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A B S T R A C T

A series of amide derivatives containing the 1,3,4-thiadiazole moiety has been recently synthesized and tested
against Meloidogyne incognita (Kofold & White) Chitwood (nematode) and Xanthomonas oryzae pv. oryzae
(Ishiyama) Swings, van den Mooter, Vauterin, Hoste, Gillis, Mew & Kersters (rice bacteria). We have now re-
ported the quantitative structure-activity relationship (QSAR) modeling of these biological activities, as well as
docking studies to understand the action mechanisms of these compounds. Novel agrochemical candidates were
proposed based on an interplay of the substituents which most affect the biological data. The reliable and
predictive models obtained from multivariate image analysis applied to QSAR (nematocidal: r2 = 0.750 and r2pred
= 0.751; antibacterial: r2 = 0.650 and r2pred = 0.668) were employed to estimate the biological activities of the
proposed compounds. At least two chemical candidates for each endpoint exhibited promising agrochemical
performance, as the substituents R1 = CF3 or 2,4-diCl, R2 = CH2CH2Cl or CH2CH2Br, and X= SO2 demonstrated
a synergistic effect on the nematocidal and antibacterial activities. The promising outcomes were supported by
docking studies against the acetylcholinesterase (for M. incognita) and β-ketoacyl-acyl carrier protein synthase
(for Xoo) enzymes.

1. Introduction

Phytoparasitic nematodes (or roundworms) are a major cause of
damages to agriculture. Thus, the development of non-phytotoxic ne-
maticides is necessary to guarantee the conservation of various crops
and, at the same time, to provide alternative chemicals for pest control
and to act against resistant species. Meloidogyne incognita (Kofold &
White) Chitwood is a main type of nematode that mostly affects sugar-
cane (Figueiredo et al., 2009), soybean (Barbosa et al., 2009), and
coffee crops (Oliveira et al., 2009), but also others. In turn, Xantho-
monas oryzae pv. oryzae (Ishiyama) Swings, van den Mooter, Vauterin,
Hoste, Gillis, Mew & Kersters (Xoo) causes rice bacterial leaf blight, thus
greatly affecting the economy worldwide (Yen, 2020).

Biopesticides have been widely used for pest control, given their
advantages in terms of lower toxicity than conventional pesticides, ef-
fectiveness in small quantities, and so on. For example, biopesticides
comprise ≈ 5% of the Indian pesticide market (Kumar et al., 2019).
Another advantage is the selectivity, as reported elsewhere for fungi
specifically against Aedes aegypti L. Karthi et al., (2020) and Spodoptera
litura Fab. Karthi et al., (2019). However, chemical pesticides are

advantageous in practical terms and may be designed and synthesized
more easily.

Recent studies have demonstrated that some amides containing the
1,3,4-thiadiazole moiety (Fig. 1) may tackle M. incognita and Xoo si-
multaneously and, therefore, these compounds are promising chemical
candidates for crop protection (Jixiang et al., 2019). Accordingly, che-
mical modification in these compounds may improve their agrochemical
performance and, at the same time, provides molecular diversity useful in
the case of appearance of resistance. The effect of chemical modifications
on the biological response can be evaluated using computational strate-
gies for ligand and structure-based molecular design. Quantitative struc-
ture-activity relationships (QSAR) aim to find a correlation between
molecular descriptors and the corresponding biological data using a re-
gression model (Todeschini et al., 2020). In turn, docking studies are
applied to understand the mode of interaction of a molecule with the
respective biological target (usually an enzyme) (Lengauer and Rarey,
1996). Together, these methods are powerful tools to predict and explain
the biological activities of novel proposed compounds.

The QSAR method employed herein is based on multivariate image
analysis descriptors (MIA-QSAR). Different from CoMFA and CoMSIA
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methods, which have been applied to model the antibacterial activities
of the compounds of Fig. 1 (Jixiang et al., 2019), the MIA-QSAR scheme
screens the 2D-topology of the molecules and finds the atomic con-
tributions to the biological effect (Freitas et al., 2005). The atoms are
represented as circles with sizes proportional to the respective van der
Waals radii and their pixel colors are numbered to obtain a corre-
spondence with the atomic radius and/or electronegativity (to encode
steric, hydrophobic, and electrostatic effects) (Freitas et al., 2015). This

approach is particularly valuable in cases where the data set corre-
sponds to a congeneric series of compounds, whose substituents explain
the variance in the activities block.

2. Materials and Methods

A series of 36 N-(1,3,4-thiadiazol-2-yl)benzamides (Table 1) pre-
viously reported and tested against M. incognita and Xoo (Jixiang et al.,
2019) was used in the MIA-QSAR modeling, and the biological data are
described in terms of pLC50 (LC50 = median lethal concentration, in
mol L−1) and pEC50 (EC50 = concentration required to induce half of
the maximum effect, in mol L−1), respectively. The MIA molecular
descriptors are pixel values (RGB scale) of colored bitmap images re-
presenting the molecules in the data set. Thus, the molecular de-
scriptors vary in orientation and intensity, as the substituents change
from a molecule to another. Each image was sketched using the
GaussView program (Dennington et al., 2008) in such a way that
the congruent substructures were perfectly superimposable, whereas
the substituents explained the variance in the biological data (the
y-block) (Fig. 2). The atoms in molecules were represented as circles
sized proportionally to the respective van der Waals radii (rvdW), and
the atom colors (RGB pixels ranging from 0 for black to 765 for white)
were renumbered to match the corresponding rvdW (MIArvW model),
electronegativity (MIAε model), and rvdW/ε (MIAevdW/ε model) values
(Freitas et al., 2015). Each image of 300×354 pixels was unfolded to a
row vector and grouped to give a 36× (300× 354) data matrix
(X-matrix). The X-matrix was randomly split into training (75%) and

Fig. 1. N-(1,3,4-thiadiazol-2-yl)benzamides studied as nematocidal and anti-
bacterial compounds. X= S or SO2, R1 and R2 = substituents at the phenyl and
X groups, respectively.

Table 1
Substituted N-(1,3,4-thiadiazol-2-yl)benzamides and the respective nemato-
cidal (pLC50, LC50 in mol L−1) and antibacterial activities (pEC50, EC50 in mol
L−1).

Compound R1 R2 X pLC50 pEC50

1 2-CF3 CH2-2-Pyr(3-
Cl,5-CF3)

S 4.328 3.801

2 2-F CH2-2-Pyr(3-
Cl,5-CF3)

S 4.183 3.944

3 H CH2-2-Pyr(3-
Cl,5-CF3)

S 3.436 3.859

4 2,4-diCl CH2-2-Pyr(3-
Cl,5-CF3)

S 3.899 4.149

5 2-OCH3 CH2-2-Pyr(3-
Cl,5-CF3)

S 3.505 4.032

6 4-F CH2-2-Pyr(3-
Cl,5-CF3)

S 3.920 4.124

7 2-CF3 CH2-Ph(4-CN) S 2.882 3.398
8 2-CF3 CH2-Ph(2-F) S 3.179 3.297
9 2-CF3 CH2-Ph(4-Cl) S 3.102 3.075
10 2-CF3 CH3 S 3.710 3.818
11 2-CF3 CH2CH3 S 3.697 3.590
12 2-CF3 (CH2)2CH3 S 3.575 3.556
13 2-CF3 (CH2)3CH3 S 3.536 3.253
14 2-CF3 (CH2)4CH3 S 3.497 3.904
15 2-CF3 CH2CN S 3.911 3.753
16 2-CF3 (CH2)2CN S 3.801 3.559
17 2-CF3 (CH2)3CN S 3.652 3.471
18 2-CF3 (CH2)2CFCF2 S 3.554 3.588
19 2-CF3 CH2CH2F S 4.167 4.243
20 2-CF3 CH2CH2Cl S 4.146 4.164
21 2-CF3 CH2CH2Br S 4.015 4.174
22 2-CF3 CH2-Ph(4-CN) SO2 3.175 3.693
23 2-CF3 CH2-Ph(2-F) SO2 3.406 3.633
24 2-CF3 CH2-Ph(4-Cl) SO2 3.315 3.420
25 2-CF3 CH3 SO2 4.201 4.245
26 2-CF3 CH2CH3 SO2 3.948 3.885
27 2-CF3 (CH2)2CH3 SO2 3.663 3.825
28 2-CF3 (CH2)3CH3 SO2 3.577 3.750
29 2-CF3 (CH2)4CH3 SO2 3.385 3.734
30 2-CF3 CH2CN SO2 4.343 4.689
31 2-CF3 (CH2)2CN SO2 4.046 4.605
32 2-CF3 (CH2)3CN SO2 3.751 3.692
33 2-CF3 (CH2)2CFCF2 SO2 4.039 3.784
34 2-CF3 CH2CH2F SO2 4.771 5.982
35 2-CF3 CH2CH2Cl SO2 4.721 5.488
36 2-CF3 CH2CH2Br SO2 4.684 4.674

a Test set compounds randomly selected.

Fig. 2. Superimposed images used in the MIA-QSAR modeling demonstrating
the congeneric and variable moieties in the N-(1,3,4-thiadiazol-2-yl)benza-
mides data set.

Table 2
Statistical parameters obtained from the MIA-QSAR models of the nematocidal
(pLC50) and antibacterial (pEC50) activities.

Parameter pLC50 pEC50

PLS components 4 4
RMSEc 0.238 0.359
r² 0.750 0.650
RMSE y-rand 0.353 0.396
r²y-rand 0.440 0.550
cr²p 0.482 0.254
RMSEcv 0.333 0.506
q² 0.524 0.341a

RMSEp 0.205 0.397
r²pred 0.751 0.668
r²m 0.739 0.576
ȓ2m 0.832 0.506
Δr2m 0.084 0.134

a Increases to ca. 0.5 after the removal of anomalous predictions for 34 and 35.
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test (25%) sets, and the former was regressed against the y-block
through partial least squares (PLS) regression. The regression models
were both internally and externally validated, and their quality was
evaluated by means of root mean square errors (RMSE) and determi-
nation coefficients in calibration (r2), leave-one-out cross-validation
(q2), and prediction for the test set (r2pred) (Tropsha, 2010). Additional
validation metrics included r2m (and ȓ2m and Δr2m derivatives), which is a
measure of the proximity between the observed and predicted activity
(Roy et al., 2013), and cr2p, which is a chance correlation test used to gain
insight into the difference between the actual r2 value and that obtained
after scrambling the y-block (Mitra et al., 2010). The influence of the
molecular descriptors on the response variable was analyzed using MIA
contour maps, which consist of variable importance in projection (VIP)
score and PLS regression coefficient (b) plots. These indicate how much
and how (increasing or decreasing) the substituents affect the biological
activity, respectively (Barigye et al., 2016). This procedure was per-
formed using the Chemoface program (Nunes et al., 2012).

Recent studies have shown that Xoo FabH can be a potential target
for bactericide development, since this enzyme is critical for the sur-
vival of pathogenic bacteria (Zhao et al., 2020). β-Ketoacyl-acyl carrier
protein synthase III (FabH) condenses acetyl-CoA with malonyl-ACP to
initiate fatty acid biosynthesis, whereas its inhibition stops the reaction

(Nanson et al., 2015). The active site of FabH consists of a catalytic
triad centered around Cys/His/His residues. The only available crystal
structure of Xanthomonas oryzae pv. oryzae FabH (XooFabH) was re-
trieved from the Protein Data Bank (code: 3FK5). In turn, the nema-
tocidal activity is originated from the inhibition of acetylcholinesterase
(AchE), an enzyme that ends nerve impulses by hydrolyzing acet-
ylcholine to acetic acid and choline at the synaptic terminal and neu-
romuscular junction (Wei et al., 2021). To obtain structural insight into
the ligand-enzyme interaction, the crystal structure of M. incognita AchE
(MiAchE) was obtained by homology modelling (Fiser, 2010). The
modeling started with a systematic search in the Swiss Bioinformatics
Resource Portal (Expasy) to get the primary structure of the MiAchE
using the UniProt database as a search tool ($author1$ et al., 2021).
This profile was then used to search the PDB for known protein struc-
tures using the target sequence as the query. The primary sequence of
the target protein was aligned with the template protein using the SIM
similarity program (Huang and Miller, 1991). The templates were
ranked based on the alignment score and the structural quality ac-
cording to WHAT_CHECK (Hooft et al., 1996). The MiAchE was con-
structed using the SWISS-MODEL server (Waterhouse et al., 2018).

A molecular docking study was carried out to validate the QSAR
outcomes and to explain the binding affinity of the N-(1,3,4-thiadiazol-

Fig. 3. Plots of experimental vs. calculated pLC50 and pEC50 obtained from the MIA-QSAR models.
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2-yl)benzamides to the FabH (EC 2.3.1.41) and AchE (EC 3.1.1.7) en-
zymes (Rodrigues et al., 2021). The three-dimensional (3D) structures
of the ligands were prepared and optimized with AMBER force field
(GAFF) parameters and AM1-BCC charges. Subsequently, they were
docked into the XooFabH and MiAchE binding site using the Molegro
Virtual Docker software (Thomsen and Christensen, 2006), a fast and
flexible docking program that gives the most likely conformation of
ligand binding to a macromolecule. The Moldock Score [GRID] function
is a hybrid search algorithm that combines the differential evolution
optimization technique with a cavity prediction algorithm during the
searching procedure, which allows fast and accurate recognition of
potential binding modes, the poses. It is derived from the Piecewise
Linear Potential (PLP), a simplified potential whose parameters are fit
to protein-ligand structures and binding data scoring functions and
further extended in GEMDOCK program (Generic Evolutionary Method
for molecular DOCK) with a new hydrogen bonding term and new
charge schemes (Thomsen and Christensen, 2006). The grid-based
scoring functions precalculated potential-energy values on an evenly
spaced cubic grid to speed up calculations. The energy potential was
evaluated using tri-linear interpolation between relevant grid points. A

grid of 0.30 Å in resolution and 10 Å in radius from the inhibitor to the
binding site was used. MolDock SE (Simplex Evolution) was used as a
search algorithm, and the maximum number of poses to generate was
100. Potential binding sites were identified using the built-in cavity
detection algorithm. A grid covering the protein is created and at every
grid point a sphere was placed. It was checked whether this sphere
overlaps with any of the spheres determined by the van der Waals radii
of the protein atoms. The cavities identified by the cavity detection
algorithm were then used by the guided differential evolution search
algorithm to focus the search, to that specific area during the docking
simulation.

3. Results and Discussion

The nematocidal activities of the compounds of Table 1 have been
modeled for the first time, while the results obtained for the anti-
bacterial were compared to a 3D-QSAR model previously reported
(Jixiang et al., 2019). It is worth noticing that these bioactivities display
close relationship with each other (r2 = 0.67), which means that, in
general, compounds having high nematocidal activity have also high

Fig. 4. MIA contour maps used to investigate how (b) and how much (VIP) the substituents R1 and R2 affect the pLC50 and pEC50 data.
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Table 3
Proposed molecules based on the combination of substructures of the most active compounds (in parenthesis) and the respective predicted nematocidal (pLC50) and
antibacterial (pEC50) activities.

Proposal R1 R2 X pLC50 pEC50

P1 (1+19) 2-CF3 CH2-2-Pyr(3-Cl,5-CF3) SO2 4.643 4.596
P2 (2+19) 2-F CH2-2-Pyr(3-Cl,5-CF3) SO2 4.283 4.649
P3 (2+19 / 2+34) 2-F CH2CH2F SO2 3.963 4.761
P4 (2+20 / 2+35) 2-F CH2CH2Cl SO2 4.201 5.087
P5 (2+21 / 2+36) 2-F CH2CH2Br SO2 4.234 5.115
P6 (2+25) 2-F CH3 SO2 3.955 4.508
P7 (2+25) 2-F CH3 S 3.511 3.771
P8 (2+30) 2-F CH2CN SO2 3.927 4.573
P9 (2+30) 2-F CH2CN S 3.483 3.836
P10 (2+31) 2-F (CH2)2CN SO2 3.949 4.785
P11 (2+31) 2-F (CH2)2CN S 3.505 4.048
P12 (2+33) 2-F (CH2)2CFCF2 SO2 3.507 3.979
P13 (2+33) 2-F (CH2)2CFCF2 S 3.063 3.242
P14 (4+19) 2,4-diCl CH2CH2F S 3.692 4.257
P15 (4+20) 2,4-diCl CH2CH2Cl S 3.930 4.583
P16 (4+21) 2,4-diCl CH2CH2Br S 3.963 4.611
P17 (4+25) 2,4-diCl CH3 SO2 4.127 4.742
P18 (4+30) 2,4-diCl CH2CN SO2 4.099 4.806
P19 (4+31) 2,4-diCl (CH2)2CN SO2 4.121 5.018
P20 (4+34) 2,4-diCl CH2CH2F SO2 4.136 4.994
P21 (4+35) 2,4-diCl CH2CH2Cl SO2 4.374 5.320
P22 (4+36) 2,4-diCl CH2CH2Br SO2 4.407 5.348
P23 (5+19) 2-OCH3 CH2CH2F S 3.228 4.093
P24 (5+20) 2-OCH3 CH2CH2Cl S 3.466 4.419
P25 (5+21) 2-OCH3 CH2CH2Br S 3.499 4.447
P26 (5+25) 2-OCH3 CH3 SO2 3.663 4.578
P27 (5+30) 2-OCH3 CH2CN SO2 3.635 4.642
P28 (5+31) 2-OCH3 (CH2)2CN SO2 3.657 4.854
P29 (5+34) 2-OCH3 CH2CH2F SO2 3.672 4.831
P30 (5+35) 2-OCH3 CH2CH2Cl SO2 3.910 5.156
P31 (5+36) 2-OCH3 CH2CH2Br SO2 3.943 5.184
P32 (6+19) 4-F CH2CH2F S 3.421 4.044
P33 (6+20) 4-F CH2CH2Cl S 3.659 4.370
P34 (6+21) 4-F CH2CH2Br S 3.692 4.398
P35 (6+25) 4-F CH3 SO2 3.856 4.529
P36 (6+30) 4-F CH2CN SO2 3.829 4.593
P37 (6+31) 4-F (CH2)2CN SO2 3.850 4.805
P38 (6+34) 4-F CH2CH2F SO2 3.865 4.781
P39 (6+35) 4-F CH2CH2Cl SO2 4.103 5.107
P40 (6+36) 4-F CH2CH2Br SO2 4.136 5.135

Fig. 5. Superposition of compounds 1−36 in the XooFabH active site.
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antibacterial activity. The QSAR models were generated from MIA
molecular descriptors encoding rvdW, ε, and the rvdW/ε ratio, but only
the latter presented modeling capability, demonstrating that steric and
electrostatic effects together explain the variance in the biological data
(pLC50 and pEC50). Both models overcome the cut-off values required
for the key parameters of calibration and validation, that is, r2> 0.6,
and q2 and r2pred> 0.5 (Todeschini et al., 2020), excepting for the
leave-one-out cross-validation (LOOCV) of the pEC50 data (Table 2).
However, it is clear from Fig. 3 that the calculated pEC50 values for
compounds 34 and 35 are deleterious to the regression lines in the
calibration and LOOCV, since these compounds possess the highest
pEC50 and the regression coefficients could not precisely extrapolate
these values for the samples left out. Removal of these compounds from

the regression line of experimental vs. calculated pEC50 increases both
r2 and q2.

The cr2p values (average of 10 cycles) were only marginally inferior
to the cut-off value recommended of 0.5 in both pLC50 and pEC50
models, but r2y-rand< r2 (cr2p> 0) in all y-randomization cycles ana-
lyzed, confirming that the good performance in calibration was not
obtained due to chance correlation. Moreover, considering that external
validation is the only way to establish a reliable QSAR model
(Golbraikh and Tropsha, 2002), the scopes of the regression lines in the
prediction for the test set were analyzed and the r2m parameter used for
this purpose was found to be acceptable, i.e.> 0.5 in both cases. The
test samples used herein are different from those of the literature
(Jixiang et al., 2019), where the selection criterion is not given, but the

Fig. 6. Important ligand-XooFabH interactions obtained from the docking studies and the respective energy score values.
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scattering plot of experimental vs. calculated pEC50 given herein is si-
milar to that obtained from CoMFA analysis, whose main goal was to
interpret the structural features in terms of molecular field analysis.
Yet, our model seems to be more reliable for prediction because of a
better scope of the regression line related to the predicted pEC50 values.

To understand how and by which extent the molecular substituents in
the N-(1,3,4-thiadiazol-2-yl)benzamides affect the biological responses,
the MIA contour maps stemming from variable importance in projection
(VIP) scores and PLS regression coefficients (b) of Fig. 4 were analyzed.
The plots for pLC50 and pEC50 are very similar, indicating that the sub-
stituents responsible for affecting the nematocidal activity are also im-
portant for antibacterial activity. From the VIP plots of both endpoints,
substituents at the R2 position appear to play a more important role than
those at R1. According to the b-plots, aryl and long chain alkyl groups
(particularly butyl) at R2 contribute to decrease the pLC50 and pEC50
values, while halogenated carbon chains and X=SO2 rather than S in-
crease these values. Therefore, unprecedented compounds were proposed
based on the insights obtained from the MIA-plots and by combining the
variable moieties of compounds with pLC50 and/or pEC50 higher than
4.00, giving the 40 molecules (P1− P40) of Table 3.

From the proposed compounds of Table 3, at least two nematocidal
(P1 and P22) and two antibacterial candidates (P21 and P22) de-
monstrated promising performances, as the respective predicted pLC50
and pEC50 were significantly higher than 4.0 and 5.0. These values are
close to the best experimental data, but it should be born in mind that
34 and 35 have anomalously high experimental pEC50 values, ac-
cording to the QSAR model. Therefore, the proposed compounds above
are worth of further development through synthesis and biological
tests. To validate the QSAR findings and to understand the interaction
mechanisms of the studied compounds in the biological targets, docking
studies were carried out on acetylcholinesterase (AChE) (Wei et al.,
2021) and β-ketoacyl-acyl carrier protein synthase III (KAS III, FabH)
(Zhao et al., 2020) enzymes, which are responsible for the nematocidal
and antibacterial activities, respectively.

The XooFabH active site analyzed was defined as a subset region
next to Cys/His/Asn catalytic triad. The binding site on the protein was

defined as extending in X, Y and Z directions around the selected cavity
(693.6 Å3) with a radius of 12.0 Å. To account for side chain flexibility,
the amino acid residues around 6.0 Å from the center of cavity were
selected to be kept flexible during the docking simulation. The docked
3D structures of compounds were scored, re-ranked, and the poses
obtained were selected according to two criteria: the pose with lowest
energy and the pose with similar spatial position for all compounds. It is
possible to observe in Fig. 5 that the selected poses into the XooFabH
active site have similar spatial coordinates. R1 substituents are sur-
rounded by Val91 and Asn295 residues. Compounds with a 2-CF3
substituent can form hydrogen bonding with Asn295. Hydrogen
bonding interactions are observed between the nitrogen atom of the
thiadiazol ring and Ser327, and between the carbonyl group and
Cys123. The nonpolar residues Leu233, Leu234, and polar residues
His271, Thr228, and Thr230, posed at the site´s entrance, surround the
R2 substituents. The proposed compounds P1, P21 and P22 were
docked into the XooFabH active site and Fig. 6 demonstrates the in-
teractions with the amino acids. The score energy values obtained for
these three proposed compounds in the XooFabH enzyme were higher
than that for compound 34.

The primary sequences of M. incognita and Tetronarce californica
AchE were aligned and our results show a sequence identity of ca.
50% (Supplementary Material). This means that for very similar
proteins (about 50% identical residues) the chance of completely
incorrect annotation is low. The SWISS-MODEL server was used to
generate the crystal structure of MiAchE and the 6H14 structure from
the PDB (Oukoloff et al., 2019) was used for modeling. The quality of
the homology model was evaluated by different tools, such as the
Ramachandran plot (Supplementary Material). The modeled protein
represents 91.68% of overall residues in the most favored regions,
representing a good quality model. The RMSD value of 2.64 Å was
found in the best superimposition of the protein structures. The
binding site is located centered around the Trp/Tyr/His residues with
a cavity of 178.84 Å. All docking poses showed a conformation of the
benzamide scaffold within the MiAchE active site (Fig. 7), with a π-π
stacking interaction with Trp331, and formation of hydrogen bond

Fig. 7. Superposition of compounds 1−36 in the MiAchE active site.
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between 2-CF3 and the backbone carbonyl group of Glu336 and
Gln385. Substituents at the R2 position are surrounded by Asp113,
Trp125, Trp164, Ser165, Tyr380, Phe381, Tyr384n, and His499. The
proposed compounds P1, P21, and P22 were docked into to MiAchE
active site and Fig. 8 demonstrates the interactions with the amino
acids.

The performance of docking models is mostly measured in terms of
their ability to discriminate between active and inactive compounds by
calculating the docking energies. The correlations between the calcu-
lated energy score values of the studied compounds and the

experimental bioactivities are shown in Fig. 9, and both plots display
R2 ≥0.5. This acceptable concordance validates our QSAR studies and
also indicates that MiAChE and XooFabH may be biological targets for
the studied compounds.

To attest our theoretical findings, the proposed compounds should
be synthesized according to a similar procedure described in the lit-
erature (Jixiang et al., 2019), which is based on a three- to four-step
reaction, and then assayed against M. incognita (by measuring the
mortality rate at 50mg L−1 using fosthiazate, fluopyram, and aver-
mectin as controls) and rice bacteria Xoo (by measuring the

Fig. 8. Important ligand-MiAchE interactions obtained from the docking studies and the respective energy score values.
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concentration to inhibit the activity of Xoo in 50% using fluopyram,
bismerthiazol, and thiodiazole copper as controls).

4. Conclusion

The MIA-QSAR models built were satisfactorily predictive and in-
dicated that specific substituents at the R2 position, particularly those
containing Cl and Br halogens, contribute to increase both the nema-
tocidal and antibacterial effects of N-(1,3,4-thiadiazol-2-yl)benzamides.
These outcomes were corroborated by docking studies, which showed
the chemical moieties mostly affecting the interaction with the re-
spective enzymes and, therefore, that are responsible for the biological
activities. Accordingly, at least two agrochemical candidates for each
endpoint were proposed for further experimental validation, whose
predictions were corroborated by docking studies.
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