parametric time series technique called singular spectrum analysis (SSA),
which incorporates elements of classical time series analysis, matrix algebra, and
multivariate statistics. SSA allows the decomposition of the original univariate time
series into a set of components that can be interpreted as trend, seasonal and cycle
components and noise (BROOMHEAD and KING, 1986; GOLYANDINA et al.,
2001; GOLYANDINA and ZHIGLJAVSKY, 2013; RODRIGUES et al., 2020), and
consists of two stages: decomposition and reconstruction, with two steps each. A
short description of the SSA technique is given below, and mode details can be found
in, e.g. Golyandina et al. (2001), Golyandina and Zhigljavsky (2013), Hassani and
Mahmoudvand (2019) and Rodrigues and Mahmoudvand (2018).

2.3.1 First stage: Decomposition

1st step: Embedding. Let y1, . . . , yN be a time series of length N . Considering
a window length L the result of this step is a L × K matrix Y = [Y1 : . . . : YK ],
where K = N − L+ 1 and Yi = (yi, . . . , yi+L−1)T , 1 ≤ i ≤ K.

2nd step: Singular value decomposition (SVD). In this step, the matrix Y
will be decomposed using SVD as Y = Y1 + · · · + YL, where Yi =

√
λiUiVi

T ,
Yi = 0 when λi = 0, and Vi = YTUi/

√
λi with λ1, . . . , λL, the eigenvalues of

S = YYT and U1, . . . , UL, the corresponding eigenvectors.

2.3.2 Second stage: Reconstruction

3rd step: Grouping. The grouping step corresponds to splitting the elementary
matrices into m disjunct subsets I1, . . . , Im, and summing the matrices within
each group. In our application we will focus in m = 2, i.e. only two groups.
I1 = {1, . . . , r} and I2 = {r + 1, . . . , L} are associated with the signal and noise
components, respectively.

4th step: Diagonal averaging. This step transforms each matrix YIj into a new

series of length N . Using diagonal averaging we have that Y = ỸI1 + · · · + ỸIm ,

where ỸIj is the Hankelized form of YIj , j = 1, . . . ,m. Considering ỹ
(Ij)
m,n the

(m,n)th entry of the estimated matrix ỸIj and denoting by {ỹj1 , . . . , ỹjN } the

reconstructed components in the matrix ỸIj , j = 1, . . . ,m, applying diagonal
averaging follows that
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ỹjl =


1

j`−1

∑j`−1
n=1 ỹ

(Ij)
n,j`−n 2 ≤ j` ≤ L− 1,

1
L

∑L
n=1 ỹ

(Ij)
n,j`−n L ≤ j` ≤ K + 1,

1
K+L−j`+1

∑L
n=n−K ỹ

(Ij)
n,j`−n K + 2 ≤ j` ≤ K + L.

In this paper, we will illustrate how to make use of SSA to reconstruct the
trend of COVID-19 daily deaths and, when possible, to predict the peak of the
curve. For that, we will group together the trend components obtained in the third
step above.

In this analysis we decided not to focus on model forecasting for a given number
of steps ahead. However, the discussion of out-of-sample forecasting in the context
of SSA can be found elsewhere, e.g. Danilov (1997), Golyandina et al. (2001),
Mahmoudvand et al. (2017), Mahmoudvand & Rodrigues (2018), Rodrigues et al.
(2020).

3 Results and discussion

3.1 Survival analysis

In a sequel we illustrate our survival analysis approach by performing the
steps described in Section 2.2 in the COVID-19 data, between the date of the first
occurance and August 20, 2020. We use data from the state of São Paulo and Italy
since they present comparable areas and population size.

The Italian case

First, we consider the three classes of distributions, searching for the best
parameter’s values in each of them. Table 1 displays the best set of parameter
estimates for each of the distribution with their respectively Aitchison’s distances
obtained against the CEDF. We shall highlight here that for precision adjustment
we start the comparison between the distributions from the day where the number
of deaths was larger than nine (February 25, 2020) and ending on the August 20,
2020.

Table 1 - The Italy case: parameter estimates and Aitchison’s distance (empirical
vs model)

Distribution Aitchison’s distance
Gamma(α = 4.9; β = 11) 0.24
Weibull(λ = 2.6; k = 59) 0.42
Log-normal(µ = 49; σ = 1.56) 0.20

According to the Aitchison’s distance values displayed in Table 1, we choose the
log-normal distribution to represent the COVID-19 data. Figure 2(a) presents the
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two conditional distributions, empirical and log-normal with mean 49 and standard
deviation 1.56.
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Figure 2 - The Italian case: (a) conditional (August 20, 2020) distributions:
empirical vs log-normal distributions; and (b) daily deaths, moving
average of order 2 and predictions from log-normal model.

In order to assess the modelling produced by log-normal predictive function,
Figure 2(b) shows the predictions, the moving average function of order 2, and
daily death observed values. The small variability around the predictive function
may indicate that the Italian protocol for the population quarantine should have
adopted in other countries or regions. There are countries where there have been a
great deal of disagreement between the subregion’s protocols.

It is important to observe that with a standard moving average adjustment
there is no probability associated to perform interesting predictions. For instance,
at the August 20 we may predict the proportion of deaths we have up to that
moment. Since these observed data were from the hundred and eighty-second day,
we can use the fitted log-normal distribution to compute F(182) which is equal to
0.998415326 (99.84%), leading us to imagine that Italy is almost at the ending of
the pandemic first phase. Also, the mode of the density is 717 in March 31. The
highest number of deaths was 921 in March 27 with the prediction of having 27% of
the total deaths due to the pandemics. Finally, we can predict 35,474 total deaths
at December 31, 2020.

The São Paulo case
Once again, we consider the data up to August 20, 2020, but starting in March

16, 2020 (the day before of first death). As we will see, the situation (behaviour)
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here is quite different from the previous case. Based on the Aitchison’s distance
values, as can be seen in Table 2, the best family to describe the COVID-19 data
from São Paulo was the Weibull distribution.

Table 2 - The São Paulo case: parameter estimates and Aitchison’s distance
(empirical vs model)

Distribution Aitchison’s distance
Gamma(α = 4.97; β = 25) 0.67
Weibull(λ = 2.1; k = 196) 0.21
Log-normal(µ = 190; σ = 2.1) 0.56

To illustrate the quality of the adjustment, Figure 3(a) shows the conformity
among the fitted Weibull conditional distribution and the CEDF. In Panel (b), we
can see the high variability of daily deaths in the state of São Paulo, which can make
predictability to be difficult. Further, we are able to see the differences between the
Weibull density and the moving average function of order 7. Nevertheless, Panel
(c) shows that the estimated Weibull model could be used for predictions.

We can observed that on August 20, the total death toll was 27,905, which,
based on the Weibull estimate, represented 46.61% of the forecast total number
of deaths at the end of the pandemic. The adjusted Weibull model predicts that
on December 31, there would be 53,518 deaths, corresponding to 89.74% of the
total estimated deaths, which would be 58,572. The final number of deaths, and,
consequently, the end of the pandemic, was predict to occur on October 7, 2021, by
the Weibull model.
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Figure 3 - The São Paulo case: (a) conditional (August 20, 2020) distributions:
empirical vs Weibull distributions; (b) daily deaths, moving average of
order 7 and predictions from log-normal model; and (c) Daily total deaths
prediction vs empirical distribution function.
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3.2 Singular spectrum analysis

In this analysis we considered the univariate time series for each Brazilian
state, federal district and overall number of deaths by COVID-19, between the date
of the first occurrence in each of the time series and August 20, 2020. We considered
a window length L proportional to seven and close to the middle of the time series.
Table 3 shows the date of the first death, the number of observations, the window
length, the number of components used for reconstruction, and the set of indexes
associated to the trend components, for each time series under consideration. Other
approaches to study Brazilian COVID-19 data can be found elsewhere, e.g. Amaral
et al. (2020).

Table 3 - Date of the first death (and the number of days since the first death in
Brazil), number of observations (N), window length (L), and number of
components used for reconstruction (r), set of trend components among
the first r components, and the date where the peak was observed (and
the number of days since the first death in Brazil), for each univariate
time series

Region State 1st death N L r Trend Peak
North AC: Acre 06/04/2020 (21) 137 63 7 {1, 2, 3} 06/06/2020 (62)

AM: Amazonas 24/03/2020 (8) 150 70 6 {1, 2, 3, 6} 14/05/2020 (52)
AP: Amapá 04/04/2020 (19) 139 63 12 {1, 2} 30/05/2020 (57)
PA: Pará 01/04/2020 (16) 142 70 9 {1, 2, 3} 23/05/2020 (53)
RO:Rondônia 30/03/2020 (14) 144 70 10 {1, 2, 7} 20/07/2020 (113)
RR: Roraima 03/04/2020 (18) 140 70 12 {1, 4} 01/07/2020 (90)
TO: Tocantins 15/04/2020 (30) 128 63 6 {1, 2} 20/08/2020 (128)

Northeast AL: Alagoas 31/03/2020 (15) 143 70 7 {1, 2, 3} 14/06/2020 (76)
BA: Bahia 29/03/2020 (13) 145 70 8 {1, 2} 20/08/2020 (145)
CE; Ceará 26/03/2020 (10) 148 70 13 {1, 2, 7} 02/06/2020 (69)
MA: Maranhão 29/03/2020 (13) 145 70 8 {1, 2} 22/06/2020 (86)
PB: Paráıba 31/03/2020 (15) 143 70 10 {1, 2} 16/07/2020 (108)
PE: Pernanbuco 25/03/2020 (9) 149 70 10 {1, 2, 5} 23/05/2020 (60)
PI: Piaúı 27/03/2020 (11) 147 70 6 {1, 2} 12/07/2020 (108)
RN: Rio Grande do Norte 28/03/2020 (12) 146 70 7 {1, 2, 7} 05/07/2020 (100)
SE: Sergipe 02/04/2020 (17) 141 70 9 {1, 2} 12/07/2020 (102)

Mid West DF: Distrito Federal 29/03/2020 (13) 145 70 6 {1, 2} 20/08/2020 (145)
GO: Goiás 26/03/2020 (10) 148 70 6 {1, 6} 20/08/2020 (148)
MS: Mato Grosso do Sul 31/03/2020 (15) 143 70 8 {1, 2} 15/08/2020 (138)
MT: Mato Grosso 03/04/2020 (18) 140 70 8 {1, 2} 21/07/2020 (110)

Southeast ES: Esṕırito Santo 02/04/2020 (17) 141 70 6 {1, 2, 7} 23/06/2020 (83)
MG: Minas Gerais 30/03/2020 (14) 144 70 6 {1, 6} 19/08/2020 (143)
RJ: Rio de Janeiro 19/03/2020 (3) 155 77 13 {1, 2, 5} 29/05/2020 (72)
SP: São Paulo 17/03/2020 (1) 157 77 8 {1, 6} 20/08/2020 (157)

South PR: Paraná 27/03/2020 (11) 147 70 9 {1, 4} 18/08/2020 (145)
RS: Rio Grande do Sul 25/03/2020 (9) 149 70 9 {1, 8} 19/08/2020 (148)
SC: Santa Catarina 26/03/2020 (10) 148 70 11 {1, 6} 20/08/2020 (148)

Total Brazil 17/03/2020 (1) 157 77 9 {1, 2, 7} 23/07/2020 (129)

Based on the SSA, for each time series, we created three groups of components:
(i) the components associated with the trend; (ii) the components associated with
the seasonality; and (iii) the components associated to the noise. Figures 4 and 5
show the sum of all components associated to the trend (7th columns of Table 3)
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and to the seasonality ({1, . . . , r} except {Trend} in Table 3), for all time series,
respectively. To complement and summarise the results in Figure 4, the last column
of Table 3 shows the date where the peak was observed and the number of days
since the first death in a given state. We shall highlight here that the real peak for
the time series that show an increasing trend (e.g. DF, GO, MG; Figure 4) was,
most likely, not observed yet. For constant trends (e.g. SP, TOTAL; Figure 4) the
peak is of difficult determination but it is a great indication that those number have
reached a “plateau”.
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Figure 4 - Trend components based on the SSA. The top-left plot includes the states
in the North region – AC: Acre, AP: Amapá, AM: Amazonas, PA: Pará,
RO:Rondônia, RR: Roraima, and TO: Tocantins. The top-right plot
includes the states in the Northeast region – AL: Alagoas, BA: Bahia,
CE; Ceará, MA: Maranhão, PB: Paráıba, PE: Pernanbuco, PI: Piaúı,
RN: Rio Grande do Norte, and SE: Sergipe. The mid-left plot includes
the states in the Mid West region – DF: Distrito Federal, GO: Goiás,
MS: Mato Grosso do Sul, and MT: Mato Grosso. The mid-right plot
includes the states in the Southeast region – ES: Esṕırito Santo, MG:
Minas Gerais, RJ: Rio de Janeiro, and SP: São Paulo. The bottom-left
plot includes the states in the South region – PR: Paraná, RS: Rio Grande
do Sul, and SC: Santa Catarina. The bottom-right plot includes the
overall Brazil.
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Figure 5 - Seasonal components based on the SSA. The top-left plot includes the
states in the North region – AC: Acre, AP: Amapá, AM: Amazonas, PA:
Pará, RO:Rondônia, RR: Roraima, and TO: Tocantins. The top-right
plot includes the states in the Northeast region – AL: Alagoas, BA: Bahia,
CE; Ceará, MA: Maranhão, PB: Paráıba, PE: Pernanbuco, PI: Piaúı,
RN: Rio Grande do Norte, and SE: Sergipe. The mid-left plot includes
the states in the Mid West region – DF: Distrito Federal, GO: Goiás,
MS: Mato Grosso do Sul, and MT: Mato Grosso. The mid-right plot
includes the states in the Southeast region – ES: Esṕırito Santo, MG:
Minas Gerais, RJ: Rio de Janeiro, and SP: São Paulo. The bottom-left
plot includes the states in the South region – PR: Paraná, RS: Rio Grande
do Sul, and SC: Santa Catarina. The bottom-right plot includes the
overall Brazil.
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4 Final considerations

The motivation that the authors had to produce this article comes from the
desire to show the social utility of the field of statistics. They could not miss the
opportunity to analyse data related to the pandemic that is currently attacking
all of us. The reader should remember that the intense and essential statistical
work that has been done by statisticians to collaborate with the authorities at
crucial moments in decision making has been mentioned seldomly. The credit is
given oftentimes to mathematicians, a common error that confuses the statistical
work with the mathematical work. Statistics is not a sub-area of mathematics,
as some mathematicians like to advertise; statistical foundations are far removed
from mathematical thinking. As engineers and physicists, among other types of
professionals, statisticians also make use of tools developed by mathematicians,
without being one of its sub-areas.

As as example of a direct connection between science fiction and reality,
Hari Seldon, a fictional character of the famous Isaac Asimov’s Foundation trilogy,
portrayed as the creator of a revolutionary science capable of predicting the future
of humans, is referred as a mathematician, although Isaac Asimov knew that
mathematicians do not do that kind of work with mathematical tools, e.g.

“Without a doubt the greatest contributions of this personality were in the
field of psychohistory. When Seldon started his saga, this field was little more
than a set of vague axioms: he transformed it into a profound statistical
science.” - Asimov’s Encyclopedia Galactica, https://en.wikipedia.org/
wiki/Encyclopedia_Galactica

Having explained our motivation, we can say that the statistical methods
described in this paper, and applied to COVID-19 data were chosen to illustrate to
the reader with basic statistical training (last year of undergraduate or beginning
of graduate studies) that simple methods can provide powerful insights.

With respect to the survival analysis, we can say that it is efficient in the sense
of making “good” predictions. We must attract the reader’s attention to the fact
that the forecasts are based on the data collected until August 20, 2020. However,
with the data of the following day, the adjustments, and predictions change. That
is, adding relevant information to the database requires us to adjust the model for
this new database. Of course, predictions change every time a daily observation
is included into the database. We must repeat the adjustment every time new
observations are added to the database.

Recall the case of Italy that on August 20, 2020, the total number of deaths was
35,418. The log-normal model used in this paper informs us that, of the estimated
total deaths, 99.84% have already occurred. Thus, the total number of deaths on
December 31 would be 35,474 with 99.9986% of the deaths occurring until that day.
The total number of deaths in Italy is predicted to be 35,475. The same study
now considering the state of São Paulo. We observed on August 20 that the total
death toll was 27,905, which in the Weibull estimate represented 46.61% of the total
death forecast at the end of the pandemic. The adjusted Weibull model predicts
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that on December 31, there would be 53,518 deaths, corresponding to 89.74% of
the total estimated deaths, which would be 58,572. Using the Weibull model, this
final number of deaths was predicted to occur on October 7, 2021.

With respect to the time series analysis, it was possible to decompose each
time series in trend, seasonal and noise components. Then, by analysing the overall
trend component of each time series, it was possible to identify the peak in the
number of deaths for some Brazilian states.

We should always keep in mind that any forecast using probabilistic models has
a zero probability of being the exact observed value. What we want, as statisticians,
is for the error to be within the allowable, considering losses and/or gains, functions
of decision theory.

PEREIRA, C.A.B.; NAKAMURA, L.R.; RODRIGUES, P.C. Análise estat́ıstica
elementar para COVID-19: Aplicação em dados do Brasil e da Itália. Rev. Bras.
Biom., Lavras, v.39, n.1, p.158-176, 2021.

RESUMO: Este artigo é uma consequência direta do desejo dos autores de

discutir o papel da estat́ıstica na análise de dados. Para ilustrar metodolo-

gias estat́ısticas simples, robustas e poderosas, analisamos bancos de dados de

coronav́ırus (COVID-19) obtidos nos seguintes links, https://github.com/wcota/

covid19br/blob/master/cases-brazil-states.csv e https://www.worldometers.

info/coronavirus/country/italy : dados brasileiros e italianos, respectivamente.

Acreditamos que os modelos de avaliação das tendências futuras dos dados temporais

em geral e dos casos e/ou óbitos de COVID-19 pertencem à área da (Bio)Estat́ıstica.

Assim como os engenheiros usam o conhecimento da f́ısica, qúımica e muitas vezes da

arquitetura, ao construir pontes, edif́ıcios e estradas, os estat́ısticos usam o conhecimento

da matemática, ciência da computação e até f́ısica para modelar, analisar e prever, com

o objetivo de transformar dados em informação. Embora a contribuição do estat́ıstico

raramente seja reconhecida, todos sabem que um edif́ıcio é obra de um engenheiro.

No entanto, atualmente a estat́ıstica vem ganhando a atenção que merece devido ao

crescimento de big data e de ciência de dados que foi constrúıda nos fundamentos

da estat́ıstica. Este artigo mostra que, mesmo com apenas conhecimentos básicos de

estat́ıstica, pode-se colaborar adequadamente com a comunidade no tratamento de

questões muito importantes na sociedade, como os números do COVID-19. A fim

de modelar e obter previsões, usamos distribuições bem conhecidas para estat́ısticos

que trabalham com análises de sobrevivência: gamma, Weibull e log-normal. Também

fazemos uso da análise espectral singular, uma metodologia não-paramétrica simples

usada na análise de séries temporais, para uma finalidade análoga. A análise de

sobrevivência é uma área de pesquisa amplamente utilizada em Bioestat́ıstica e até

mesmo em Confiabilidade, enquanto a análise de séries temporais é amplamente utilizada

em áreas onde os dados são medidos ao longo do tempo.

PALAVRAS-CHAVE: COVID-19; Estat́ısticas na prática; Análise de sobrevivência;

Análise de séries temporais.
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Appendix A

The Aitchison’s distance (AITCHISON, 1986) between two positive n-
component vectors, X = (x1,x2, . . . ,xn) and Y = (y1,y2, . . . ,yn), is defined as
the standard deviation of the n-component vector with the natural logarithm of the
ratio between the components of X and Y. Let X and Y two positive n-components
real vectors. Define the vector composed by the natural logarithm of the ratios of
the components of X and Y:

Ln

(
X

Y

)
=

(
Ln

(
x1

y1

)
, . . . , Ln

(
xn

yn

))
(1)

Consider now the mean and the standard deviation of the components of Ln
(
X
Y

)
,

E =
1

n

n∑
i=1

Ln

(
xi

yi

)
and α =

√√√√ n∑
i=1

1

n

(
Ln

(
xi

yi

)
− E

)2

(2)

The Aitchison’s compositional distance between X and Y is the defined as
AD(X,Y) = α. Note that the compositional distance is independent of the sum
of the components. For simplicity one can normalize the vectors by dividing the
components of the vectors by their sums without changing the value of α.
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