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Abstract: In this in silico study, different pharmaceutical co-crystals based on (hydroxy)chloroquine
with macrolide antibiotics (azithromycin, clarithromycin, or erythromycin A) were analyzed for
the first time. These findings present a new molecular perspective and therefore suggest that the
combination of (hydroxy)chloroquine/azithromycin, in the stoichiometric ratio of 1:1, as model
co-crystal systems has less toxicity and is the most effective for inhibiting the new severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2).
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1. Introduction

Recently, enormous efforts have widely focused on facing a new coronavirus, the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a disease designated as
COVID-19 [1]. The World Health Organization (WHO) declared the COVID-19 outbreak
as a new pandemic on 11 March 2020 [2]. In order to contribute to the front line of the
fight against this disease, researchers worldwide are moving to an investigation of an
effective treatment regimen (based mainly on known drugs) against infection caused by
the SARS-CoV-2 virus [1–5]. Most recently, the combination of drugs, for example, (hy-
droxy)chloroquine with azithromycin (AZ), has been used as a strategy and has also been
clinically tested to treat the SARS-CoV-2 outbreak [6–11]. The possible benefits of this
therapeutic option are still being debated [8–11]. It is additionally expected, however, that
computational screening can aid in accelerating the discovery as well as the development
of new and more effective drugs against SARS-CoV-2 [1]. To the best of our knowledge,
no study reports the benefits of using pharmaceutical co-crystals to treat patients with
infection caused by the SARS-CoV-2 virus. However, a simple consultation of the literature
suggests that pharmaceutical co-crystal research has become a prevalent theme in the last
few years [12–18]. In particular, pharmaceutic co-crystals are usually defined as multicom-
ponent crystals that incorporate two or more drugs [13,14,18]. These co-crystals exhibit
different and improved physical–chemical properties, and thus, they are widely consid-
ered good candidates for diverse therapeutic applications [14]. Further, a large variety of
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synthetic strategies has been successfully developed to obtain controlled pharmaceutical co-
crystals with different structures. Notable examples include solid-state grinding, solution-
and melt-crystallization, solvent evaporation, and so on [12,14–17]. Therefore, from this
perspective, we believe that a computational model of co-crystal systems is essential to
gain further insight into their biological activity, aiding directly in the emergence of new
experimental research to confront COVID-19.

In this paper, we have selected (hydroxy)chloroquine (denoted as HQ and CQ, respec-
tively) with macrolide antibiotics (such as AZ, clarithromycin (CL), or erythromycin A (ER))
in the stoichiometric ratio of 1:1, as a co-crystal model system for a computational screening
study. First of all, these compounds were selected because of some preliminary clinical
studies [6–11]. However, more recent results, which were released after the conclusion
of this research, suggest the ineffectiveness of the use of CQ and HCQ in the treatment
and prevention of COVID-19 [19]. Despite this fact, it is also important to emphasize
that information on the mechanism of action of co-crystals as a new therapeutical option,
especially from a computational point of view, is of course scarce in the literature. This
is probably related to the difficulty of structurally treating these compounds in the active
site of the target biomolecule. In addition, in this case, we observe that this study also
represents advances in the computational treatment of such systems. Hence, this work
can reveal the interaction profile and affinity of these co-crystals at short and long ranges,
serving as a guide for future studies in this field. Second, AZ and CL are well-known
semi-synthetic derivatives of ER, the first and most-known macrolide antibiotic to be iso-
lated in 1952 [20–22]. These macrolide antibiotics are mainly used to treat patients with
certain infections of the respiratory tract [20]. Further, it is well-known that the combination
of AZ with antimalarial drugs (e.g., (hydroxy)chloroquine), shows some crucial benefits
for the treatment of malaria [23]. A third relevant aspect of this study is that both (hy-
droxy)chloroquine and macrolide antibiotics usually crystallize in a monoclinic structure
according to the CSD (Cambridge Structural Database [24], which is fundamental for the
construction of these co-crystal model systems. Therefore, from this perspective, we have
developed the first theoretical model of co-crystals applied in the treatment of SARS-CoV-2.
We believe that this strategy can bring additional benefits to the use of this therapy as well
as contributing to a better understanding of a molecular point of view.

Finally, our molecular target, the SARS-CoV-2 main proteinase (Mpro), is a key enzyme
responsible for the processing of viral polyproteins [25–27]. Together with the papain-
like proteases, Mpro is essential for the processing of polyproteins translated from viral
RNA [28,29]. In a structural analysis, the Mpro enzyme consists of three domains. Located
in a cleft between domains I and II, the Mpro active site presents a catalytic dyad formed by
the conserved Cys145 and His41 amino acid residues. CQ and HCQ are well-known due to
their antimalarial activity, but have possible effectiveness against COVID-19. HCQ inhibits
terminal glycosylation of ACE2, the receptor for cell entry. ACE2 in the non-glycosylated
state may less efficiently interact with the SARS-CoV-2 spike protein, making the viral entry
difficult [30]. In this work, we evaluated the antimalarials CQ and HCQ in combination
with other macrolide antibiotics, in the single crystal and co-crystal formats. This study
can allow us to have a deeper understanding of the affinity of these co-crystals for the
molecular target, in comparison with single crystals of antibiotics.

2. Computational Details

Six co-crystal model systems were prepared in this study, as shown in Figure 1,
based on the combination of HCQ and CQ with the AZ, CL or ER antibiotics in the
stoichiometric ratio of 1:1. As a strategy, the unit cell of these compounds was replicated
for the investigated set of single and co-crystals, that is, their structural parameters were
maintained as similar as possible. All of these model systems were then optimized (as
the starting point for docking studies), and their structural and vibrational properties
were fully evaluated at the PM6 theoretical level, using the Gaussian 09 package [31]. In
order to better describe the electronic/optical properties of these model systems, we also
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employed the Kohn–Sham time-dependent density functional theory (TDDFT) using the
B3LYP functional with the 6-31+G(d,p) basis set. In addition to the partial charges of the
atoms, we calculated the natural bond orbitals (NBOs).
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In the docking studies, the affinity of the single and co-crystals in the Mpro active
site was investigated. The compounds were then docked inside the crystallographic
structure of viral protein Mpro (PDB code 6LU7; resolution = 2.16 Å) [32], using the Molegro
Virtual Docker program (MVD®) [33], taking into account the same procedures employed
previously [34–36]. According to our calculation protocol, the radius was about 20 Å, where
the residues of the catalytic triad were kept flexible. Due to the nature of the docking
methods, the calculations were carried out, generating approximately 50 poses (such as
conformation and orientation) for each ligand studied.

In the MVD program, the MolDock score algorithm method used as a scoring function
is based on the piecewise linear potential, which is fundamentally a simplified potential
whose parameters are in turn fitted to protein–ligand structures, binding data scoring
functions, and further extended in the Generic Evolutionary Method for molecular docking,
including a new hydrogen bonding term as well as new charge schemes [33]. Along this
line, the docking scoring function values, Escore, are usually defined by Equation (1):

Escore = Einter + Eintra (1)

wherein:

Einter = ∑
iεligand

∑
jεprotein

[
EPLP

(
rij
)
+ 332.0

qiqj
4r2

ij

]
(2)

Note that EPLP represents “piecewise linear potential”, which consists of two different
parameter sets, as described: one for the approximation of the steric term (i.e., Van der
Waals) among atoms, as well as the other potential for hydrogen bonding. As can be seen,
the second term is, of course, related to the electrostatic interactions among overloaded
atoms. Typically, it is a Coulomb potential with a dielectric constant dependent on the
distance (which can be approximately described as D(r) = 4r). Hence, the numerical value
of 332.0 is then responsible for the electrostatic energy unit to be given in kilocalories per
molecule [33].
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Eintra is defined as the internal energy of each ligand. That is:

Eintra = ∑
iεligand

∑
jεligand

EPLP
(
rij
)
+ ∑

f lexiblebonds
A[1 − cos(m.θ − θ0)] + Eclash (3)

Note that the first part of the equation (double summation) is among all pairs of atoms
in the ligand, except those connected by two bonds. Thus, in this equation, the second
term denotes the torsional energy, where θ is the bond’s torsional angle. Hence, if several
torsions could be determined, then each torsional energy is considered an average among
them. The last term of this equation, Eclash, has (not taking into account infeasible ligand
conformations) a penalty incurred of about 1.000 for those exhibiting a distance between
two heavy atoms (e.g., with more than two bonds apart) smaller than 2.0 Å [33]. Thus,
in the MVD program, the docking search algorithm is based on the whole the interactive
optimization technique (inspired by Darwinian evolution theory), which implies a new
hybrid search algorithm conveniently called guided differential evolution. As such, this
hybrid combines a differential evolution optimization technique with a cavity prediction
algorithm during the search process. As a result, this approach provides a simple, fast, and
accurate description of potential binding modes (poses) [33,37,38].

Additionally, taking into account the experimental inexistence of acute toxicity data
for the compounds employed in this study and in order to estimate the theoretical values
of the lethal dose (denoted as LD50), a rat model-based admetSAR predictor was used. This
admetSAR approach is freely available online at http://lmmd.ecust.edu.cn:8000/ (accessed
on 15 August 2020).

Based on our docking and ADMET results, we carried out molecular dynamics (MD)
simulation using the GROMOS54A7 all-atom force field [39] using GROMACS 5.1 soft-
ware [39,40]. The co-crystal-Mpro complex was then inserted into a 12 Å water box with the
SPC solvation model, and sodium and chlorine ions were added as strategy for charge neu-
tralization under periodic boundary conditions. In this study, the long-range electrostatic
interactions were calculated assuming the Particle Mesh Ewald method with a cut-off of
12 Å and a time step of 1 fs. Initially, the system was minimized over 5000 cycles using the
steepest descent algorithm and was then submitted to a production simulation of 60 ns at
300 K and 1 bar pressure. Finally, all trajectories were later analyzed using Visual Molecular
Dynamics (VMD, version 1.9.3) [41].

3. Results and Discussion

We started this study by analyzing frequency calculations for these co-crystals and
the thermochemical parameters obtained (at 298.15 K and 1.00 atm) from them using the
standard relations in the gas phase, given in Table 1. As such, the comparison of the
difference between the total electronic energy (∆E), used to predict the stability of the
co-crystals designed, presented in Table 1, suggests that the HQ/ER is the co-crystal that is
more stable. In both HQ/AZ and CQ/AZ co-crystals, it is the least stable in their respective
series. Thus, the stability order obtained for the computed co-crystals is HQ/ER > HQ/CL
> CQ/ER > CQ/CL > HQ/AZ > CQ/AZ, i.e., suggesting that HQ-based co-crystals are
more stable than their CQ counterparts (see Table 1).

http://lmmd.ecust.edu.cn:8000/
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Table 1. Analysis of thermodynamic parameters computed for the co-crystals at the PM6 theoreti-
cal level.

Co-Crystal ∆E
(kcal mol−1)

H◦

(kcal mol−1)
S◦

cal (mol K)−1
CV

cal (mol K)−1

CQ/AZ 97.2 932.4 459.3 333.9
CQ/ER 48.9 929.2 462.3 336.1
CQ/CL 52.0 946.8 476.3 342.1
HQ/AZ 52.3 935.2 469.3 337.5
HQ/ER 0.0 931.6 471.5 340.2
HQ/CL 7.6 949.5 482.5 345.6

The typical calculated infrared (IR) spectrum is shown in Figure 2a–f. According to
these results, we observed only positive modes, suggesting that the structures proposed
in this study are well optimized and therefore represent a minimum energy. Further, the
IR-active modes confirm that co-crystals were obtained with a monoclinic-like structure.
These results are consistent with experimental observations for both (hydroxy)chloroquine
and macrolide antibiotics [1,12,42,43]. As can be seen in Figure 3, the computed UV-vis
absorption spectrum of these co-crystals revealed only one well-defined peak. As such, the
more intense UV band located in the range of 617 nm to 771 nm for the HQ-based co-crystals
(AZ to ER) is due to a predominant HOMO-to-LUMO+2 transition. In comparison, for the
CQ-based co-crystals (AZ to ER) this UV band was located from 624 nm to 955 nm (which
is due to a predominant HOMO-to-LUMO+3 transition for CQ/AZ, and both CQ/CL and
CQ/ER was best assigned to HOMO-to-LUMO+2 transition).
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Figure 3. Simulated UV-vis spectra and frontier molecular orbitals of the co-crystals using a contour
value of 0.020. For each co-crystal, the HOMO orbitals are represented on the left and LUMO orbitals
on the right in the same figure.

In all cases, we observed a red-shift UV-vis absorption spectrum of HQ-based and
CQ-based co-crystals in the function of increasing structural polarization (summarized by
the calculated dipole moment, as shown in Table 2). This was the main reason for the slight
variation in the angles and bond lengths observed in the studied models (Figure 1).



COVID 2022, 2 236

Table 2. Comparison of the dipole moment, HOMO–LUMO energy gap, exciton binding energy,
hardness, softness, electronegativity, and electrophilicity values for the computed co-crystals at the
TDDFT theoretical level.

Co-Crystal Eg (eV) EB (eV) ECT µ (D) η (eV) S (eV−1) x (eV) ω

CQ/AZ 1.22 0.26 0.009 −1.03 0.61 0.82 1.03 0.43
CQ/ER 1.26 0.07 0.141 −1.02 0.63 0.79 1.02 0.44
CQ/CL 1.46 0.47 0.337 −0.94 0.73 0.68 0.94 0.52
HQ/AZ 1.44 0.26 0.019 −1.10 0.72 0.69 1.10 0.46
HQ/ER 1.44 0.26 0.632 −1.13 0.72 0.70 1.14 0.45
HQ/CL 1.45 0.28 0.350 −1.12 0.73 0.69 1.12 0.46

Additionally, the calculated value of the HOMO–LUMO energy gap (Eg), exciton
binding energy (EB), hardness (η), softness (S), electronegativity (x), and electrophilicity
(ω) values for the computed co-crystals at the TDDFT theoretical level are given in Table 2.
According to the Eg values, we noticed an increase in the order CQ/AZ < CQ/ER < HQ/ER
= HQ/AZ < HQ/CL < CQ/CL. Our results also suggest better chemical stability for the
CQ/CL co-crystal. In addition, these HQ-based and CQ-based co-crystals have EB values
from 0.07 eV to 0.47 eV, which is typical of organic crystals containing aromatic groups [44].

Based on this analysis, supported by theory [45–47], we identified that HQ and CQ
moieties are donor states, and the AZ, CL, or ER moieties are acceptor states. As such,
the frontier molecular orbital analysis is illustrated in Figure 3 to view the energy and
charge transfer process (denoted as ECT) that occurs in these co-crystals. In general, this
process has a profound impact on the functional properties of these model systems. The
electronic excitation and natural bond orbital (NBO) analysis was performed using the
TDDFT theoretical level and hence can be used to measure ECT. Thus, in this perspective,
the stabilization energy (E2) associated with the delocalization of electrons between the
electron donor NBO (i) and the electron acceptor NBO (j) was evaluated according to the
following equation [48,49].

E2 = ∆E(ij) = qi
(F(i, j))2

ε j − εi
= qi

F2
ij

∆ε
(4)

where qi represents the orbital occupancy, εi and εj are diagonal elements (i.e., orbital
energies), and Fij is the off-diagonal NBO Fock matrix element. From these calculations, we
calculated the ECT for these co-crystals, as shown in Table 2. As expected, the HQ-based
co-crystals had higher values of ECT than their CQ counterparts. Consequently, in this
case, we identified that the ECT process was slower and hence can more easily induce
symmetric structural polarization. For the CQ-based co-crystals, this result suggested a fast
ECT process that can more likely induce an asymmetric structural polarization.

According to the above co-crystal structure analysis, the molecular docking calcula-
tions were performed to adjust the ligands in the Mpro active cavity, evaluating the affinity
among them. For this study, a cavity prediction algorithm based on a 3D box was employed
in order to generate the binding sites. Thus, the volume of the calculated active cavity was
approximately 130.56 Å3.

In order to understand the interaction modes of these single and co-crystals within
the SARS-CoV-2 Mpro active site, some parameters that contribute to affinity were investi-
gated. Table 3 shows the intermolecular interaction energy values and theoretical toxicity
prediction for the ligands under study.
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Table 3. Values of the parameters obtained by molecular docking calculations for the single and
co-crystals within the SARS-CoV-2 Mpro active site through MVD® software and toxicity prediction
through ADMET.

Co-Crystal Interaction Energy (kcal mol−1) Toxicity (LD50)

AZ −213.2 2.54 mol kg−1

CL −205.0 2.72 mol kg−1

CQ/AZ −275.3 2.74 mol kg−1

CQ/CL −240.9 2.75 mol kg−1

CQ −141.7 2.95 mol kg−1

CQ/ER −229.8 2.75 mol kg−1

ER −213.1 2.23 mol kg−1

HQ/AZ −280.7 2.74 mol kg−1

HQ/CL −259.6 2.75 mol kg−1

HQ −162.6 2.63 mol kg−1

HQ/ER −275.7 2.75 mol kg−1

As shown in Table 3, all of the single and co-crystals studied interacted very well with
the Mpro active site, with interaction energy values in the range of −141.7 to −280.7 kcal mol−1.
We also observed that the co-crystal formed by HQ and AZ had the highest stabilizing inter-
action energy (−280.7 kcal mol−1), followed by the co-crystals HQ/ER (−275.7 kcal mol−1)
and CQ/AZ (−275.3 kcal mol−1). The conformation of HQ/AZ in the Mpro active cavity is
shown in Figure 4. Note that the single crystals of CQ and HQ had interaction energies
of approximately −141.7 and −162.6 kcal mol−1, respectively. However, when combined
with AZ, these single crystals gained stability and had lower interaction energies. In fact,
the single crystal of AZ was much more stable than those of CQ and HQ when docked in
the active site, and their combination with AZ led to increased affinity for the viral enzyme.
Regarding the co-crystals formed by the combination with AZ, we observed the following
energy differences: HQ to HQ/AZ (118.1 kcal mol−1) and CQ to CQ/AZ (133.6 kcal mol−1).
Based on our computations, CQ/AZ was the co-crystal that showed the more significant
energy difference, followed by HQ/AZ, suggesting the suitability of combining AZ with
CQ and HQ, thus boosting their therapeutic effects (Table S1).
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for the viral enzyme. Regarding the co-crystals formed by the combination with AZ, we 
observed the following energy differences: HQ to HQ/AZ (118.1 kcal mol−1) and CQ to 
CQ/AZ (133.6 kcal mol−1). Based on our computations, CQ/AZ was the co-crystal that 
showed the more significant energy difference, followed by HQ/AZ, suggesting the 
suitability of combining AZ with CQ and HQ, thus boosting their therapeutic effects 
(Table S1). 
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According to Table 3, the combination of HQ with ER also led to stabilizing interaction
energies, from −162.6 kcal mol−1 for HQ to −275.7 kcal mol−1 for HQ/ER. This trend
was also observed for CQ; its interaction energy was stabilized to 88.1 kcal mol−1 when
combined with ER. Interestingly, the formation of the co-crystal HQ/ER was much more
significant in energetic terms due to the larger energy difference between the single crystal
and co-crystal, i.e., 113.1 kcal mol−1. In addition, with respect to the co-crystals formed by
the combination with CL, we observed the following energy differences: HQ to HQ/CL
(97.0 kcal mol−1) and CQ to CQ/CL (99.2 kcal mol−1). In general terms, all macrolide
antibiotics led to the formation of low-energy co-crystals, indicating that such co-crystals
can be easily obtained experimentally.

With respect to the interactions observed in the molecular docking, we observed that
most compounds (single and co-crystals) interacted with important residues in the site, such
as the residues H41, C145, and E166. In the active site, H41 and C145 constituted the dyad
catalytic of Mpro, being key residues for the enzyme’s inhibition process. Furthermore, E166
is also an important species for keeping the active conformation of the enzyme [3,50,51].
As a result, the interactions of all compounds investigated can be visualized in Figure S1
and Figure 5.
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Usually, the efficacy of a drug can be attributed to many factors. Along this line,
the absorption–distribution–metabolism–excretion–toxicity (ADMET) evaluations involve
sequential and iterative assessments of the efficacy, pharmacokinetics, pharmacodynamics,
metabolic, and toxicological properties in the model of therapeutic agents, contributing to
the design of safer and more efficient drugs [52]. The ADMET analysis was carried out in
order to evaluate the toxicity of our compounds, single and co-crystals, under investigation.
According to our results in Table 3, the LD50 value found for ER, 2.23 mol.kg−1, indicates
more toxicity in relation to other single and co-crystal compounds. However, we observed
that its combination with CQ and HQ led to co-crystals of lower toxicity, as well as more
stabilizing interaction energies, making these efficient species candidates for COVID-19
treatment. In addition, when using CL combined with CQ and HQ, there was a slightly
decreased toxicity and significant interactions of lower energies in the Mpro active site. The
most remarkable results were found for the co-crystals formed by the combination with AZ.
The data reinforce our previous findings, which indicate that the co-crystals of CQ and HQ
combined with AZ significantly improved the affinity and decreased toxicity, thus making
them more potent therapeutic agents against SARS-CoV-2.

Additionally, in this study, the dynamic behavior of the HQ/ER-Mpro complex was
investigated. The co-crystal HQ/ER had a stabilizing interaction energy and lower toxicity,
according to the docking and ADMET results, respectively. This system was chosen for a
deeper investigation through Molecular Dynamics (MD) simulation. Initially, we observed
that the complex reached thermodynamic equilibrium after 45 ns of MD simulation (see
Figure 6). The extracted frame, which was considered the representative conformational
structure of the co-crystal throughout the MD simulation, corresponds to the average of
the Root Mean Square deviation (RMSD) value. By analyzing the results of the RMSD
graph, we noticed that most of the deviations from HQ/ER were larger during most of
the MD simulation, suggesting that the co-crystal requires a period of time to reach a
stable accommodation in the active site. By analyzing the graph of the hydrogen bond
(Figure 6), we found that the co-crystal HQ/ER performed up to six hydrogen bond type
interactions. However, more effective interactions were observed by the end of simulation
(after 45 ns), after the co-crystal was well-accommodated and with stable interactions in
the site. According to the total energy graph (Figure 6), the energy oscillated during all
simulation periods; however, this oscillation was constant, without very large variations.
In addition, based on the Root Mean Square Fluctuation (RMSF; Figure 6), we observed an
oscillation of the backbone, protein, and sidechain, during the MD simulation. Based on the
graph, this oscillation suggests conformational changes in the protein structure, allowing
for a stable accommodation of the co-crystal in the site during the simulation.

It is important to emphasize that in silico research can contribute to a better physico-
chemical interpretation of a huge variety of biological processes at the molecular level, and
in this direction, such strategies can contribute to accelerating the process of developing
new drugs [53–56]. Usually, however, due to great structural complexity and high com-
putational cost in the treatment of more realistic models, only a small part of the tar-get
microorganism is used during these simulations. In other words, these results repre-sent
only an initial effort of preclinical research. For this reason, only clinical trials can indeed
confirm the effectiveness of such therapeutic options. Finally, from this perspective, we and
other authors believe that in the future, the use of realistic models based on the complete
structure of the target microorganism, as recently reported by Durrant et al. [57], will be
dominant in this field of computational drug design. Undoubtedly, these advances will
lead to a new era in computational drug design, providing better prediction power of how
the structure will affect their biological activity under more realistic conditions, accelerating
the discovery of new therapeutic options.
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4. Conclusions

In summary, our theoretical findings are of great importance and provide a new
molecular perspective on the effectiveness and toxicity of co-crystals formed between
(hydroxy)chloroquine with macrolide antibiotics for the treatment of SARS-CoV-2 infection.
Our findings also enable a new interpretation in for the intramolecular energy and charge
transfer process in these co-crystals, which is critical to the rationalization of their functional
properties, providing an innovative way to connect structural changes with electronic
transfer kinetics. Overall, the co-crystals of CQ and HQ combined with AZ significantly
improved the affinity and decreased toxicity, making them more potent therapeutic agents
against SARS-CoV-2. However, it must be emphasized that the therapeutic potential
benefits can only be determined in practice using rigorous clinical studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/covid2030018/s1, Table S1: Cartesian coordinates (in Å) for
co-crystals computed at PM6, Figure S1: Intermolecular interactions of single-crystals in the viral
Mpro active site.
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