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ABSTRACT: The development and recommendation of single cross maize hybrids (SH) to be 
used in extensive land areas (mega-environments), and in different crop seasons requires many 
experiments under numerous environmental conditions. The question we asked is if the data from 
these multi-environment experiments are sufficient to identify the best hybrid combinations. The 
aim of this study was to critically analyze the phenotype data of experiments of yield, established 
by a large seed producing company, under a high level of imbalance. Data from evaluation of 
2770 SH were used from experiments conducted over four years, involving the first and second 
crop seasons, in 50 locations of different years and regions of Brazil. Different types of analysis 
were carried out and genetic and non-genetic components were estimated, with emphasis on 
the different interactions of the SH with the environments. Results showed that the coincidence 
of common hybrids in these experiments is normally small. The estimates of the correlations 
between of the hybrids coinciding in the environments two by two is of low magnitude. The hybrid 
× crop season interaction was always expressive; however, the interactions of hybrids and 
other environmental variables were also important. Under these conditions, alternatives were 
discussed for making with the information obtained from the experiments, can be more efficient 
on the process to obtain new hybrids by companies.
Keywords: genotype × environment interaction, unbalance data, hybrid recommendation 
process, variance components, plant breeding
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Introduction

Two maize crop seasons are common in Brazil per 
year. The first crop occurs from Sept to Dec, while the 
second season is from Jan to Apr. The environmental 
conditions between these two crop seasons are quite 
distinct in relation to temperature and rain distribution. 
In addition, farmers’ use of technology in maize growing 
is quite diversified. This makes selection of hybrids for 
recommendation under these different conditions a 
much greater challenge than that in temperate regions, 
for example.

In order for a breeder to be successful in the 
identification of hybrids adapted to the mega-environment 
of maize growing, the hybrids obtained annually must be 
broadly evaluated. Clearly, these evaluations will only be 
successful if the experiments are conducted in the greatest 
number of environments possible. Experience in respect 
shows that secure recommendation was only possible 
through middle-term results coming from hundreds of 
replications (Troyer, 1996; Gaffney et al., 2015). However, 
companies obtain thousands of hybrids annually, which 
makes testing in multiple replications difficult. In this 
way, the same hybrid will rarely be evaluated in all the 
environments, resulting in a is excessive imbalance data 
and consequently hindering the decision making at the 
time of recommendation. 

In many situations, these experiments are used 
to evaluate the possibility of employing genomic 
selection in prediction of potentially superior hybrid 
combinations. In this sense, the more accurate the model 
is, the greater the association of future performance of 

the hybrid will be through the response of the genotyped 
line. Previous experiences show that the effect of the 
hybrid × environment interaction greatly complicates 
the prediction process. Because of this interaction, the 
responses of the hybrids do not coincide in the diverse 
environments evaluated. An alternative is to include this 
effect in the predictive models to obtain more accurate 
information (Lado et al., 2016; Ferrão et al., 2018; Dias et 
al., 2018a; Montesinos-López et al., 2019; Krause et al., 
2020). The question is whether the hybrid × environment 
interaction component obtained from highly unbalanced 
experiments can contribute to the predictive models.

Thus, the purpose of the present study was to 
analyze the phenotypic data from yield experiments of 
different crop years and seasons, estimate genetic and 
phenotypic parameters under a high level of imbalance 
and comment the impact of these conditions on breeder 
decisions to selection maize hybrids.

Materials and Methods

Genetic material, experimental design, and 
environments

Grain yield data (t ha–1), kindly provided by a Brazilian 
company of hybrid maize cultivars, were used in 
this study. These data were obtained over four years 
with two crop seasons per year including numerous 
locations in the central and southern regions of Brazil 
(Figure 1). During this period, 2770 SH of maize were 
evaluated. These hybrids originated from crosses of 
447 lines coming from different tropical, subtropical, 
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and temperate regions around the world. Due to the 
breeding program in question being a line introgression 
program, the number of SH common to the two crop 
seasons, as well as the number of experiments and of 
treatments evaluated per experiment in each location, 
was quite variable (Table 1 and Figure 2). 

Randomized block (RBD) and incomplete block 
(IBD) experimental designs were used for evaluation of 
the hybrids, with two or three replications. The plots 
consisted of four 5 m rows with a 0.7 m between-row 
spacing. Different experiments were set up within each 
crop season in the same location. The experiments 
within each location were connected through check 
varieties in common since the hybrids evaluated in each 
experiment were not necessarily the same. Additional 
information regarding the number of hybrids, the 
locations, experiments, replications, and experimental 
design adopted in each crop season is provided in Table 

1. Each crop season was identified by an abbreviation 
that corresponds to the year of sowing (2011, 2012, 
2013, or 2014), followed by the crop season (first crop, 
s1, or second crop, s2) and region (West Center, C, or 
South, S) (Figure 1 and Table 1).

Statistical analyses

For better characterization of the dataset, the overall 
mean per crop season and the variation among 
mean values of the SH in the different experiments 
and, subsequently, in the locations were estimated. 
Considering only the data from the 2011s1C crop season 
for the purpose of making inferences regarding what 
occurs among locations in the same crop season, genetic 

Table 1 – Description of the crop season, year, abbreviation, experimental design, number of single cross hybrids (SH), locations, experiments 
(EXP) and replications (REP) in each crop season.

Crop season Year Abbreviation Design SH Location EXP REP
 West Center 1st crop 2011/2012 2011s1C RBD* 1012 5 28 3
South 1st crop 2011/2012 2011s1S RBD 783 5 22 3
West Center 2nd crop 2012 2012s2C RBD 1041 6 24 3
South 2nd crop 2012 2012s2S RBD 1040 4 22 3
West Center 1st crop 2012/2013 2012s1C IBD 441 7 13 3
South 1st crop 2012/2013 2012s1S IBD 725 7 19 2
West Center 2nd crop 2013 2013s2C IBD 411 6 11 3
West Center 1st crop 2013/2014 2013s1C IBD 810 4 20 2
West Center 2nd crop 2014 2014s2C IBD 853 6 21 2
*Randomized block (RBD) and incomplete block (IBD) experimental designs.

Figure 1 – Map of Brazil, showing the locations where experiments 
for evaluation of single cross hybrids of maize were conducted 
in the central and southern regions. Points in black, red, orange, 
blue, and pink correspond to experiments set up in the first crop 
season; points in green, purple, brown and yellow correspond to 
experiments set up in the second crop season. Crop seasons are 
labeled by their year of sowing (2011 – 2014), followed by their 
crop season (first crop, s1, or second crop, s2) and region (West 
Center, C, or South, S). 

Figure 2 – The diagonal of the heat plot corresponds to the number 
of hybrids evaluated in each crop season. Upper diagonal heat plot 
indicates the number of genotypes in common that were evaluated 
in the pairs of environments while lower diagonal indicates the 
estimates of the correlation between the mean values of the SH 
in common in the crop seasons two by two. Crop seasons are 
labeled by their year of sowing (2011 – 2014), followed by their 
crop season (first crop, s1, or second crop, s2) and region (West 
Center, C, or South, S).
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variance (sg
2) among the hybrids evaluated, variance of 

the error (se
2), and heritability (h2) were estimated in 

each location using the following statistical model: s2

y = Xτ + Zgug + Zgeuge + Zbub + e  (1)

where y is the vector of phenotypic observations; τ is 
the vector of fixed effect of the experiment; ug is the 
vector of random genotypic effects of hybrids, with 
ug ~ N(0, sg gI2 ); uge is the vector of random effects of 
the hybrid by experiment interaction, with uge ~ N(0, 
sge geI2 ); ub is the vector of random effect of replication 
within experiments, with ub ~ N(0, sb bI

2 ); e is the vector 
of random errors, with e ~ N(0, se nI

2 ); X, Zg, Zge, and Zb 
are the incidence matrices associated with the vectors 
τ, ug, uge, and ub; sg

2, sge
2 , sb

2, and se
2 are the variance 

components associated with the vectors ug, uge, ub, and 
e; and , , and In are the identity matrices associated with 
the vectors ug, uge, ub, and e. IgIn each crop season, the 
grain yield data were analyzed through a mixed models 
approach considering the model according to the 
experimental design adopted:

y = Xτ + Zgug + Zglugl + Zbub + e  (2)

where y is the vector of phenotypic observations; τ is 
the vector of fixed effects (experimental RBD: location 
and experiment within location; experimental IBD: 
location, experiment within location, and replication 
within experiment and location); ug is the vector of 
random genotypic effects of hybrids, with ug ~ N(0, 
sg gI2 ); ugl is the vector of random effects of the hybrid 
by location interaction, with ugl ~ N(0, sgl glI2 ); ub is the 
vector of random effects (experimental RBD: block 
within experiment and location; experimental IBD: 
block within replication, experiment, and location, with 
ub ~ N(0, sb bI

2 ); e is the vector of random errors, with e 
~ N(0, R); X, Zg, Zgl, and Zb are the incidence matrices 
associated with the vectors τ , ug, ugl, and ub; sg

2, sgl
2 , 

sb
2 , and se

2 are the variance components associated with 
the vectors ug, ugl, ub, and e; and Ig, Igl, Ib and In are the 
identity matrices associated with the vectors ug, ugl, ub, 
and e. The residual (co)variance matrix, with the aim of 
modeling the effect of location within each crop season, 
adopted a diagonal block variance structure, using the 
identity matrix (R Il

t
e ni i

= ⊕ =1
2σ ).

Previously, alternative methodologies of 
unstructured variance covariance matrix were tested 
to try to model the genetic correlation between all 
environment pairs. These matrices allow a better 
understanding of the genetic structure and evaluate the 
stability of genotypes in mega-environments. To this 
end, the genetic and residual effects were considered as 
ug ~ MVN (0, σg lI2 ⊗ Σ ) and e ~ MVN (0, σe lI R2 ⊗ ). Σl is 
the VCOV matrix for the additive genetic effects in the l 
environments and Rl represents the VCOV matrix for the 
residual effects in the l environments. In this case, the 
main environment effects were implicitly modeled and 

an unstructured form for the genetic Σl and residual Rl 

VCOV matrix was assumed. Because of the large number 
of sites evaluated in each season (> 5) the convergence 
of these unstructured matrices was difficult. In this 
way, the diagonal block variance structure was adopted, 
as described above, to model the genetic and residual 
effects in this study.

The variance components associated with the 
random effects were obtained using the residual 
maximum likelihood method (REML) (Patterson 
and Thompson, 1971) and their significance levels 
were verified by the likelihood ratio test. To make 
inferences regarding the occurrence of interaction, 
the correlation (rqs) among the mean values of the SH 
coinciding in the q and s crop seasons was estimated. 
The estimator used was similar to that presented by 
Steel et al. (1997):

r
HS HS

qs
iq is

HS HSiq is

=
×

×

cov( )

σ σ2 2
  (3)

where HSiq is the mean of the single cross hybrid i in 
crop season q; HSis is the mean of the single cross hybrid 
i in crop season s; sHSiq

2  is the variance of the single cross 
hybrid i in crop season q; and sHSis

2 is the variance of the 
single cross hybrid i in crop season s.

In addition, the effect of the hybrid × crop season 
interaction was also verified through the coincidence 
of the genotypes selected based on the mean of two 
environments (considering different combinations of 
year, region, and sowing time) in relation to selection 
based on the mean of each environment individually. 
For that purpose, the maize yield data from each 
location within the crop seasons were fitted regarding 
the effect of blocking and replication, according to the 
design adopted in each situation, to obtain the EBLUE 
(Empirical Best Linear Unbiased Estimation) estimates. 
These estimates were used to carry out the individual 
analyses of each crop season and also the combined 
analyses of the environments two by two. Using the 
EBLUP (Empirical Best Linear Unbiased Prediction) 
predictions, the ten best hybrids in the mean of the 
environments and also in each one of the environments 
were selected. 

Furthermore, in each crop season, the correlation 
between the mean value and the EBLUP of the SH 
was estimated, and the estimates of heritability were 
obtained using the following estimators:

Standard method using the expression presented 
by Falconer and Mackay (1996) that presupposes 
balanced data and independent genetic effects: 

h

l l r

g

g
g l e

2
2

2
2 2

=
+ +

×
×

σ

σ
σ σ

  (4)

Holland et al. (2003) cited by Piepho and Möhring 
(2007) recommended for cases of imbalance and fixed 
effects of genotype:
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h
vH

g

g EBLUE

2
2

2 2
=

+

σ

σ /   (5)

where vBLUE means the mean variance of the difference 
of the fitted mean values of two treatments (EBLUE).

Cullis et al. (2006), also estimated in cases of 
imbalance and random effect of genotype:

h
v

C
EBLUP

g

2
21

2
= −

σ
  (6)

where vEBLUP means the mean variance of the difference 
of two EBLUPs. 

Finally, combined analysis was carried out involving 
the single cross hybrids common to two crop seasons 
using different alternatives. The crop seasons chosen 
were 2011s1C/2012s2C and 2013s1C/2014s2C. These 
crop seasons were evaluated in different years and also 
differed in experimental accuracy and in the number of 
hybrids that coincided among them. In all the alternatives 
adopted, selection was made of the 20 best SH common 
to the two crop seasons chosen (2011s1C/2012s2C and 
2013s1C/2014s2C).

Combined analysis based on the EBLUE estimates 
that were obtained for the hybrids in each environment 
was performed a) involving only the SH common to the 
two environments and common residual variance; b) 
considering all the SH present in the two environments, 
i.e., also those that were eliminated in the year, crop 
season, or location and common residual variance; c) 
involving only the SH common to the two environments 
and considering a residual variance different for each 
environment using the diagonal matrix, and d) considering 
all the SH present in the two environments and residual 
variance different for each environment.

Results 

The dataset evaluated is typical of breeding programs 
with the objective of line introgression to obtain new 
SH. As many lines do not adapt well to Brazilian climate 
conditions, an imbalance was observed in the number of 
SH, locations, experiments, and replications evaluated 
over the crop seasons (Table 1). 

The number of SH that were repeated among the 
crop seasons varied widely. Comparing the 2011s1S 
crop season and the 2012s1S crop season, of the 783 SH 
evaluated in the first year, only 159 proceeded, i.e., high 
selection intensity was applied and only 20 % of the SH 
evaluated in 2011s1S were allocated to the experiments 
in the following crop season. An even more complex 
scenario was observed between the 2012s2C and 2013s2C 
crop seasons, where only 13 % of the hybrids evaluated in 
2012s2C advanced to the 2013s2C crop season. The same 
observation is valid for other years when comparing crop 
seasons and/or regions, and it becomes clear that there 
is great difficulty in evaluating data from different crop 
seasons in a combined manner (Figure 2).

The overall mean of the crop seasons ranged from 
3.9 to 9.7 (t ha–1), and the first crop seasons (8.3 t ha–1) 
were 1.56 times higher yielding than the second crop 
seasons (5.3 t ha–1), regardless of the region evaluated. 
The variation among the crop seasons was high; for 
example, for the West Center region, the yield in the 
first crop season in 2011/2012 was 58 % greater than 
in the second crop season. However, in 2012/2013, this 
superiority was much lower, only 18 %, but returned to 
a higher level in 2013/2014 at 51 %, once more showing 
the discrepancy among the crop seasons evaluated 
(Table 2).

Within each crop season, a greater variation in 
mean yield of the SH tested was observed among the 
experiments than among the locations. The amplitude of 
variation of the experiments in relation to the mean was 
up to 110 %, as is the case of the 2011s1S crop season 
([(11.2 – 2.7) / 7.6] =1.10). The variation of the lower 
and upper limits among the locations in relation to the 
overall mean was under 55 %, except in the 2011s1S 
and 2014s2C crop seasons. It is important to highlight 
that the greater variation among experiments is a result 
of the effect of locations and also of the different SH 
evaluated among the experiments (Table 2). 

The grain yield data were fitted through the mixed 
models/REML approach. The estimates of correlations 
between the mean of the SH and their EBLUPs was 
greater than the 0.9 involving the crop seasons of more 
recent years. It follows that under these conditions, an 

Table 2 – Overall mean, lower limit (LL), upper limit (UL) of mean grain yield of single cross maize hybrids in the experiments and environments 
of each crop season in t ha–1 and correlation between the mean value and the EBLUP of each hybrid in the nine crop seasons evaluated (r).

Crop Season LL and UL of the mean yield of the 
experiments

LL and UL of the mean yield of the 
locations

Overall mean of the crop 
seasons r

2011s1C 6.0 – 9.9 6.5 – 9.3 8.5 0.80
2011s1S 2.7 – 11.1 4.8 – 9.8 7.6 0.77
2012s2C 3.4 – 8.2 4.2 – 7.6 6.0 0.69
2012s2S 2.7 – 5.6 3.3 – 5.2 3.9 0.62
2012s1C 4.8 – 7.6 5.7 – 7.6 7.2 0.94
2012s1S 6.3 – 10.3 7.9 – 11.4 9.7 0.90
2013s2C 3.6 – 5.9 4.6 – 7.2 5.6 0.96
2013s1C 5.9 – 9.2 6.6 – 10.1 8.5 0.99
2014s2C 1.9 – 7.3 2.9 – 7.9 5.7 0.97
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optimal association between the mean values and the 
EBLUPs of the SH was obtained (Table 2). 

In all the crop seasons, hybrids were observed with 
discrepant performance in relation to the set evaluated. 
The 2012s1S crop season exhibited the widest amplitude 
of variation, which was associated with the highest mean 
yield value (9.7 t ha–1). In that crop season, the EBLUPs of 
the hybrids ranged from –4.0 to 3.1. In the 2012s2C crop 
season, lower amplitude of variation and a mean value of 
6.0 t ha–1 was found, with EBLUPs ranging from –0.7 to 
1.0 (Table 2 and Figure 3A).

To more easily make inferences regarding what 
happens among the locations within the same crop 
season, each location in the 2011s1C crop season was 
analyzed in detail. In that year, a total of 28 different 
experiments were set up; however, the number of 
experiments evaluated in each location was different. The 
mean yield variation of the experiments in each location 
was at most 44 % (6.1 to 8.8 t ha–1), and the overall mean 
of the five locations evaluated was from 6.5 to 9.2 t ha–1. 
Variation was observed in the magnitude of the estimates 
of genetic variance and of standard heritability among the 
five locations. The variance of the hybrid × experiment 
interaction was greater than the genetic variance in all 
the locations evaluated in this season, except for one of 
locations where both variances were similar. 

The estimates of the genetic variance components 
(sg

2) involving all the experiments and locations obtained 
in each crop season were significant by the likelihood 
ratio test, indicating the presence of genetic variability 
and the possibility of selection among the hybrids. The 
magnitude of the variance of the hybrid by environment 
interaction in relation to genetic variation was expressive, 
reflecting the hybrid performance that did not coincide 
across the environments. The s sgxl e

2 2  ratio ranged from 
0.12 (2013s1C) to 4.47 (2012s2C) among the crop seasons, 
accentuating what was commented. 

The expressive existence of the hybrid × 
environment interaction within each crop season was also 
found through the estimates of the correlations (rqs) of the 
mean performance of the SH coinciding in the crop seasons 
two by two. The estimates of rqs across the combinations 
of crop seasons ranged from –0.01 to 0.51. In the pairs 
of environments 2012s2C/2012s1C, 2012s2S/2012s1C, 
2012s2C/2014s2C, and 2012s2S/2014s2C, in which the 
lowest estimates of r were observed, high intensity of 
selection applied was also found in the SH evaluated from 
one crop season to another (Figure 2).

The presence of the interaction was also highlighted 
by the coincidence among the ten best SH selected in the 
mean of the EBLUPs of the two crop seasons in relation 
to their relative performance in each crop season. When 
the same region and year of evaluation were considered, 
i.e., the response of the first and second crop season, the 
coincidence varied between the sowing times. As expected, 
the greatest coincidence in most cases was in the first 
crop season. However, even under these conditions, in 
the 2011/2012 and 2013/2014 crop years, the coincidence 
was less than 50 %. These results, once more showing, 
the difficulty of moving toward recommendation of new 
SH involving different regions, sowing times, and crop 
years.

As the experiments were unbalanced, the 
heritability (h2) in the mean of the hybrids within 
each crop season was estimated considering three 
strategies: i) standard method according to Falconer 
and Mackay (1996), ii) method according to Cullis et 
al. (2006), and iii) method according to Holland et al. 
(2003), cited by Piepho and Möhring (2007). Strategy 
i, prescribing the use of balanced data, ranged from 
0.46 to 0.69 among the crop seasons, and as expected, 
was always superior to the estimates of h2 obtained by 
the other strategies, except in the 2013s1C crop season 
(Figure 3B).

Figure 3 – A) Boxplot representing the variation between the upper and lower EBLUP limit of the predictions of the single cross hybrids evaluated 
in each crop season and possible outliers. B) Heritability estimates for grain yield over nine crop seasons using three different methods 
(standard, Cullis, and Holland-Piepho). 
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The estimates of heritabilities proposed by Cullis 
et al. (2006) and by Holland et al. (2003); Piepho and 
Möhring (2007) were always of similar magnitude, 
except in the 2012s2C crop season, and ranged from 0.09 
to 0.69 among the crop seasons evaluated. However, the 
coincidence in the estimates of h2 of the three strategies 
was greater in the experiments conducted in recent 
years (Figure 3A).

In carrying out combined analysis involving 
the SH common to two or more environments, there 
are some alternatives. One is involving only the SH 
in common and the other would be considering all 
the SH, i.e., also those that were eliminated in some 
environments. It is also possible to carry out the 
analyses considering residual variance in common or 
heterogeneous residual variance. In this study, combined 
analysis was performed considering the combinations 
of the 2011s1C/2012s2C and 2013s1C/2014s2C crop 
seasons. These pairs were chosen as they consisted of 
data from the first and second crop seasons of different 
years that also differed in experimental accuracy and in 
the number of coinciding hybrids. 

For the combination of 2011s1C/2012s2C that 
involves the first and second crop seasons in the 
2011/2012 crop year, the coincidence of the 20 best 
SH, which is what most interests breeders, changed 
significantly. Of the 20 best SH ranked in the analysis 
involving all the hybrids common to the two crop 
seasons, only five remained when the analysis was 
performed considering only the SH common to the two 
crop seasons. This information is valid for both cases, 
when the homogeneous or heterogeneous residual 
variance is considered.

Different results were observed for the 
combination of the first and second crop seasons in the 
2013/2014 crop year (2013s1C/2014s2C combination) 
in relation to previous crop seasons. Coincidence in 
identification of the 20 best SH, involving all the SH 
or only the SH common to two crop seasons, was total 
upon using the same residual variance. However, when 
the residual variance used was heterogeneous, though 
the coincidence was high, it was not total (15 SH in 20 
SH).

Discussion

The challenge common to all companies is evaluating 
a large number of SH annually for the purpose of 
recommending those that have the best performance for 
farmers. The information coming from these evaluations 
is often unbalanced in relation to the number of SH, 
of replications, of experiments, and of locations, which 
may compromise the choice of the best hybrid. In 
addition, the breeder needs to deal with the hybrid × 
environment interaction in seeking greater reliability 
in future recommendations since this interaction is 
a complicating factor in the performance of the SH 
evaluated.

The results obtained in this analysis showed 
considerable substitution of hybrids among the 
different environmental conditions (Figure 2). This low 
coincidence among the hybrids evaluated is explainable 
because if a determined SH evaluated did not have 
good results under certain conditions, why reevaluate 
it under other conditions? Other plausible explanations 
would be the difficulty of continuing to evaluate a SH 
that has some agronomic trait other than grain yield 
that would make its future recommendation unviable, 
as well as the lack of adaptation of the lines to tropical 
conditions, which impedes the production of hybrid 
seeds in large quantity for evaluation of the SH in 
different environments. Thus, it is expected above all 
between crop seasons that the low coincidence among 
the SH evaluated is a reality that likely will not change.

The low coincidence among the hybrids evaluated 
in the different environments makes it difficult to 
estimate genetic and phenotypic parameters, especially 
genetic variance and, above all, the SH × environment 
interaction. This difficulty has been reported in the 
literature by diverse authors in recent years (Smith et 
al., 2001; Möhring and Piepho, 2009; Smith et al., 2015; 
Nuvunga et al., 2015; Silva et al., 2019). 

To deal with unbalanced data, some proposals 
have been implemented more recently for analysis of 
experiments with plants using, for example, analysis in 
two steps, in which weighting is considered in the second 
step in accordance with the number of replications, with 
the experimental design, and with residual variance 
(Smith et al., 2001; Möhring and Piepho, 2009; Welham 
et al., 2010; Piepho et al., 2012). Other alternatives are 
multiplicative models (Smith et al., 2015; Nuvunga et 
al., 2015), sequential analysis, which considers all the 
hybrids evaluated in the previous generations (Piepho 
and Möhring, 2006) and models that consider the use of 
heterogeneous residual variance (Edwards and Jannink, 
2006; So and Edwards, 2011; Orellana et al., 2014; Hu et 
al., 2014; Andrade et al., 2015; Silva et al., 2019).

Due to the wide variation in analytical possibilities 
for unbalanced experiments in multi-environments, in 
this study, individual analyses were initially performed 
in each location within each crop season. Due to the 
great volume of information, we chose to present only 
the results in reference to the 2011s1C crop season. In 
this analysis, the importance of the SH × experiment 
interaction was clear, even in a single location. This 
was possible because some SH were present in more 
experiments.

After that, the yield data from each crop season 
were fitted through mixed models regarding the block 
and location effect, seeking to obtain the best estimates 
of the genetic value of each hybrid. In conditions 
as observed in this study, wherein a huge number of 
hybrids were evaluated in many environments across 
the years, the use of approaches like unstructured 
VCOV matrices and factorial analytic models have been 
adopted, once these structures allow to model different 
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genetic variance to each site and different covariances 
between pairs of environments evaluated (Smith et al., 
2002; Burgueño et al., 2012; Krause et al., 2020; Oliveira 
et al., 2020). 

In this study, unstructured VCOV structures were 
tested to better understand the correlation between 
environments by including the genotype by environment 
interaction in the model. However, models that include 
unstructured VCOV matrices shows computational 
difficulties to converge due a huge number of parameters 
to be estimated under high unbalance level. The factor 
analytic structure is an alternative approach to deal with 
these limitations (Smith et al., 2002; Kelly et al., 2007; 
Dias et al., 2018b). Due to the difficulty of convergence 
of models and computational limitations, in this study we 
adopted VCOV simpler structures to model the effect of 
location within each crop season. Despite that, always 
is possible, it is important to assume models with more 
complex structures, as previously mentioned.

 In situations in which the dataset exhibits 
considerable imbalance, a way of checking the fit of the 
model is to correlate the mean values and the EBLUPs 
of the SH. In general, the estimates of correlation in 
most of the crop seasons evaluated were high, especially 
in more recent years, showing that in many situations, 
when the experiments are well conducted, the mean can 
be considered a good indication of the performance of the 
SH, even under unbalanced conditions (Figure 2).

A significant effect of the SH × environment 
(locations and experiments within locations) interaction 
was found in all the crop seasons evaluated. In these cases, 
the SH × environment interaction component was greater 
than the genetic variance component in most of the crop 
seasons. This is very frequent in most of the situations 
in which various hybrids are evaluated in the same crop 
season (Tonk et al., 2011; Nzuve et al., 2013; Ndhlela et al., 
2014; Mengesha et al., 2019). In the conditions evaluated, 
the significant effect of the interaction is expected due 
to the expressive environmental variation of numerous 
factors, such as climate, soil fertility, and management 
practices that occurs in the different locations in which 
maize experiments are conducted (Noia Junior et al., 
2019; Embrapa, 2020). 

It should be emphasized that environmental 
variations under tropical and subtropical conditions are 
more expressive than those normally observed under 
temperate conditions. This environmental variation is 
even more challenging since it is largely unpredictable 
(Eeuwijk et al., 2016). Given this situation, the great 
challenge of breeders is identifying hybrids that are more 
adapted and stable under these growing conditions. For 
that purpose, numerous methods have been proposed 
in the literature over the past fifty years (Eberhart and 
Russel, 1966; Wricke and Weber, 1986; Gauch and Zobel, 
1988; Piepho, 1997; Yan et al., 2000; Smith et al., 2015; 
Nuvunga et al., 2015); most recently, the use of mixed 
models has been proposed above all, according to a 
survey performed by Eeuwijk et al. (2016).

In addition, in Brazil, variation in environmental 
factors in the second crop season is much more expressive 
than in the first, especially due to drought stress or heat 
stress (Andrea et al., 2019; Andrea et al., 2018), and so 
a difference in mean yield between the crop seasons 
is expected. In spite of that, this yield difference has 
diminished through the choice of more adapted hybrids 
and the use of greater technology in crop fields. The 
great challenge for seed production companies currently 
has been identifying hybrids adapted to both growing 
conditions. The results obtained using this dataset show 
that finding a hybrid with wide adaptation to different 
climatic regions is a challenging factor for breeders 
because of the enormous contribution of the SH × crop 
season interaction (Figure 2).

In the present study, the effect of the interaction 
on SH performance can be observed through estimation 
of the correlation between the mean of the hybrids in 
common across the crop seasons (Figure 2). Another 
option for the study of the interaction with greater 
importance for breeders was the coincidence of the 
hybrids selected considering two or more environments. 
The low magnitudes of the estimates of correlation and 
the low coincidences observed show that in most of the 
cases evaluated, the response to the interaction was of 
a complex nature and in some cases it was probably 
not even linear, making identification of the best 
hybrid difficult. Results similar to these are discussed 
by Eeuwijk et al. (2016) through graph illustrations 
involving the yield of the genotype and environmental 
quality. 

The heritability (h2) estimate is a key parameter in 
plant breeding because it is associated with predictive 
measurement of success in selection. It has been 
estimated by the ratio between the part of genetic 
variance exploited by the genotypes evaluated and 
the phenotypic variance of the selection unit applied 
(Falconer and Mackay, 1996; Bernado, 2010). However, 
with the increased use of mixed models to attenuate the 
effects of unbalanced data, new options of h2 estimates 
have been proposed (Cullis et al., 2006; Piepho and 
Mohring, 2007; Schmidt et al., 2019). 

In this study, h2 was estimated by three procedures. 
Especially in the first crop seasons, the estimates did not 
greatly coincide. However, in more recent crop seasons, 
there was greater coincidence. It should be emphasized 
that, as was expected in all cases, the absolute value of 
h2 in the standard method was superior to the other two 
(Cullis et al., 2006); Schmidt et al., 2019) (Figure 3A). 
This occurs because in the standard method, phenotypic 
variance is estimated considering that there is no 
variation in the number of replications and locations, for 
example. This discrepancy in the estimates of h2 has also 
frequently been observed in other conditions (Piepho 
and Mohring, 2007; Schmidt et al., 2019). 

Regardless of the method used, the h2 estimates, 
in most cases, were considered of medium magnitude, 
which is a favorable condition for selection of SH, based 
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on the overall mean of each crop season. It should be 
emphasized that when selection is made among SH, all 
the genetic variance is used, i.e., additive, dominant, 
and epistatic variance (Hallauer and Miranda Filho, 
1998; Souza Junior, 2007).

The proposal of using all the hybrids in analyses 
and not only those in common in both crop seasons, 
as proposed by Piepho and Möhring (2006), did not 
prove to be effective in relation to the use of only the 
SH in common. The fact of considering homogeneous 
residual variance or not leads to a difference above all 
when the h2 are of lower magnitude and, therefore, it 
is difficult to decide in the latter case from the results 
obtained in this study that the use of heterogeneous 
residual variance is more appropriate, since there is no 
way to prove which ranking is more trustworthy. In the 
literature, however, there are numerous reports that 
the use of heterogeneous variance is more advisable 
(Edwards and Jannink, 2006; So and Edwards, 2011; 
Orellana et al., 2014; Hu et al., 2014; Andrade et al., 
2015; Silva et al., 2019).

From the above, it is clear that the possibility of 
selecting general hybrids for different growing seasons 
is very difficult. The possibilities of identifying hybrids 
that stand out under both conditions can be increased 
when using experiments with a smaller number of 
hybrids, with check varieties that are common to the 
experiments, with more replications and evaluations 
in the greatest number of locations possible, as has 
frequently been reported in the literature (Troyer, 1996; 
Cooper et al., 2014; Gaffney et al., 2015).

In the current period of “plant breeding 4.0”, 
the need for evaluating hybrids considering various 
replications is not disregarded. In addition, the 
proposal considers the use of other information, such 
as climate, soil, geographic coordinates, phenological 
data, molecular markers, and the possibilities that exist 
in current analytical terms to identify the SH with best 
performance (Wallace et al., 2016; Ersoz et al., 2019; 
Ramstein et al., 2019). Obtaining accurate experiments is 
especially important in the molecular marker validation 
phase. Without accurate experiments, it is impossible to 
find trustworthy associations between the phenotype 
and the molecular marker. 

More recently, the use of genomic selection 
models, including the effect of the genotype × 
environment interaction, have frequently been reported 
as a tool to accelerate the selection process and improve 
the accuracy between the predicted value and observed 
value in breeding programs (Cuervas et al., 2016; Lado 
et al., 2016; Ferrão et al., 2018; Dias et al., 2018a; 
Montesinos-López et al., 2019; Monteverde et al., 2019; 
Ames and Bernado, 2020). Nevertheless, it is clear 
that the interaction information will only effectively 
contribute to improve the predictive capability of the 
models if the interaction component used includes not 
only the genetic variation but also the future possibilities 
of environmental variation.

The analysis presented here, were carried out to 
better understand what happens with this data set. In 
addition, provide subsidies for the genomic prediction 
study, within will be carried out in a subsequent 
step, based on the genotyping of the parental lines of 
the hybrids evaluated in this study. Studies published 
recently in the literature, involving the prediction of 
hybrids under different environmental conditions, 
suggest that the inclusion of the component genotype × 
environment interaction in genomic prediction models, 
may improve hybrids predictions if the environmental 
component is reliable (Krause et al., 2020; Oliveira et al., 
2020). The question remains, given that the experiments 
are very unbalanced, if the component of the interaction 
to be used in the model will be able to improve its 
predictive capability, since, as found in this study, the 
component of the hybrid × environment interaction is 
very expressive. 

Therefore, it should be highlighted that in breeding 
programs of any species, the most important step is the 
final evaluation of the lines/hybrids. Recommendation 
of a cultivar with low accuracy of evaluation is a huge 
risk, not only economically, but also for the image of the 
company. The risk will only be reduced if, as already 
emphasized, the experiments are not only conducted 
in various environments, but are also as accurate as 
possible.
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