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Does the dose make the poison? Neurotoxic
insecticides impair predator orientation and
reproduction even at low concentrations
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Abstract

BACKGROUND: Pesticides can be noxious to non-target beneficial arthropods and their negative effects have been recently rec-
ognized even at low doses. The predatorNesidiocoris tenuis (Reuter) (Hemiptera: Miridae) plays an important role in controlling
insect pests in solanaceous crops, but its concurrent herbivory often poses relevant concerns for tomato production. Although
insecticide side effects onN. tenuis have been previously studied, little is known on the potential implications of neurotoxic che-
micals at low concentrations. We assessed the baseline toxicity of three neurotoxic insecticides (lambda-cyhalothrin, spinosad
and chlorpyrifos) on N. tenuis by topical contact exposure. The behavioral and reproduction capacity of the predator was then
investigated upon exposure to three estimated low-lethal concentrations (LC1, LC10 and LC30).

RESULTS: Predator survival varied among insecticides and concentrations, with LC30/label rate ratios ranging from 8.45% to
65.40% for spinosad and lambda-cyhalothrin, respectively. All insecticides reduced the fertility of N. tenuis females at all esti-
mated low-lethal concentrations. Chlorpyrifos seriously compromised predator orientation towards a host plant even at LC1,
while the same effect was observed for lambda-cyhalothrin and spinosad solely at LC30. Lambda-cyhalothrin (at all concentra-
tions) and chlorpyrifos (at LC10 and LC30) also affected the time taken by N. tenuis females to make a choice.

CONCLUSION: The results indicate that all three insecticides can be detrimental to N. tenuis and should be avoided when pres-
ence of the predator is desirable.
© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
Pesticides have been incriminated for their negative conse-
quences on biodiversity and its functioning, although their rele-
vance in controlling plant pests effectively remains
undeniable.1,2 Pesticides can potentially affect non-target organ-
isms present in the agroecosystem, leading to disruption of the
ecological services they provide, such as pollination, nutrient
cycling and biological control.3,4 For this reason, studies on the
side effects of pesticides are encouraged to provide new insights
to mitigate their negative impacts on non-target beneficial
arthropods.5–9 This is especially relevant in integrated pest man-
agement (IPM) programs in which natural enemies are often
deliberately released and/or conserved to reduce pest
populations.10–14

Ecotoxicological screenings are usually based on guidelines
developed by non-governmental institutions, and in the
European Union (EU) the ecotoxicological risk assessment of pes-
ticides towards non-target arthropods was developed in the Guid-
ance Document on Terrestrial Ecotoxicology,15 following the
recommendation of the European standard characteristics of

beneficials regulatory testing (ESCORT) of the Society of environ-
mental toxicology and chemistry (SETAC) for non-bee arthro-
pods.16,17 Most ecotoxicology studies consist of laboratory trials
aimed at testing the highest pesticide dose recommended by
manufacturers. However, pesticides are naturally degraded by
biotic and abiotic factors,18,19 and their drift may also occur in
the field resulting in lower doses compared with their initial appli-
cation.20,21 Therefore, non-target organisms present in the agroe-
cosystem can be exposed to chemical residues at low
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concentrations and, surviving individuals may experience related
sublethal effects.19,22–24 These effects may include lower fertility
and a reduction in predation/parasitism ability, which can nega-
tively affect the establishment of natural enemies in the field
and bias their efficiency in reducing pest populations.3,25,26

Hemipteran predators are of paramount importance for the bio-
logical control of insect pests in greenhouse crops because they
are able to control populations of several arthropod pests.26–31-

31Among mirid predators (Hemiptera: Miridae), the zoophyto-
phagous Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) is one
of the most used species for biological control in the Palaearctic.
Nesidiocoris tenuis has a multifaceted role for greenhouse pest
control due to its high efficacy against a number of pests includ-
ing aphids, whiteflies and lepidopterans, such as the South Amer-
ican tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera:
Gelechiidae).32 Moreover, the use of N. tenuis has been fostered
because of its ability in priming induced plant defense
mechanisms.33–38 However, owing to its plant-feeding activity
when prey is scarce, N. tenuis can become a pest because this
predator can cause plant damage at high population levels.39–41

Despite this drawback, IPM programs still rely on the biological
control provided byN. tenuis. Therefore, the predator can be often
exposed to organic and/or synthetic insecticides routinely
adopted in these programs.42–45

Earlier studies investigated the impact of insecticides on
N. tenuis in terms of lethal and sublethal effects, by exposing
N. tenuis adults to synthetic and organic neurotoxic compounds
via different exposure routes (i.e., contaminated prey, direct spray
and residual contact).27,28,46,47 Nevertheless, most studies investi-
gated only the maximum label rate of these compounds. To the
best of our knowledge, there is no information regarding the
effects of low insecticide concentrations on N. tenuis orientation
capacity, which may ultimately affect the success of this predator
as a biological control agent.
In this study, we hypothesized that low concentrations of neuro-

toxic insecticides might have detrimental effects on the physiol-
ogy and behavior of N. tenuis. We tested this hypothesis
through laboratory trials aiming to assess the fertility and olfac-
tory response of N. tenuis adults topically exposed to three low-
lethal concentrations (LC30, LC10, LC1) of insecticides, previously
estimated for this mirid predator. Our findings may help in under-
standing the convolutions of pesticide side effects at low concen-
trations on natural enemies and provide new useful insights into
the association between the predator N. tenuis and chemical
insecticides in pest control.

2 MATERIALS AND METHODS
2.1 Biological materials
Nesidiocoris tenuis for laboratory rearing were obtained from peri-
odic collections in organic open tomato greenhouses located in
Fiumefreddo (Catania, Italy). Collected specimens were morpho-
logically identified and reared in the laboratory as follows. Briefly,
adults of N. tenuis (∼150 individuals) were kept in entomological
cages (32 × 40 × 70 cm) covered by fine net mesh and contain-
ing pesticide-free sesame (Sesamum indicum L., variety T-85
Humera) potted seedlings (∼30 cm in height), as water and ovipo-
sition sources, according to the methodology described by Biondi
et al.48 The commercial mixture of the alternative prey Ephestia
kuehniella Zeller (Lepidoptera: Pyralidae) eggs and Artemia spp.
cysts (i.e., Entofood® Koppert) was offered ad libitum to the pred-
ators as an additional food source. Nesidiocoris tenuis adults were

kept on sesame plants for 3 days to allow mating and oviposition
events; subsequently, N. tenuis adults were collected with a
mechanical aspirator and transferred to new cages as described
above. Sesame plants bearing N. tenuis eggs were isolated inside
the cages for egg hatching and the development of newly
hatched nymphs to adulthood. Half of the newly molted
N. tenuis adults were collected with a mechanical aspirator and
used for the bioassays, whereas the remainder were added to
the rearing. New sesame plants and Entofood® were added to
each cage twice a week. The rearing was maintained under labo-
ratory conditions (25 ± 1°C, 55% ± 5% relative humidity, and a
14:10 h light/dark photoperiod) at the Department of Agriculture,
Food and Environment of the University of Catania (Italy).

2.2 Insecticides
To assess the potential physiological and behavioral effects on
N. tenuis, three neurotoxic insecticides were evaluated in this
study. The insecticides, followed by their tradename, manufac-
turer, chemical group and mode of action, were: lambda-
cyhalothrin (Karate Zeon®, Syngenta Italia S.p.a.), a pyrethroid,
Na+ channel modulator; spinosad (Laser®, Dow AgroSciences S.r.
l.), a spinosyn, nicotinic acetylcholine receptor allosteric modula-
tor; and chlorpyrifos (Dursban®, Dow AgroSciences S.r.l.), an
organophosphate, acetylcholinesterase (AChE) inhibitor.
Lambda-cyhalothrin and chlorpyrifos are both synthetic insecti-
cides used in conventional tomato crops in many countries,
whereas spinosad is a naturally derived insecticide, therefore its
use is allowed in both conventional and organic crops. These
insecticides were selected due to their potential use in tomato
crops to control hemipteran and lepidopteran pests (such as
aphids, whiteflies and T. absoluta), which are also N. tenuis prey.

2.3 Insecticides baseline toxicity toward Nesidiocoris
tenuis
In this bioassay, we assessed the concentration–mortality
response relationship of N. tenuis adult stage to lambda-cyhalo-
thrin, spinosad and chlorpyrifos by topical contact exposure.
Newly emerged females (∼2 days old) were exposed by topical
spray to different concentrations of the insecticides. For each
insecticide, six or seven concentrations, including of the highest
label rate, were tested (see Table 1). Stock solutions were pre-
pared with dilution of insecticidal formulations in distilled water,
according to the manufacturer’s recommendations. In addition,
an untreated control with distilled water was included for all the
insecticides (referred to as “zero concentration”). The insecticide
dilutions were based on preliminary observations aimed at identi-
fying the minimum dose needed to cause 100% mortality of
N. tenuis females and the maximum dose that does not signifi-
cantly affect the mortality of the treated insects in comparison
with the untreated control.
An adapted methodology for insecticide topical contact applica-

tion on N. tenuis adult stage was developed. Briefly, five N. tenuis
females were isolated together in conical ventilated plastic tubes
(Falcon®, 50 ml) andmaintained at low temperature inside an insu-
lated thermic box with ice packs for 3 h to reduce insect mobility.
Thereafter, each group of N. tenuis females was placed in a plastic
cup (100 ml) and topically sprayed with insecticide solutions using
a hand-sprayer (50 ml). The inside of the plastic cups was covered
by absorbent paper to prevent the formation of insecticide droplets
in the arena, preventing insect mortality via drowning. Clean and
new absorbent paper was changed in each replicate for every
insecticide–concentration combination. After spraying, each group
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of five N. tenuis females was transferred to an acrylic ventilated pot
(5.5 cm in diameter × 3 cm height), alongwith a zucchini (Cucurbita
pepo L.) leaf disc and Entofood®. Each pot containing five females
was considered one replicate. Mortality caused by the insecticides
on N. tenuis females was evaluated after 48 h. Eight replicates were
performed for each insecticide–concentration combination.

2.4 Sublethal effects of insecticides onNesidiocoris tenuis
fertility
The aim of this bioassay was to evaluate whether low concentra-
tions of lambda-cyhalothrin, spinosad and chlorpyrifos could affect
the fertility of the predator N. tenuis. Based on the results of the pre-
vious bioassay, newly molted N. tenuis males and females (2 days
old) from the rearing were exposed to three low-lethal concentra-
tions (LC1, LC10 and LC30) of the aforementioned insecticides. These
concentrations were chosen to expose the predators to low con-
centrations that can occur under field conditions after environmen-
tal degradation of a full label spray, including a lethal range from
very low mortality (LC1) to moderate mortality (LC30).
Adult females (2 days old) were sprayed with the low-lethal con-

centrations mentioned above and distilled water, as described in
Section 2.3. Sprayed couples were kept in a ventilated plastic cup
(400 ml) containing a green bean pod (Phaseolus vulgaris L.,
cv. ‘Garrafal enana’) as a water source and oviposition
substrate,28,49 and E. kuehniella eggs (1 g) as food supply in the
arena. Each N. tenuis couple was kept in the aforementioned
arena for 3 days to increase mating success and let the females
oviposit into the bean. The experimental arenas containing green
bean pods with N. tenuis eggs were maintained under laboratory
conditions as described above, and the number of newly
emerged nymphs was recorded daily under a stereomicroscope
and removed with a soft paintbrush. The evaluation was con-
ducted for 20 days until no new nymph emerged. For each
pesticide–concentration combination and the control, the fertility
of 25 N. tenuis couples (i.e., 25 replicates) was evaluated.

2.5 Sublethal effects of insecticides onNesidiocoris tenuis
orientation
The aim of this bioassay was to evaluate whether the orientation
of the predator N. tenuis could be affected by the three low-lethal
concentrations (LC1, LC10 and LC30) of lambda-cyhalothrin, spino-
sad and chlorpyrifos. Adult females (2 days old) were sprayedwith
the low-lethal concentrations mentioned above and distilled
water, as described in Section 2.3. After being sprayed topically,
N. tenuis females were starved for 24 h in transparent vials
(1.5 cm in diameter × 6 cm height) with a wet cotton wad as the
only water source. Thereafter, each N. tenuis female was trans-
ferred in a two-way olfactometer (main arm and lateral arms
15 cm long and 4 cm internal diameter). The odor sources used
were clean air and a sesame plant (∼20 cm height). Sesame plant
was chosen because previous studies demonstrated that this
plant is highly attractive to N. tenuis.48,50 A sesame plant was
placed inside one of the cylindrical glass jars (5 L volume) con-
nected to the lateral arms of the olfactometer. An air pump
(Airfizz®, Ferplast) produced a unidirectional flow (150 ml min−1)
that passed through a water filter before entering the olfactome-
ter system, conducting the air through the olfactometer lateral
arms and reaching thus the main arm. The olfactometer was
placed vertically on the bench surface and N. tenuis females were
placed individually on the central arm. The bioassays were per-
formed in a dark room, with controlled environmental conditions
(25 ± 1°C, 60± 10% R. H.) andwere conducted between 9:00 a.m.
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and 6:00 p.m. The olfactometer was illuminated by 22 W cool-
white fluorescent lamps, positioned 80 cm above the olfactome-
ter arms, according to Naselli et al.50

The choice of each female was considered when it crossed half
of the lateral arm. Each predator was observed for 5 min and, if no
choice was made after that time, non-responder N. tenuis females
were discarded from the data set. After every two tested females,
the olfactometer was inverted to reduce environmental interfer-
ence in the insect response. For each insecticide–concentration
combination, at least 30 replicates, each composed of an insect
that have did a choice, were carried out. The time taken for
N. tenuis females to make a choice (for insects that made a choice)
was also recorded.

2.6 Statistical analyses
The baseline toxicity of lambda-cyhalothrin, spinosad and chlor-
pyrifos on N. tenuis by topical contact exposure was carried out
through a log-probit regression model.51 The preference data of
N. tenuis towards sesame plants were analyzed using a chi-
squared goodness-of-fit to determine whether the female attrac-
tion to sesame plants was different from a 50:50 distribution.
Data regarding time taken by N. tenuis females to make a choice

and fertility were tested for normality and homoscedasticity;52,53

however, these assumptions were not met. Therefore, these data
were fitted to generalized linear models (GLMs),54 and potential
interaction between factors (four treatments × three concentrations)
was tested. Themodels were fitted using the Poisson family for fertil-
ity and negative binomial family for time takenbyN. tenuis females to
make a choice (Poisson and quasi-Poisson families were first tested,
but the negative binomial model presented a better fit). Means were
separated by a post-hoc Tukey’s HSD test (p < 0.05). Probit analyses
were performed in the statistical program SPSS v. 21.0 (IBM Corp.),
whereas the analyses for the fertility andolfactory response bioassays
were performed in R v. 3.6.0 (R Foundation for Statistical Computing),
using the packages car andMASS for model fitting and the package
multcomp to separate means.55–57

3 RESULTS
3.1 Insecticides baseline toxicity toward Nesidiocoris
tenuis
The probit models were fitted to observed data for all the treat-
ments (i.e., there were no significant differences between the
observed and the expected data), validating the low-lethal con-
centrations for all the tested neurotoxic insecticides (Table 1). All
insects treated with distilled water only (“zero concentration”) sur-
vived throughout the evaluation period. Lambda-cyhalothrin was
the insecticide with the lowest values of LC1, LC10 and LC30, being
the most lethal active ingredient for N. tenuis females. Spinosad
and chlorpyrifos also presented high toxicity to the predator as
highlighted by the low LC30 values estimated for these com-
pounds. Nevertheless, despite lambda-cyhalothrin being the
most toxic active ingredient, it was observed that the proportion
values between the estimated LC10 and LC30 and the maximum
label rate were higher for this insecticide (17.13% and 65.40%)
in comparison with those observed for spinosad (3.32% and
8.45%) and chlorpyrifos (3.35% and 21.11%) (Table 1).

3.2 Sublethal effects of insecticides onNesidiocoris tenuis
fertility
Although the GLM revealed no significant insecticide × concen-
tration interaction (χ2 = 12.023, df = 6, p = 0.061), all the tested

insecticides significantly reduced the fertility of N. tenuis females
at all the evaluated concentrations (LC1: χ

2 = 64.642, df = 3,
p < 0.001; LC10: χ2 = 73.707, df = 3, p < 0.001; LC30:
χ2 = 118.560, df = 3, p < 0.001). The reduction in fertility was
higher for chlorpyrifos at LC30 (χ2 = 9.939, df = 2, p = 0.007),
whereas no differences were observed among the concentrations
for lambda-cyhalothrin (χ2 = 2.659, df = 2, p = 0.265), spinosad
(χ2 = 1.008, df = 2, p = 0.604) and the control (χ2 = 0.427, df = 2,
p = 0.808) (Figure 1).

3.3 Sublethal effects of insecticides onNesidiocoris tenuis
orientation
A significant attraction towards sesame plants was expected for
insects that did not experience any insecticide exposure,50 and
it was confirmed for all control treatments. Therefore, this was
taken as a reference for the percentage of insects orienting
toward sesame compared with clean air for the treatments with
insecticides. The preference of N. tenuis females for sesame plants
instead of clean air was not affected by lambda-cyhalothrin or spi-
nosad at LC1 and LC10. However, the choices of insects treated
with chlorpyrifos did not differ between sesame and air for these
two low-lethal concentrations. At LC30, all insecticides affected
N. tenuis orientation, resulting in no difference between the pro-
portion of choices for sesame and clean air (Figure 2).
Differences in the time taken by N. tenuis females to make a

choice were observed in all low-lethal concentrations (LC1:
χ2 = 9.358, df = 3, p = 0.024; LC10: χ

2 = 22.566, df = 3, p < 0.001;
LC30: χ

2 = 33.291, df = 3, p < 0.001) (Figure 3). Insects treated with
all the tested concentrations of lambda-cyhalothrin took longer to
make a choice in comparison with the control treatment. The
same was observed for insects treated with chlorpyrifos at LC10
and LC30. For females treated with all concentrations of spinosad
time taken to make a choice was not affected in comparison with
the control treatment. No differences were observed among con-
centrations for any of the treatments (control: χ2 = 0.508, df = 2,
p = 0.777; lambda-cyhalothrin: χ2 = 0.634, df = 2, p = 0.729; chlor-
pyrifos: χ2 = 4.981, df = 2, p = 0.083; spinosad: χ2 = 3.589,
p = 0.166) (Figure 3). There was no interaction between

FIGURE 1. Mean (±) fertility values for Nesidiocoris tenuis females after
topical contact exposure to three insecticides at three low-lethal concen-
trations and distilled water (untreated control). Different upper case letters
indicate significant differences among treatments in a concentration,
whereas different lower case letters indicate significant differences in
the concentrations for a treatment (GLM – Poisson distribution, Tukey’s
HSD test, p < 0.05).
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treatments and concentrations for the time taken by N. tenuis
females to make a choice (χ2 = 9.066, df = 6, p = 0.170), therefore
the data were evaluated separately.

4 DISCUSSION
In many systems, broad-spectrum insecticides, such as neurotoxic
insecticides, are the most used compounds for pest control
because of their effectiveness in controlling pests. However, a vast

literature has documented concerning detrimental effects on
beneficial organisms caused by these effective tools.3,58,59 To pre-
serve the ecological functions of beneficial organisms in the
agroecosystem (including biological control) selective insecti-
cides should be preferred in pest management.5,22,26,60–62 Addi-
tionally, insecticides can cause sublethal effects that can bias the
biological control provided by predators and parasitoids.3,24

These alterations can be observed in individuals that survived
both full label rates of selective compounds and lower

FIGURE 2. Response of Nesidiocoris tenuis females topically exposed to three insecticides at three low-lethal concentrations (LC1, LC10 and LC30) and dis-
tilled water (untreated control) towards the volatiles produced by a Sesamum indicum plant. The percentages indicate the proportion of choices for ses-
ame and clean air. Asterisks indicate differences in the attraction to S. indicum and clean air according to the likelihood chi-squared (p < 0.05).
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concentrations of broad-spectrum insecticides, which can occur
after natural degradation under field conditions.22,63–65

Probit models are often used to estimate concentration–
mortality of pesticides to pests and natural enemies, in order
to select efficient and safe compounds, respectively.49,65–68 In
our observations, lambda-cyhalothrin was the most toxic com-
pound for the predator, because lower values were estimated
for all lethal concentrations. Spinosad was the least toxic insecti-
cide at LC1 towards N. tenuis; however, at LC30 this insecticide
was more toxic than chlorpyrifos. The highest slope estimated
for spinosad treatment indicates that a slight increase in insecti-
cide concentration may lead to high predator mortality.69 More-
over, due to the lower active ingredient concentration in the
lambda-cyhalothrin based insecticide, the difference between
the maximum label rate and the estimated LC10 and LC30 are
lower for lambda-cyhalothrin than for the spinosad and chlor-
pyrifos commercial products. Therefore, despite the higher
LC10 and LC30 values observed for spinosad and chlorpyrifos,
these insecticides might be even more toxic than lambda-
cyhalothrin under field conditions.
Besides mortality, all insecticides at the three evaluated concen-

trations reduced the fertility of the predator N. tenuis. Reproduc-
tive parameters are among the most sensitive biological
characteristics to insecticides and the most important in terms
of population dynamics.70 Similar to our results, a reduction in
N. tenuis progeny was also observed for the pyrethroids cyperme-
thrin and deltamethrin.28,46 Additionally, pyrethroids can be used
at sublethal concentrations to contaminate insect-proof nets, and
Biondi et al. found that the continuous exposure of T. absoluta
adults to such nets can cause a variety of chronic sublethal effects
rather than acute toxicity.71

Lower concentrations of the organophosphate chlorpyrifos
were also frequently reported as causing negative effects on the
reproduction of natural enemies. At LC30 several sublethal effects
were observed on the hemipteran Andrallus spinidens Fabricius
(Hemiptera: Pentatomidae), such as reduction in fertility and
enzyme activity, and alterations in life table parameters.72

Fernandes et al. observed negative effects on reproduction after
chlorpyrifos exposition at LC20 for the predator Orius insidiosus
(Say) (Hemiptera: Anthocoridae).67 Moreover, spinosad reduced
the offspring of the predatory bugs, such as Orius laevigatus
(Fieber) (Hemiptera: Anthocoridae),22 Macrolophus pygmaeus
(Rambur) (Hemiptera: Miridae)27,73 and Deraeocoris brevis (Uhler)
(Hemiptera: Miridae).74

Negative effects were also observed in the behavioral traits of N.
tenuis. In the insecticide treatments, spinosad and lambda-
cyhalothrin at LC30 and chlorpyrifos at all concentrations affected
the orientation ability of the predator. Moreover, the two syn-
thetic insecticides also increased the time taken by N. tenuis
females to make a choice. Because of their neurotoxic action, all
three insecticides can affect the capacity of the nervous system
to react to external stimuli.59,63,72,75

The behavioral results in this study are consistent with neuro-
toxicity associated with lambda-cyhalothrin. The deleterious
effects caused by pyrethroids result from a blockage in electrical
stimulus conduction as a consequence of the permanent opening
of sodium channels while the insecticide is acting, leading to
behavioral and physiological impacts.59,76 Desneux et al. also
observed that sublethal doses of lambda-cyhalothrin (LD0.1)
affected the orientation behavior of the parasitoid Aphidius ervi
Haliday (Hymenoptera: Braconidae).63 The parasitoid Aphidius
colemani Viereck (Hymenoptera: Braconidae) exhibited a reduc-
tion in parasitism and longevity after treatment with sublethal
concentrations of lambda-cyhalothrin.77 Soares et al. also
observed alterations in N. tenuis behavior caused by lambda-
cyhalothrin.26

Similarly, a lack of coordination is associated with chlorpyrifos
intoxication.72 The biased orientation of N. tenuis females treated
with chlorpyrifos at LC1, LC10 and LC30 indicates that this insecti-
cide can affect the predator behavior even at very low concentra-
tions. The time taken by N. tenuis females to make a choice also
increased after treatment with LC10 and LC30. Fernandes et al.
observed negative effects on predation rate after chlorpyrifos
exposure at LC20 for the predator O. insidiosus.67 The predator
M. pygmaeus also showed behavioral alterations (reduced attack
rate and increased handling time) after treatment with chlorpyri-
fos at LC30.

78

By contrast, studies regarding the side effects of spinosad on
the behavior of beneficial insects are scarce. For example, Barbosa
et al. observed alterations in walking activity in the stingless bee
Melpona quadrifasciata Depeleiter (Hymenoptera: Apidae) after
exposure to spinosad.79 Nevertheless, owing to the toxic effect
on the nervous system, insects intoxicated by spinosad may pre-
sent symptoms like a lack of coordination, trembling of append-
ages and a compromised perception of external stimuli, which
can ultimately result in reduced predatory capacity for a natural
enemy.75,80–82

Plants from different botanical families, such as Asteraceae,
Solanaceae and Pedaliaceae, are suitable for N. tenuis biological
development. These plants could serve as water and oviposition
sources, and are also plants where N. tenuis prey can be found
in the field.39,48 For this reason, disrupting the predators’ capacity
to locate host plants directly influences their survival and success
as biological control agents. The misorientation caused by lower
concentrations of insecticides could also compromise N. tenuis
capacity to locate plants infested with herbivorous prey, as
observed for the predator Cyrtorhinus lividipennis Reuter
(Hemiptera: Miridae) after exposure to the pyrethroid deltame-
thrin.83 Further study is needed on this point of the system.

FIGURE 3. Mean (±SE) time taken (s) by Nesidiocoris tenuis females to
make a choice between the volatiles emitted by a Sesamum indicum plant
or clean air after topical contact exposure to three insecticides at three
low-lethal concentrations and distilled water (untreated control). Different
upper case letters indicate differences among treatments in a concentra-
tion, whereas different lower case letters indicate differences in the con-
centrations for a treatment (GLM – Negative Binomial distribution,
Tukey’s HSD test, p < 0.05).
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In summary, we observed that spinosad, chlorpyrifos and
lambda-cyhalothrin can be toxic to the predator N. tenuis, even
at low concentrations, with effects on fertility and orientation. In
addition to the laboratory results, field trials should be performed
to confirm the toxicity of the compounds exploring different
exposure routes (i.e., residual contact and ingestion of contami-
nated prey) and/or by testing the potential side effects toward
insect parasitoids exploited in tomato crops.13,84,85

5 CONCLUSIONS
The baseline toxicity showed that the insecticides were toxic to
N. tenuis females. The sublethal effects caused by the tested con-
centrations of the three insecticides were also relevant. Even at
LC1 and LC10 the fertility of N. tenuis females was compromised
by all the insecticides. In addition, sublethal effects on predator
orientation were observed. We concluded that the three insecti-
cides were noxious to N. tenuis and should be avoided when the
presence of the predator is desirable. Nevertheless, field trials
must be carried out to confirm their sublethal toxicity and overall
risk (interaction of exposure, hazard and other factors).
Additionally, the negative effects on N. tenuis orientation

observed in the current study provide a basis for further research
aiming to elucidate how neurotoxic insecticides impair N. tenuis
capacity to locate host plants or herbivorous prey, by investigat-
ing alterations in the gene expression of odorant-binding and
chemosensory proteins that might be involved in plant volatile
reception by employing electro-antennography and quantitative
real-time polymerase chain reaction bioassays.86–88 Moreover,
the results highlight the importance of investigating other insec-
ticides that might have a narrow spectrum and that would be
more compatible with sustainable IPM.
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