
OGOBUCHI DANIEL OKEY

MULTI-PHASE OPTIMIZED INTRUSION DETECTION SYSTEM

BASED ON DEEP LEARNING ALGORITHMS FOR COMPUTER

NETWORKS

LAVRAS – MG

2022

OGOBUCHI DANIEL OKEY

MULTI-PHASE OPTIMIZED INTRUSION DETECTION SYSTEM BASED ON DEEP

LEARNING ALGORITHMS FOR COMPUTER NETWORKS

Dissertation presented to the Federal
University of Lavras, as part of the
requirements for the degree of Master
of Science in the Graduate Program of
Systems and Automation Engineering.

Prof. DSc. Demóstenes Zegarra Rodríguez
Advisor

Prof. Muhammad Saadi
Co-Advisor

LAVRAS – MG

2022

Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca

Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a).

Okey, Daniel Ogobuchi.
Multi-Phase Optimized Intrusion Detection System Based on

Deep Learning Algorithms for Computer Networks / Ogobuchi
Daniel Okey. – 2022.

163 p. : il.

Advisor: Demóstenes Zegarra Rodríguez.
Co-advisor: Muhammad Saadi.
Dissertation (Academic Masters) – Universidade Federal de

Lavras, 2022.
Bibliography.

1. Machine Learning. 2. Deep Learning. 3. Intrusion Detection
Systems. I. Rodríguez, Demóstenes Zegarra. II. Saadi, Muhammad.
III. Título.

OGOBUCHI DANIEL OKEY

MULTI-PHASE OPTIMIZED INTRUSION DETECTION SYSTEM BASED ON DEEP
LEARNING ALGORITHMS FOR COMPUTER NETWORKS

Dissertation presented to the Federal
University of Lavras, as part of the
requirements for the degree of Master
of Science in the Graduate Program of
Systems and Automation Engineering.

Approved on September 5, 2022.

Prof. DSc. Demóstenes Zegarra Rodríguez UFLA
Prof. Muhammad Saadi UCP
Prof. Dante Coaquira Begazo USP
Profa. Renata Lopes Rosa UFLA

Prof. DSc. Demóstenes Zegarra Rodríguez
Advisor

Prof. Muhammad Saadi
Co-Advisor

LAVRAS – MG
2022

This research is dedicated to my dear father of blessed memory, late Chief. Francis Ogbonnaya
Okey who through thick and thin ensured that I got the best of education that I needed. He
had always prayed to see me in my current position but could not. Keep resting my mentor.

ACKNOWLEDGEMENTS

I express my sincere gratitude to the Almighty God who has been my strength through
all my academic journey. He has always made everything so easy and comfortable for me.
It pays to serve Jesus. My sincere appreciation goes to my advisor Prof. DSc. Demóstenes
Zegarra Rodríguez for guiding me through the course of my research, providing me with all
necessary instructions on how to achieve the objective. Also, I appreciate my co-advisor,
Prof. Muhammad Saadi and all my teachers who taught me during the course. I acknowledge
the efforts of my program coordinator, Prof. Ricardo Rodriguez Magalhaes for his efforts
towards my comfort during the classes.

To my dear wife Mrs. Chinecherem Harriet Daniel-Okey, my mother, Mrs. Christiana
Nwankwo Okey, Philip Osondu Okey (Brother), Sisters and friends who stood by me through
this course, thank you. I appreciate the efforts of my flatmates, Julian and Ruth, Samuel,
Luiz, Fernando, Bruno, Douglas, Silvia and all Nigerian Scholars in UFLA, you guys made
my stay in Brazil. God bless you.

I thank the Forum for Agricultural Research in Africa (FARA) and Tertiary Education
Trust Fund (TETFund) who through the Agricultural Research and Innovation for Africa
(ARIFA) programme in collaboration with the UFV/FARA/TETFund initiative funded this
research. To Joyce in the international Relation Office, (DRI), thank you for the amazing
support you gave me to ensure my success through this program.

RESUMO

As redes de computadores revolucionaram todo o espaço de trabalho nos últimos tempos,
de modo que seus potenciais e contribuições não podem ser subestimados. Sequência das
imensas vantagens das redes de computadores, muitas organizações e empresas dependem
delas para atividades cotidianas que vão desde a busca de recursos até a disseminação de
informações. A grande dependência de serviços de Internet tem enfrentado o desafio de
privacidade e segurança. Isso se deve ao fato de que indivíduos com intenção maliciosa
elaboram algumas estratégias para explorar as redes e roubar informações causando danos.
Para isso, diversas técnicas e tecnologias, como firewalls, estão sendo utilizadas para impedir
a ocorrência de ataques cibernéticos. Um desafio com essa abordagem é a questão dos falsos
positivos, onde informações reais são identificadas como ameaças. Uma maneira de resolver
isso é o uso de um Sistema de Detecção de Intrusão (IDS - Intrusion Detection System)
que monitora e inspeciona as atividades da rede para detectar ameaças. IDS desenvolvidos
usando algoritmos de Aprendizado de Máquina (ML - Machine Learning) e Aprendizado
Profundo (DL - Deep Learning) têm mostrado prevalência sobre IDS baseados em conhe-
cimento. Neste trabalho, aproveitamos as capacidades do ML e DL para desenvolver IDS
para redes de computadores. Especificamente, dois modelos de IDS são desenvolvidos com
base em dados tabulares e dados de imagem. Primeiro, pré-processamos os dados em um
formato compatível e lidamos com o desequilíbrio com a Synthetic Minority Oversampling
Techinque (SMOTE). Nos dados tabulares, usamos a Rede Neural Convolucional Unidimen-
sional (1D CNN - One-Dimensional Convolutional Neural Network) e alguns classificadores
de ML, enquanto o Transferência de Aprendizado (TL - Transfer Learning) é usado nos
dados da imagem. Os dados de imagem são gerados pela transformação do conjunto de
dados amostrado em uma imagem RGB 64x64x3. Essas imagens são alimentadas na CNN
que tem um excelente desempenho na extração de características das imagens utilizadas no
processo de aprendizagem. Essa capacidade da CNN de extrair automaticamente recursos
relevantes do tráfego de rede é usada para classificar o tráfego em diferentes categorias.
Cinco diferentes modelos pré-treinados baseados em CNN: Visual Geometry Group (VGG16
e VGG19), InceptionV3 (IV3), MobileNetV3Small (MNV3S) e EfficientNetV2B0 (ENV2B0) são
usados para desenvolver o IDS baseado em imagens geradas a partir do conjunto de da-
dos. Finalmente, desenvolvemos um IDS usando um modelo otimizado Ensemble baseado
em Transferência de Aprendizado (ELETL-IDS - Ensemble Lightweight Transfer Learning
IDS) capaz de detectar e classificar o tráfego de rede segundo o tipo de ataque, tais como
DDoS, DoS, Bot, Força Bruta, Infiltração, PortScan, Heartbleed e Web Attacks. Na avaliação,
os modelos apresentam alto desempenho com 1D-CNN atingindo uma precisão média
ponderada de 99,11% e ELETL-IDS tem 100% de precisão na classificação de cada classe.
Realizamos a quantização do modelo original para reduzir cerca de 77% de seu tamanho
(aproximadamente, 4 vezes menor que o tamanho do modelo original) com uma queda de
1,1% na precisão, tornando os modelos IDS altamente eficientes e adequados em diferentes
domínios de aplicação.

Palavras-chave: Aprendizado de Máquina. Aprendizado Profundo. Sistemas de Detecção
de Intrusão. Redes de Computadores. Transferência de Aprendizado. Redes de Convolucionais

ABSTRACT

Computer networks have revolutionized the entire workspace in recent times, so their po-
tentials and contributions cannot be underestimated. As a result of the immense advantages
of computer networks, many organizations and companies depend on them for everyday
activities that range from searching for resources to disseminating information. The large de-
pendency on Internet services has faced the challenge of privacy and security. This is due to
the fact that individuals with malicious intent devise some strategies to exploit the networks
and nodes to steal information thereby causing damage. To this end, several techniques and
technologies such as firewalls are being used to deter cyber-attacks from occurring. One chal-
lenge with this approach is the issue of False Positives where real information is identified as
threats. One way to solve this is the use of an Intrusion Detection System (IDS) that monitors
and inspects network activities to detect threats. IDS developed using Machine Learning
(ML) and Deep Learning (DL) algorithms have shown prevalence over knowledge-based
IDS. In this work, we leverage the capabilities of ML and DL to develop IDS for computer
networks. Specifically, two IDS models are developed based on Tabular data and Image
data. First, we preprocess the data into a compatible format and handle the imbalance
with Synthetic Minority Oversampling Technique (SMOTE). On the tabular data, we use
One-Dimensional Convolution Neural Network (1D-CNN) and some ML classifiers while
Transfer Learning (TL) is used on the image data. Image data are generated by transforming
the sampled dataset into a 64x64x3 RGB image. These images are fed into the CNN, which
has an excellent performance in extracting features from images used in the learning process.
This ability of CNN to automatically extract relevant features from network traffic is used
to classify the traffic into different categories. Five different pre-trained models based on
CNN: Visual Geometry Group (VGG16 and VGG19), InceptionV3 (IV3), MobileNetV3Small
(MNV3S), and EfficientNetV2B0 (ENV2B0) are used to develop the IDS based on images
generated from the datasets and in the end, we develop an optimized Ensemble Lightweight
Transfer Learning IDS (ELETL-IDS) capable of detecting and classifying network traffic into
its attack type such DDoS, DoS, Bot, Brute force, Infiltration, PortScan, Heartbleed and
Web Attacks. On evaluation, the models show high performance with 1D-CNN reaching
a weighted average accuracy of 99.11% and ELETL-IDS has 100% accuracy in classifying
each of the classes. We perform model quantization to reduce the model size to about 77%
(about 4x smaller than the original model size) with a drop of 1.1% in accuracy, making the
IDS models highly efficient and suitable in different application domains.

Keywords: Machine Learning. Deep Learning. Intrusion Detection Systems. Computer
Networks. Transfer Learning. Convolutional Neural Networks

LIST OF FIGURES

Figure 2.1 – Phases of IDS mechanism in a typical operation environment. 19
Figure 2.2 – A typical IDS implementation scenario showing the Network-based and

Host-based IDS . 21
Figure 2.3 – A general classification of IDS methods 21
Figure 2.4 – A General Flowchart for developing an Intrusion Detection System using

Deep Learning . 30
Figure 2.5 – General Taxonomy of Machine Learning Techniques 35
Figure 2.6 – Demonstration of basic operation of AdaBoost Algorithm 41
Figure 2.7 – Basic Deep learning architecture for: 2.7 a: Deep Neural Network, 2.7 b:

Restricted Boltzmann Machine, 2.7 c: Recurrent Neural Network and
2.7 d: Deep Belief Network . 44

Figure 2.8 – Architecture of a fully connected CNN that are implemented in IDS
solutions . 54

Figure 2.9 – Training and Testing data distribution in NSL-KDD dataset 59
Figure 2.10 – Sigmoid Function and its Derivative . 68
Figure 2.11 – Hyperbolic Tangent Function and its Derivative 69
Figure 2.12 – Rectified Linear Unit Function and its Derivative 71
Figure 3.1 – Dataset Pre-processing flowchart for the IDS 86
Figure 3.2 – Selected Important features of all attacks and benign activities for IDS2017

dataset. 90
Figure 3.3 – Selected Important features of all attacks and benign activities for IDS2018

dataset. 91
Figure 3.4 – Flowchart for the Implementation of the Model Development 98
Figure 3.5 – A typical 2 layer convolution operation in a CNN 100
Figure 3.6 – Transfer Learning Model Implementation Architecture 103
Figure 3.7 – Image Samples of the CSE-CIC-IDS2017 dataset after conversion 105
Figure 3.8 – Image Samples of the CSE-CIC-IDS2018 dataset after conversion 105
Figure 4.1 – Precision, Recall and F1-Score showing the model performance on ba-

lanced (SMOTE) data . 114

Figure 4.2 – Confusion Matrix showing the three implementation approaches used
for the 1D-CNN model (a) 1D-CNN based on unbalanced data. (b) 1D-
CNN based on balanced (SMOTE) data 116

Figure 4.3 – Confusion Matrix showing the three implementation approaches used
for the 1D-CNN model (c) 1D-CNN based on SMOTE + StratifiedKFold 117

Figure 4.4 – Classification Report showing the model performance on balanced
(SMOTE) data . 118

Figure 4.5 – Classification Report showing the model performance SMOTE + Stratifi-
edKFold . 119

Figure 4.6 – Training and Testing performance comparison of the three scenarios
implemented with the 1D-CNN method. Where Acc = Accuracy, PR =
Precision, RC = Recall and FS = F1-Score. 120

Figure 4.7 – Receiver Operating curve for the 1D-CNN for the IDS2017 120
Figure 4.8 – Learning Curves for each of the models (a) Base CNN, (B)ENV2B0,

(C)MNV3S considering the number of epochs and batch size in each
case on IDS2017 dataset . 125

Figure 4.9 – Learning Curves for each of the models (D) VGG16, (E) VGG19 and (F)
IV3 considering the number of epochs and batch size in each case on
IDS2017 dataset . 126

Figure 4.10 – Learning Curves for each of the models (a) Base CNN, (B)ENV2B0,
(C)MNV3S considering the number of epochs and batch size in each
case on IDS2018 dataset . 127

Figure 4.11 – Learning Curves for each of the models (D) VGG16, (E) VGG19 and (F)
IV3 considering the number of epochs and batch size in each case on
IDS2018 dataset . 128

Figure 4.12 – Prediction Result of the proposed ELETL-IDS model on IDS2017 131
Figure 4.13 – Prediction Result of the proposed ELETL-IDS model on IDS2018 132
Figure 4.14 – Confusion Matrix showing the performance of the proposed ELETL-IDS

model on selected dataset (a) CIC-IDS2017 and (b) CSE-CIC-IDS2018 . 133
Figure 4.15 – Learning Curves for the ELETL-IDS Model on the selected Data sets . . 134

LIST OF TABLES

Table 2.1 – Comparison between Misuse Intrusion Detection System (MIDS) and
Anomaly Intrusion Detection System (AIDS) 23

Table 2.2 – Advantages, Disadvantages and Improvement procedures for Shallow ML
Algorithms . 36

Table 2.3 – Comparison of various Deep Learning Algorithms showing their basic
functions . 43

Table 2.4 – General comparison of deep learning and machine learning techniques 55
Table 2.5 – A summary of DL networks highlighting some key points 56
Table 2.6 – Data File Features of NSL-KDD . 59
Table 2.7 – Attack Types in ADFA-LA Dataset . 60
Table 2.8 – Activity Description of the development of the ISCX-IDS-2012 dataset . 62
Table 2.9 – Description of the properties of UNSW-NB15 Dataset 63
Table 2.10 – Features of CICIDS2017 Dataset . 64
Table 2.11 – Attack Scenarios and Duration in CSE-CICIDS2018 65
Table 3.1 – Distribution of stream records in CICIDS2017 dataset 87
Table 3.2 – Distribution of stream records in CSE-CIC-IDS2018 dataset 88
Table 3.3 – Distribution of Seven most important features of each attack types in

CICIDS2017 . 92
Table 3.4 – Distribution of Seven most important features of each attack types in

CICIDS2017 (cont’d) . 93
Table 3.5 – Selected important features for all data in the CICIDS2017 Dataset . . . 93
Table 3.6 – Important Features for each Attack Selected for Training ML Models in

CICIDS2018 . 94
Table 3.7 – Important Features for each Attack Selected for Training ML Models in

CICIDS2018 (Cont’d) . 95
Table 3.8 – Selected important features for all data in the CICIDS2018 Dataset . . . 95
Table 4.1 – Distribution of samples in the Data sets after merging similar attacks to

obtain the 7 classes for IDS2018 and 9 classes for IDS2017 110
Table 4.2 – Default parameters for the ML Algorithms 111
Table 4.3 – Performance Evaluation of the trained models on CSE-CICIDS2018 data-

set showing the time for prediction and model size 112

Table 4.4 – Performance Evaluation of the trained models on CIC-IDS2017 dataset
showing the time for prediction and model size 113

Table 4.5 – Report on the model Performances in classifying each label in the IDS2018
dataset . 113

Table 4.6 – Comparing the effect of imbalance on the detection rate of 1D-CNN in
classifying each class in the IDS2017 dataset 115

Table 4.7 – Distribution of generating images of the datasets used in the model trai-
ning and evaluation. 121

Table 4.8 – Hyper-Parameters obtained after BS-TPE optimization for the Model
Configuration . 122

Table 4.9 – Performance Evaluation of Optimized and non-Optimized trained Models
on CIC-IDS2017 . 123

Table 4.10 – Performance Evaluation of Optimized and non-Optimized trained Models
on CSE-CIC-IDS2018 . 124

Table 4.11 – Performance Evaluation ELETL-IDS Model on CIC-IDS2017 129
Table 4.12 – Performance Evaluation of ELETL-IDS Model on CSE-CIC-IDS2018 . . . 129
Table 4.13 – Time-base model Evaluation . 130
Table 4.14 – Comparison of the IDS models with Related works 135
Table 4.15 – Comparison of Original Model size and Model sizes after quantization . 136
Table 4.16 – Comparison of Accuracy of Original and Quantize Models 136
Table A.1 – Comprehensive description of the feature names in the datasets used for

the IDS model development taken from www.unb.ca 158
Table A.2 – Performance of the TL models in classifying each class in the dataset . . 163

https://www.unb.ca/cic/datasets/ids-2018.html

CONTENTS

1 INTRODUCTION . 13
1.1 Objective . 16
1.1.1 Specific Objectives . 16
1.2 Justification . 17
1.3 Organization of Work . 17
2 THEORETICAL BACKGROUND AND RELATED WORKS 19
2.1 The Concept and Classification of Intrusion Detection Systems (IDS) . 19
2.1.1 Categorization Based on the Attack Types 22
2.1.2 IDS Based on the Analyzed Data . 24
2.2 Computer Network and Different Types of Network Attack 26
2.2.1 Denial of Service (DoS) . 26
2.2.2 Distributed Denial of Service (DDoS) . 27
2.2.3 Infiltration . 27
2.2.4 Web attack . 28
2.2.5 Brute force . 28
2.2.6 Probing/Port scan . 29
2.3 Frameworks for Implementing IDS . 29
2.3.1 Statistics-based techniques . 31
2.3.2 Knowledge-based techniques . 31
2.3.3 IDS based on Machine Learning techniques 33
2.3.3.1 Shallow ML Algorithms . 36
2.3.3.2 IDS Based on Deep Learning Techniques 42
2.4 Publicly Available IDS Datasets . 57
2.4.1 DARPA 1998 dataset . 57
2.4.2 KDD CUP 99 Datasets . 58
2.4.3 National Security Lab Knowledge Discovery and Data (NSL-KDD) Dataset 58
2.4.4 DEFCON dataset . 60
2.4.5 ADFA Dataset . 60
2.4.6 ISCXIDS2012 . 61
2.4.7 UNSW- NB15 . 62
2.4.8 ISCX-URL2016 . 63

2.4.9 CICIDS2017 . 64
2.4.10 CSE-CICIDS2018 . 64
2.4.11 CAIDAs datasets . 66
2.4.12 CIC-DDoS2019 . 66
2.4.13 CIC-InvesAndMal2019 . 66
2.4.14 CICDarknet2020 dataset . 67
2.5 Activation Functions . 67
2.5.1 Sigmoid . 67
2.5.2 Hyperbolic Tangent Function (Tanh) . 68
2.5.3 Softmax . 69
2.5.4 Rectified Linear Unit (ReLU) . 70
2.5.5 Soft Root Square (SRS) . 71
2.6 Optimizer . 72
2.6.1 Stochastic Gradient Descent (SGD) . 72
2.6.2 RMSProp . 73
2.6.3 Adams . 73
2.7 Loss Function . 74
2.7.1 Cross Entropy . 74
2.7.2 Binary Cross-Entropy . 75
2.7.3 Categorical Cross-Entropy . 75
2.8 Feature Selection and Handling Data Imbalances 76
2.9 Related Works . 77
3 MATERIALS AND METHOD . 81
3.1 Materials (Tools Used) . 81
3.1.1 Software . 81
3.1.2 Hardware . 82
3.2 Performance Evaluation Metrics . 83
3.3 Method for Dataset Preparation and Preprocessing 86
3.3.1 Database Selection . 86
3.3.2 Data Preprocessing . 88
3.3.2.1 Data Cleaning and Visualization . 88
3.3.2.2 Feature Selection . 89

3.3.2.3 Feature Scaling and Label Encoding . 95
3.3.2.4 Handling Data Imbalance . 96
3.3.3 Creation of Training and Testing Data . 97
3.4 Proposed IDS Model Implementation . 97
3.4.1 Image Generation and Formatting . 103
3.4.2 ELETL-IDS: Ensemble Transfer Learning Model 106
3.4.3 Best Model through Hyper-Parameter Optimization (HPO) 107
3.4.4 Deep Learning Model Quantization . 108
4 RESULTS AND DISCUSSION . 110
4.1 Models Developed on Tabular Data . 110
4.1.1 Classical Machine Learning Model Performance 111
4.1.2 1D-CNN Model Evaluation . 114
4.2 Models Based on Image Data . 120
4.2.1 IDS Evaluation Using Transfer Learning 122
4.2.2 Ensemble Model based on Transfer Learning 128
4.3 Evaluation of Models Optimized using Quantization 136
5 CONCLUSION AND FUTURE WORK . 137
5.1 Challenges and Recommendations . 138

REFERENCES . 139
APENDIX A – Dataset Feature Description 158
APENDIX B – Pre-trained Model Classification Reports 162

13

1 INTRODUCTION

Communication systems play important roles in the daily life of everybody as most
human activities depend on them for efficiency and productivity. Computer networks are
widely used for commercial and individual purposes such data processing, education and
learning, large-scale data acquisition, agriculture, governance and entertainment. Nowa-
days, the number of connected devices on the internet increases continuously (CHEN, 2012;
NGUYEN et al., 2021). The increase can be attributed to the advancement in technology
featuring process automation, such as in the use of Internet of Things (IoT), smart city, smart
transportation, smart agriculture, smart banking, among others (SU; LI; FU, 2011; KHAN
et al., 2021). Due to this huge expansion of the network and anonymous structure of the
Internet, ensuring the confidentiality, integrity and availability (CIA) of both information
and communication systems has been challenging.

Network Security is an increasing challenge in modern times due to the rapid growth
in technological advancement according to Liu et al. (2021). The Internet provides all
knowledge that has been accumulated over time to users and with the advent of mobile
computing at every person’s fingertips, cyber attacks and cyber crimes have become all too
popular. There have been well-known traditional techniques of dealing with cyber attacks
in the past, but there has been an increase in cyber attacks and how exploits are carried
out over the last decades. Consequently, network security techniques are also undergoing a
revolution into more intelligent mechanisms.

Furthermore, many hackers with malevolent intent attempt to gain unauthorized
access to the network systems in order to access the information. These persons are well-
known programmers who are regarded to be hackers, invaders, or cyber criminals, according
to Wall (2007). Some internet cyber attacks have resulted in massive data loss and, as a
result, significant financial cost have been acquired. Many preventative measures, such as
the installation of firewalls, use of anti-virus software (LYU; LAU, 2000), Intrusion detection
systems (IDS) (RADOGLOU-GRAMMATIKIS; SARIGIANNIDIS, 2019), have been used as a
counter-measure to detect network intrusion. However, nowadays some cyber attacks are
still successful leading to increasing demand for a more intelligent fast-decision-making
mechanism to combat cyber-criminals constant attempts to find new ways to bypass the
systems’ prevention mechanisms. The most practical solution is to create reliable, cost-
effective and easily maintainable IDSs. To this end, many Machine Learning (ML) and

14

Deep Learning (DL) algorithms have been proposed in the literature such as DL based on
Restricted Boltzmann Machine (RBM) and Sparse Auto-Encoder (SAE) in Van, Thinh et al.

(2017), Random Forest in Farnaaz e Jabbar (2016) and Decision Tree in Panda, Abraham e
Patra (2012).

Intrusion is as an unauthorized activity that causes damage to an information system
(KHRAISAT et al., 2019b). This means that any attack that could pose a possible threat to the
CIA triad of information is considered an intrusion. Intrusion Detection (ID) implies a way
to monitor, identify and react to all possible attacks or abnormal activities on a computer
network. Common intrusion attempts include Botnets, Denial of Service (DoS) (CHEN et al.,
2019), Distributed Denial of Service (DDoS) (SHARAFALDIN et al., 2019), Brute force attack
(STIAWAN et al., 2019), Infiltration (ZHANG et al., 2021), Zero-day attack (KIM; BU; CHO,
2018), Pharming (CHOI, 2019), Eavesdropping attacks (VASHIST et al., 2019), Phishing and
Spamming (BORKAR; DONODE; KUMARI, 2017) among others.

IDS have the capability of detecting several types of network attacks as discussed in
Smaha et al. (1988). The IDS monitors network traffic and decides if the activities are normal
or have malicious intent. When unusual traffic or activity is perceived, an alarm is registered
against such activity by the system. Knowledge-based IDS have shown the inability to detect
more complex abnormal network activities as they are based on pre-defined rules, as a
result, there is a greater requirement for IDS built with advanced technologies (ML/DL) that
are capable of detecting attacks quicker and more precise. In general, IDSs are divided into
two categories based on the kind of attack (misuse and anomaly IDS) and the type of data
(host-based, network-based and hybrid IDS) (PHARATE et al., 2015; LAKSHMINARAYANA;
PHILIPS; TABRIZI, 2019). When IDS are designed to function according to known attack
signatures, they are referred to as misuse-based IDS or signature-based IDS where as in
anomaly situation, IDS are designed to function in relation to changing environmental
demands in respect to network traffic.

Machine and Deep learning algorithms have shown great capabilities in aiding the
quest to proffer solution to the vast challenges of cyber intrusion in computer networks.
Consequently, several IDS models based on ML/DL techniques have been proposed in
the past according to Sahu e Mehtre (2015), Aljawarneh, Yassein e Aljundi (2019). ML
algorithms including the decision tree Sahu e Mehtre (2015), random forest, extra tree
classifiers, boosting classifiers, extreme gradient boosting are some of the commonly used

15

ML techniques to develop an IDS model to classify network packets and detect intrusion.
Like the ML approach, DL algorithms such as the Convolutional Neural Network (CNN),
Deep Belief Networks (DBN), AutoEncoders (AE) proposed by Kannari, Shariff e Biradar
(2021), Recurrent Neural Networks (RNN) have also been implemented by several authors
but the challenge of high False Alarm Rate (FAR) and high computation resource requirement
for training DL models have remained an issue that demands more investigation.

IDS models are usually developed on generated streams of network traffics which are
either collected in real-time or simulated using a test-bed. Many of these databases have
been generated and made publicly available for research purposes. While some are specific
to a particular application domain, many of the datasets can be used to develop IDS that
can be adapted to different environments such IoT systems, Internet of Vehicle (IoV) and
computer networks in general. Some of the many datasets for IDS research include KDD
Cup’99, NSL-KDD, AWID, UNSW-15, WSN-DS, CIC-IDS2017, CSE-CIC-IS2018 and more as
discussed in Section 2.4. In Kannari, Shariff e Biradar (2021), authors proposed an IDS based
on sparse autoencoder and using the CIC-IDS2017, NSL-KDD and AWID datasets for the
model training. Some advances have been observed with IDS based on ML/DL. However,
there is still a need for improvement in computational speed and Detection Rate (DR) of
new attack types using robust datasets that contains real-time network traffics. To tackle
this, we develop models that are light-weight, optimized and has the capacity to adapt to
changing conditions.

Transfer Learning (TL) is an advanced ML/DL approach, where knowledge (e.g.,
weights) obtained from previously trained (pre-trained) models’ are transferred for learning
improvement in a new task. Over the years, TL using pre-trained models has been applied
successfully for image classification to reduce computational cost and improve model per-
formance. AlexNet, VGG-16, VGG-19, GoogLeNet or Inception, MobileNet, Xception, ResNet
and EfficientNets are the most widely used pre-trained models that were mainly introdu-
ced for image classification challenges in the ILSVRC ImageNet competition according
to Russakovsky et al. (2015). These models leverage more in-depth network architecture
implemented on the ImageNet dataset that contains 14 million images belonging to 1000
classes to produce better classification performance. Ensemble Learning (EL) is a technique
where weak models (learners) are aggregated using defined approach to obtain a more
efficient model with improved performance. Integrating the concept of EL with transfer

16

learning, tends to yield more reliable and efficient models. In this work, these techniques
are combined to develop IDS models that can be adapted to devices of varying memory
capacities in computer network domain.

1.1 Objective

The objective of this work is to develop an IDS to identify various network traffics;
detecting if they are malicious or normal traffic and classify them according to their types
with reduced computational cost and False Alarm Rate (FAR). The IDS is developed and
evaluated using robust datasets of recent intrusion attacks signatures including CIC-IDS2017
and CSE-CIC-IDS2018 using 1D-CNN and ensemble transfer learning approaches.

1.1.1 Specific Objectives

The specific objective of this research is to develop IDS model trained on most recent
datasets to detect modern day attacks according to their types including DDoS, DoS, Brute
Force, Web attacks and Infiltration.

1. Selecting the most recent dataset from available databases and building a more
comprehensive dataset with detailed network features suitable for our research.

2. Design the architecture of the proposed IDS model for the selected algorithms.

3. Transform the numerical dataset into an image format to be used for TL implemen-
tation based on selected CNN architectures.

4. Train a model on tabular data and image data that not only achieve high detection
accuracy but also has faster detection rate and evaluate the model performance using
the evaluation parameters.

5. Implement tuning to determine the most important Hyper parameters for the mo-
del in order to reduce complexity, validate and compare the performance of the
developed model with existing solutions.

6. Perform model size reduction using quantization such that the IDS model can be
compatible with most devices in the network.

17

1.2 Justification

So much concern have been raised regarding the security of enterprise and indivi-
dual profiles that are transmitted regularly over the Internet. Business organizations, IoT
systems, government agencies, educational sectors and financial institutions generate and
transmit huge amount of data daily; and these data are stored in the cloud over the network.
As the data size increases, there is also corresponding increase in the network size, and
subsequently the activities of attackers exploiting vulnerabilities to steal or destroy such
data. To ensure data and personal privacy is secured, IDS systems are being utilized.

Most of the existing attack detection methods are not programmed to accommodate
the increasing high volume of data. Thus, more solutions that can adapt to varying network
size are needed. These solution are such that are designed to operate with a high level of
intelligence. IDS systems typically functions in four mechanisms including the decoder,
preprocessor, decision system and the detection system. The most important being the
decision and detection systems. Hence, it is expected that IDS should be able to function
independently in monitoring network packets.

We used a dataset that contains wide range of network flows collected over a long
period of time and consider a higher degree of network flow types as opposed to some
works in the literature. Hence, the model developed has the capability to detect and classify
different attacks as identified in Sharafaldin, Lashkari e Ghorbani (2018) with higher degree
of accuracy, precision, F-1 score, recall, Area Under the Curve (AUC) and lower latency.
The datasets used contains streams of flow packets (features) among which some are not
dominant and does not affect the behaviour of the traffic, hence, the need to reduce the
dimensionality of the dataset by determining the most important features of the network
traffic which defines the network traffic.

1.3 Organization of Work

This work is organized into the following form:
In Chapter 1, the main concept of computer networks and IDS, identifying the pro-

blems in this domain and the subjects related to the topic. In Chapter 2, we described in
details the theoretical backgrounder. Detailed analysis of the datasets available for IDS
design and the various algorithms leveraged to implement them were also presented. In the

18

end, related works were reviewed and summarized. In Chapter 3, the materials and method
adopted for the research was discussed. In Chapter 4, we performed the presentation and
discussion of the results obtained during the work. Finally, in Chapter 5, drew the conclusion
on the current work and identified gaps for future work in this area.

19

2 THEORETICAL BACKGROUND AND RELATED WORKS

In this section, a general review of the classification of IDS, types of computer network
attacks, different approaches used in implementing IDS, publicly available IDS datasets and
related works are presented.

2.1 The Concept and Classification of Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDSs) are software or hardware devices installed at
designated locations to monitor the network or devices for possible malicious activities
or policy violations that may be harmful to the network. These violations when detected
are either reported to an administrator for possible response or collected through a central
interface called System Information and Event Management (SIEM) for possible actions. The
SIEM distinguishes anomalous event from false alarm through the use of filtering techniques
over outputs collected from multiple sources (AXELSSON, 2000). IDS keeps constant check
in real-time on data flow in a network or hosts systems to detect malicious behaviors. A
typical IDS usually involve a four-stage action phases which includes: Decoder, preprocessor,
decision system and detection mechanism. Network traffic such as requests sent by users
are received and interpreted by the decoder; after which the information is preprocessed for
subsequent actions. Based on the preprocessed network packet, the IDS takes a decision on
the data and the final mechanism interprets it as attack or normal traffic. This process is
shown in Figure 2.1.

Figure 2.1 – Phases of IDS mechanism in a typical operation environment.

Source: Author (2022)

James Anderson in 1980 at the National Security Agency (NSA) national-level intelli-

gence agency of the United States Department of Defense, under the authority of the Director

of National Intelligence (DNI) introduced the earliest preliminary IDS concept which was
composed of different tool aimed at aiding network administrators review audit trails such
as User access logs, system event logs and file access logs (ANDERSON, 1980). The first
published model of an IDS was in 1986 by Dorothy E. D. with assistance from Peter G. Neu-
mann. The IDS model used statistical approach for anomaly detection and became the

20

benchmark for IDS research today (DENNING, 1987). Also, the work resulted in an early
IDS at SRI International named the Intrusion Detection Expert System (IDES), capable of
considering both user and network data and runs on sun workstations (LUNT, 1990). IDES
had a dual approach with a rule-based Expert System to detect known types of intrusions
plus a statistical anomaly detection component based on profiles of users, host systems,
and target systems. The author maintained that the inclusion of Artificial Neural Networks
(ANN) as a third component to the existing IDES could present a better resolution to the
challenges of intrusion. The Next-generation Intrusion Detection Expert System (NIDES)
followed the IDES in 1993 through the efforts of the SRI (LUNT, 1993).

Following the successes achieved with the forgoing IDS method, other IDS were
proposed using other methods including Expert Systems to develop IDS such as Network
Security Monitor (NSM) (HEBERLEIN et al., 1989) that performed masking on access ma-
trices for anomaly detection on a Sun-3/50 workstation; the Information Security Officer’s
Assistant (ISOA), a 1990 prototype that considered a variety of strategies including statistics,
a profile checker, and an expert system, (WINKLER, 1990) and ComputerWatch at ATT Bell
Labs used statistics and rules for audit data reduction and intrusion detection (DOWELL,
1990). Machine Learning was implemented by Viegas and his colleagues in 2015 to propose
an anomaly-based ID engine targeted on System-on-Chip for use on Internet of Things
(IoT) devices using Decision Tree, Naive-Bayes and K-Nearest Neighbors and achieved more
energy-efficiency compared to other IDS models (VIEGAS et al., 2016).

IDS can be implemented on computer systems or on the network interface to keep
track of event. While those on the computer systems monitors the events mostly related to
the behaviour of the operating systems, IDS on the network interface analyzes incoming
traffics/packets. Some ID systems are designed with intelligence, thus, they can take ap-
propriate actions when necessary. We present a typical implementation of an IDS in a real
scenario in Figure 2.2. These systems function autonomously (CENKERAMADDI et al., 2020;
AL-GARADI et al., 2020). According to Figure 2.3, IDS can be categorized into two types
(PHARATE et al., 2015; LAKSHMINARAYANA; PHILIPS; TABRIZI, 2019), namely:

• Types of attacks: Based on the types of network attacks each IDS is designed to handle
(detection approach), it can be subdivided into Misuse detection system and anomaly
detection system (MILENKOSKI et al., 2015).

21

• Types of analyzed data: Here, the emphasis is laid on the type of data the IDS analy-
zes. As a result, under this domain, IDS are divided into the following subcategories:
Network-based Intrusion Detection System (NIDS)(VIGNA; KEMMERER, 1999), host-
based Intrusion Detection System (HIDS) (LIU et al., 2018; VOKOROKOS; BALÁŽ,
2010), and hybrid Intrusion Detection System (H-IDS) (MILENKOSKI et al., 2015)

Figure 2.2 – A typical IDS implementation scenario showing the Network-based and Host-based IDS

Source: Author (2022)

Figure 2.3 – A general classification of IDS methods

Source: Author (2022)

22

2.1.1 Categorization Based on the Attack Types

The category which can also be referred to as classification according to detection
mechanism has the following variants:

a) Misuse Intrusion Detection System (MIDS)

MIDS, also known as signature-based IDS (SIDS) (WANG et al., 2015), create libra-
ries of known attack signatures and raise alarms when network traffic or system
operations match any of the attack signatures in the library. The library, which is
predefined by the network administrator, attempts to list and save all potential ano-
malous network and system activity. Other behaviors, both known and unknown,
are accepted as normal (GHARIB et al., 2019).

As a result, the abuse detection system can successfully discover previously identified
attack methods. In misuse-based detection, attacks are represented by signatures
or attributes, according to (MUKKAMALA; SUNG; ABRAHAM, 2005). However, in
terms of detecting zero-day attacks, this strategy is ineffective. The key problem is
determining how to create permanent signatures with all conceivable variants and
non-intrusive actions to reduce false-negative and false-positive alarms.

One major limitation of the MIDS is the frequent chastisement for its high rate of
false and missing alarms. As the number of zero-day attacks grows, this method is
becoming increasingly obsolete. To get around the established intrusion libraries,
intruders can simply conceal their attack methods.

b) Anomaly Intrusion Detection System (AIDS)

AIDS does not necessitate awareness of previously unknown attacks. Chandola et
al. and Bhuyan et al. presented a thorough examination of the anomaly detection
system (CHANDOLA; BANERJEE; KUMAR, 2009; BHUYAN; BHATTACHARYYA; KA-
LITA, 2013). In the field of IDS, AIDS is sub-categorized into: network-based anomaly
detection systems and host-based anomaly detection systems . Network-based ano-
maly detection systems detects abnormalities in regular network traffic. Host-based
anomaly detection systems monitors hosts to detect deviations from regular system
activity. ID systems where the regular behavior does not alter frequently implements
host-based anomaly detection systems (NOBLE; COOK, 2003). Host-based anomaly
detection systems according to Mutz et al. (2006), Tandon e Chan (2005) uses system

23

call traces to construct normal databases or data mining models of normal system
responses. Then, these datasets or models may be employed as criteria for anomaly
detection as opined in Jose et al. (2018). As a result, zero-day-attacks can easily be
detected by the anomaly IDS.

The major challenge of host-based anomaly detection systems is a high false-alarm
rate (FAR). As the number of new Linux programs grows, so does the quantity of
new system call traces. Because host-based anomaly detection systems only stores
normal databases or data mining models of known activities, new normal system call
traces that do not match the databases or models may be misidentified as intrusions.
A comparison of the advantages and disadvantages of MIDS and AIDS is presented
in Table 2.1

Table 2.1 – Comparison between Misuse Intrusion Detection System (MIDS) and Anomaly Intrusion
Detection System (AIDS)

Type Advantages Disadvantages
MIDS Very excellent in detecting intrusi-

ons with little false alarms
If a prior attack is significantly modified to be-
come a new version, the system will not detect
this new form of an identical attack.

Very apt in detecting existing at-
tacks.

Requires regular update with a new signature.

Has simple design principle Does not have the capacity of detect the zero-
day attack.

SIDS is a security system that de-
tects attacks based on recognized
signatures.

Not suitable for detecting multi-step attacks.

Easily identifies the intrusions. Little understanding of the insight of the at-
tacks.

AIDS Can be used to detect new forms
of attacks.

Because AIDS cannot handle encrypted pac-
kets, the attack can go unnoticed and pose a
hazard.

Can be used to create intrusion sig-
nature

Has high false positive alarm rates

Needs initial training
Uneasy to develop normal profile for a very
dynamic computer system.
Unclassified alerts.

Source: Adapted from Khraisat et al. (2019b)

24

2.1.2 IDS Based on the Analyzed Data

Depending on the packets the IDS will analyze or implementation interface, we have
the following:

a) Host-Based Intrusion Detection System (HIDS)

This software keeps track of events on hosts, such as system or shell logs, in order to
detect unwanted action. On host auditing data, HIDS may use different data mining
methods, such as artificial neural networks, to detect threats.

A HIDS’s execution speed is usually calculated by combining all of the training and
testing durations together. As a result of having to process a large number of fine-
grained system call traces, the HIDS’s performance may be limited. Meanwhile,
maintaining and upgrading a large number of classic HIDS software installed on every
host or virtual host in a network is time-consuming when compared to the number
of NIDS devices. As a result, innovative HIDS approaches that may reduce execution
time while keeping appropriate detection accuracy are required (WUNDERLICH
et al., 2019; LIU et al., 2018). Furthermore, classical HIDS does not demonstrate
sufficient robustness in the face of modern persistent threats. As a result, future
HIDS will need to work in tandem with other security mechanisms to achieve better
performance.

b) Network-Based Intrusion Detection System (NIDS)

NIDS monitors network communications for intrusions, by applying data mining
algorithms to network traffic data to discover abnormalities. Currently, NIDS-related
topics are being aggressively investigated, with remarkable results. Tan et al. (2013),
for example, suggested a technique for detecting denial-of-service (DoS) issues on
networked server systems using multivariate correlation analysis. A distributed sys-
tem made up of numerous hosts and network connections is the source of events (and
the object) for the analysis in NIDS. The purpose of NIDS is to identify network-based
threats that may span several hosts. Consequent upon network-level monitoring
and distribution complexities, the following new parameters are necessary in setting
up an IDS (VIGNA; KEMMERER, 1999):

25

(i) Networks generate a lot of data (events). Due to this, a NIDS should include
approaches that allow the event collectors to listen for only the relevant events.
This configuration can be performed by the Network Security Officer (NSO).

(ii) Only a portion of the network is usually accessible to relevant events (especi-
ally in the case of large networks). As a result, some means of selecting where
to check for events should be included in an NIDS.

(iii) Local processing of events (information) is important as to reduce the amount
of network data generated by the NIDS.

(iv) A NIDS must be scalable having the easy of communicating with other NIDS
at least at a hierarchical level.

(v) To be most effective, NIDS must communicate with host-based IDS, allowing
usage patterns to include network and OS events.

NIDS is often deployed between an organization’s Internet and Intranet as hardware.
This is useful since the NIDS can detect infiltration very immediately. However,
because it is difficult for a typical NIDS to handle encrypted packets sent over the
network, NIDS implementation may cause network flow speed to be decreased.
Internal threats are also difficult to detect with NIDS in this case.

c) Hybrid Intrusion Detection Systems:
These are the IDS formed by the joining of HIDS and NIDS and sometimes, Misuse
Intrusion Detection System (MIDS) and Anomaly Intrusion Detection System (AIDS).
This is done to increase the performance of the IDS as indicted in the work of Meryem
e Ouahidi (2020). Also, Khraisat et al. (2019a) combined the benefits of the MIDS and
AIDS to propose a hybrid IDS framework able to detect both well-known intrusions
and zero-day attacks yielding high level of detection accuracy and low rates of false-
alarm. The proposed framework was evaluated using the Bot-IoT dataset, which
contains both genuine IoT network traffic and various sorts of attacks. The results
reveal that the hybrid IDS has a greater detection performance and a lower false-
positive rate than the other approaches (KHRAISAT et al., 2019a).

26

2.2 Computer Network and Different Types of Network Attack

A computer network is a connection of computers or computing systems to share
resources, such as printers, applications, storage and processing units. The computers
use common communication protocols over digital interconnections which can either
be wired, optical or wireless radio-frequency medium to communicate with each other.
Nodes of a computer network are usually identified by specific streams of numbers called
network address or sometimes hostnames.The transmission medium used to carry signals,
bandwidth, communications protocols to organize network traffic, the network size, the
topology, traffic control mechanism, and organizational intent are common criteria used in
the classification of computer Networks.

Network attacks can be initialized from an external environment or from inside of
the network. The attack in the Wide Area Network (WAN) is the most challenging one due to
the vast number of networked devices that can be affected. The IDS is one of the tools which
try to ensure the safety of network communication from different network attack types.
Understanding the reasons for the various types of attacks is imperative to knowing the
target platforms and the purpose of the attack. These primarily are the determinants of the
type of attack a system will be exposed to at any given time. For example, a phishing attack
(attack type) is carried out on the web or via e-mail (attack platform) and is configured to
steal personal information, such as card numbers and security passwords. Other attacks are
designed to simply disrupt network traffic, hence cause annoyance.

The most common attack profiles are presented and discussed as follows.

2.2.1 Denial of Service (DoS)

This is an attack-type that is intended to make a service on the network become
completely or temporarily unavailable, thus not responding to users and other systems
requests (PENG; LECKIE; RAMAMOHANARAO, 2007; GASTI et al., 2013). Vulnerabilities in
operating systems or services are mostly exploited in this type of attack. To perform this
attack, the attacker sends several queries to network service to deplete the resources of
the target system. Queries sent over the network may come from either a single source or
multiple sources. With the use of only one source address in the attack act, the attack can
easily be detected and blocked by the firewall. However, protection becomes more difficult

27

when the network attacker employs address list to conceal the attack. In this case, a more
standard measure is required to prevent the attack.

2.2.2 Distributed Denial of Service (DDoS)

Similar to DoS, this attack has the same objective, however, it uses distributed systems
to carry out the requests to exhaust the target’s resources (DOULIGERIS; MITROKOTSA,
2004). For example, Honda et al. (2015) used the Internet Control Message Protocol (ICMP)
to send requests which were fired repeatedly against a target by implementing the help of
the ping software. The attack was performed through distributed zombie computer systems.

The dispersion of attack sources is a method to make identification and blocking
more difficult since the firewall may block requests that are not related to incursion. Botnets
are self-spreading and self-organizing networks of hacked devices called (bots) that may
be used to carry out damaging actions in a coordinated way under the supervision of a
botmaster (PIJPKER; VRANKEN, 2016). Because of the large number of vulnerable devices
linked to the Internet, attackers may install systems on several computers and execute
coordinated attacks on their victims from these infected machines.

2.2.3 Infiltration

This happens from within the network usually through the exploitation of some
software flaw in one of the network devices. Authors in Sharafaldin, Lashkari e Ghorbani
(2018) showed that after successfully exploiting a network or computer device vulnerability,
a backdoor is usually setup to initiate different network attacks. Internet Protocol (IP)
address scanning, Port Scan, and service enumeration are common examples of such attacks
that may be carried out with the open-source Network Mapper (Nmap) software. Nmap
has several tools for probing computer networks, such as host discovery and service and
operating system identification. Scripts that enable more advanced service detection can
be used to extend these functionalities vulnerability detection, and other features (LYON,
2014).

During a scan, Nmap can adapt to network constraints like latency and congestion.
Kaur e Kaur (2017) utilized the NMap tool to perform penetration testing on networking
infrastructure to discover security flaws and exploit target Operating Systems (OS). The

28

information acquired about the OS was tested using the Linux operating system program,
which exposed the network multiple security flaws.

2.2.4 Web attack

This form of attack is more visible on the Internet resulting from a large number
of web applications available on the Internet. During web Application development, the
attacker can insert malicious code into web page forms and upload the codes to the server
setting attack mode in the active state. Cleaning the data entry handling of server requests
are two important steps the App developer takes to handle the occurrence of this attack.
Meanwhile, it is the most widely used approach to perform network invasion due to high
vulnerabilities it presents. Some common types of this class of attack are SQL Injection
(KAREEM et al., 2021) and Cross-Site Scripting (XSS) (RODRÍGUEZ et al., 2020).

During the execution of SQL Injection attack, the network intruder passes a string
in the form of theoretical query to the application’s database, thereby forcing the server to
return true values, hence, breaking the authentication protocol of the database (KAREEM et

al., 2021). In XSS, an attacker manipulates user interactions with susceptible applications
thereby bypassing the network’s original policy which is intended to separate the websites
into various categories. XSS flaws typically allow an attacker to impersonate a target user,
conduct any activities that the user is capable of performing, and access any of the user’s
data. The attacker can gain full access control over application functionality and data of
any website where the XSS attack is successful if the target user has privileged rights to the
website (RODRÍGUEZ et al., 2020).

2.2.5 Brute force

This type of attack occurs when the attacker illegally tries to obtain credentials to
access systems (HONDA et al., 2015). In addition to stealing credentials, an attacker can try
to discover hidden documents through brute force (SHARAFALDIN; LASHKARI; GHORBANI,
2018). Due to the number of attempts, this is one of the least intelligent methods of attack
as it is easily detectable by security monitoring systems (PARK et al., 2021).

In brute-force cyberattacks, the attacker attempts to gain the system’s account in-
formation by submitting all conceivable values as account inputs. The techniques used in
brute-force attacks are classified as dictionary attack methods, which attempt all strings in a

29

pre-arranged listing, and random sequence methods, which attempt all possible string com-
binations in a sequence (PARK et al., 2006). Controlling access when incorrect passwords
are typed more than a given number of times is a standard method of preventing brute-force
attacks. In the case of servers, the account lock policy defines the threshold for login failure,
and if the threshold is surpassed, access to the account is restricted (PARK; KANG, 2016).

Additionally, the complexity of the password considering different type of characters,
password usage duration, and minimum password length are set in the password policy to
protect the system and its account from being snatched due to a simple password. While
network systems do not block access following login failures exceeding the threshold, they do
prevent unauthorized access through the Access Control List (ACL). Thus, Internet routers
have logged on many attempts of unauthorized external access, and these can serve as a
valuable reference for the access control policy.

2.2.6 Probing/Port scan

This type of attack aims to obtain information from the network to be used later
by some other type of attack. In this case, the network is scanned for open Transmission
Control Protocol (TCP) (POSTEL et al., 1981) and User Datagram Protocol (UDP) (POSTEL,
1980) ports, thus mapping them for further exploitation of vulnerabilities of some service
on these ports. Among the Probing techniques used are: UDPScan and SYNScan (BALRAM;
WISCY, 2008).

2.3 Frameworks for Implementing IDS

This section presents an overview of the various approaches implemented in recent
years to improve the detection accuracy of IDS and reduce false alarms which have been
very problematic as long as cyber security is concerned. Figure 2.4 shows the flowchart for
the design of an ML or DL IDS-based system. The Process begins with data acquisition.
A machine or deep learning engineer identifies the most appropriate dataset required to
train the model for the specific task. In the case of IDS, there is a publicly available dataset
that can be used to train and test the models. These datasets are discussed extensively in
Section 2.4 of this work. After the data is acquired, data preprocessing is performed and
further split into the training and testing dataset. The model is then trained with the training
set after normalization using the most appropriate algorithm. To validate the performance

30

of the model some metrics are used, such as the accuracy, F − 1 score, AUC, sensitivity,
among others. The trained model is then tested with the test dataset, and then it can be
deployed for industrial application.

Figure 2.4 – A General Flowchart for developing an Intrusion Detection System using Deep Learning

Source: Adapted from Chandrashekhar, Tamane e Bharati (2021)

IDS methods can be categorized into four main groups: Statistics-based (LIN; KE;
TSAI, 2015; MEHROTRA; SAXENA, 2018), Knowledge-based (LUNT et al., 1989; MORE et al.,
2012), machine Learning-based (HALIMAA; SUNDARAKANTHAM, 2019; VERMA; RANGA,
2020) and Deep Learning-based (WANG et al., 2020; LEE et al., 2021). The Statistics-based
strategy entails collecting and analyzing each data record in a group of objects, as well
as developing a statistical model of typical user behavior. Knowledge-based methods, on
the other hand, attempt to identify the requested actions from existing system data such
as protocol specifications and network traffic instances, whereas ML and DL methods
acquire complex pattern-matching capabilities using diverse artificial neural network (ANN)
algorithms for training data to determine classification models. We leverage the special
functionalities of the ML and DL category to develop our own IDS model in this work.

31

2.3.1 Statistics-based techniques

In a Statistics-based IDS, a low probability occurring attack behaviour profile are
detected and flagged as probable intrusion or threats by the model which has been developed
using probability distribution approach. Usually, the measures of central tendency (median,
mean, mode) and standard deviation of transmitted packets are frequently considered by
statistical IDS. Instead of monitoring data traffic, each packet is examined to establish the
identity of the flow. Statistical IDS are used to detect any deviations from typical behavior in
present conduct (JOSE et al., 2018). For effective performance, a statistical IDS uses one of
the following approaches in its implementation:

1. Univariate: This approach is utilized when a statistical normal profile is constructed
for only one measure of behavior in computer systems, as the term "Uni"signifies one.
Univariate IDS searches for anomalies in each particular metric (BRAEI; WAGNER,
2020).

2. Multivariate: It is based on the relationships between two or more measurements to
understand the connections between variables. This approach would be useful if
experimental evidence showed that combining correlated measures yielded better
categorization than analyzing them independently. Braei e Wagner (2020) investiga-
ted a multivariate quality control approach for detecting intrusions by constructing
a long-term profile of normal activity. Estimating distributions for high-dimensional
data has proven to be a significant challenge in the implementation of multivariate
statistical-based IDS.

3. Time series model: A time series is a collection of observations performed over a
specific period. A fresh observation can be judged abnormal if the likelihood of its
occurrence at that moment is too low. Braei e Wagner (2020) processed intrusion
detection alert aggregates using time series, (BRAEI; WAGNER, 2020). Chauhan e
Agarwal (2021) provided a technique for identifying network irregularities by studying
the sudden fluctuation detected in time series data .

2.3.2 Knowledge-based techniques

In this approach, otherwise referred to as expert method, a knowledge base contai-
ning legitimate traffic profiles of all network activities is required. Any action that deviates

32

from these standard profiles is considered an intrusion. In contrast to the other types of IDS,
the standard profile model is typically built on human knowledge in the form of a set of rules
that attempt to define normal system activity. The main advantage of knowledge-based
techniques is the ability to reduce false-positive alarms because the system is aware of all
normal behaviors (WAN et al., 2019).

In a continuously evolving computing ecosystem, however, this type of IDS requi-
res consistent updating on expertise about predicting normal behavior, which is a time-
consuming operation due to the difficulty of acquiring information regarding various usual
behaviors. One of the following strategies can be used to conduct knowledge-based IDS
training.

1. Finite State Machine (FSM): The FSM is a computational paradigm for describing
and controlling the application logic. This model is used to develop an Intelligent
system for IDS. States, transitions, and activities are commonly used to depict the
model. The data from the past is examined by a state. Any differences in input data,
for example, are noted, and a transition is made considering the aforementioned vari-
ation (RAMESH; MENEN, 2020). An FSM can represent the normal system behavior,
and any variation beyond this FSM is considered a breach.

2. Description Language: The syntax of rules that are used to express the characteris-
tics of a specific attack is specified by the description language. N-grammars and
universal modelling language (UML) are examples of description languages that can
be used to create these rules according to Fiorese e Montino (2021).

3. Expert System: An expert system comprises several rules that define attacks, having
the rules manually defined by a knowledge engineer working in collaboration with a
domain expert. This technique when applied to the IDS does not yield very accurate,
and precise result due to human inefficiencies which may likely occur as observed
by Chauhan e Agarwal (2021).

4. Signature Analysis: It is the earliest IDS methodology to be used. It is based on the
concept of pattern or string matching. An incoming data packet is analyzed word by
word with a distinct signature pattern matching. A warning is raised if a signature is
matched. If not, the information in the traffic is matched to the signature database’s
next to the signature (MASDARI; KHEZRI, 2020; LEEVY; KHOSHGOFTAAR, 2020).

33

The major drawback of this approach is that malicious codes can be embedded into
the strings and transmitted over the network. This information can be interpreted as
normal because of the inability of the signature to detect the embedded codes.

2.3.3 IDS based on Machine Learning techniques

ML involves the design of computer algorithms that aid computing devices to im-
prove in performance automatically through experience and by the implementation of data
(HUSSAIN et al., 2020b). ML techniques have been applied extensively in the area of IDS.
Several algorithms and techniques, such as clustering, ANN, association rules, decision
trees, genetic algorithms, and nearest neighbor methods, have been applied for discovering
the knowledge from IDS-datasets (AHMAD; ANWAR; HAQUE, 2020; BISWAS et al., 2018).

Figure 2.5 presents the broad classification of ML techniques showing that an algo-
rithm can be a shallow learning algorithm or deep learning algorithm. Further to this, ML
methods can also be either supervised, unsupervised or reinforcement depending on its
learning pattern.

Using labeled training data, supervised learning-based IDS algorithms detect intrusi-
ons. Training and testing are usually the two stages of a supervised learning approach. The
selection of characteristics and classifications, as well as the construction of an algorithm
that learns from the data sample, are all part of the training step. Every data record is a
sample pair of a network or host data source and an associated output (label) that can be
classed as an attack or normal. (SARAVANAN; SUJATHA, 2018).

Next, feature selection is applied to eliminate unnecessary features from the data
(CAI et al., 2018; AL-TASHI et al., 2020). A selected supervised learning method is used
afterwards to train the classifier to learn the existing connection between the input data and
the labeled output value using the training data from the selected features. In the literature,
a large range of supervised learning strategies has been investigated, each with its own set of
benefits and drawbacks. During the testing step, the trained model is utilized to categorize
the unknown data as intrusion or normal. The resulting classifier is then transformed into
a model that predicts the class to which the input data may belong given a collection of
feature values. A classifier’s performance in predicting the proper class is measured using a
variety of criteria set.

34

Unsupervised learning, often referred as unsupervised ML, analyzes and clusters
unlabeled datasets using machine learning algorithms. Without the need for human inter-
vention, these algorithms uncover hidden patterns or data groupings. Its capacity to find
similarities and contrasts in data makes it an excellent choice for exploratory data analysis,
cross-selling techniques, consumer segmentation, and image identification, among other
applications.

Unsupervised learning models are utilized for three main tasks: clustering, associ-
ation, and dimensionality reduction. Clustering is a data mining technique that groups
unlabeled data based on their similarities or differences. Clustering algorithms are used
to process raw, unclassified data objects into groups represented by structures or patterns
in the information. Clustering algorithms can be categorized into a few types, specifically
exclusive, agglomerative, overlapping, and probabilistic. Exclusive clustering is a type of
grouping in which a set of data can only be found in one cluster at a time. This type of clus-
tering is often known as "hard"clustering. A well known example of the exclusive clustering
is the K-Means algorithm. In the agglomerative clustering technique, every data is treated
as a cluster and the iterative unions between two nearest clusters are used to reduce the
number of total clusters. The Hierarchical clustering algorithm represents a typical example
of agglomerative. Unlike the agglomerative clustering, the overlapping clustering uses fuzzy
sets to cluster data, having each point belonging to either two or more clusters but with
variant degrees of membership. The probabilistic clustering uses probability distribution to
create clusters. Other Important clustering types are: (i)Hierarchical clustering (ii) K-means
clustering (iii) K-NN (iv) Singular Value Decomposition (v) Principal Component Analysis
(vi) Independent Component Analysis (GENTLEMAN; CAREY, 2008; JOHNSON, 2022).

Association rules enable you to create associations between data elements in huge
databases. The goal of this unsupervised approach is to find interesting correlations between
variables in massive databases. In dimensionality reduction, latent variable models are
widely used for data preprocessing, feature reduction or dataset decomposition into multiple
data components are achieved with latent variable models approach.

Reinforcement learning refers to a ML training method based on rewarding desired
behaviors and/or punishing undesired ones. This involves a developed algorithm or pattern
to reward every accurate behavior exhibited by the model. The program assigns positive
values to all accurately predicted results and negative values to undesired results. In regards

35

to IDS, many authors have applied the approach to train models that obtained good per-
formance results (SETHI et al., 2020; LOPEZ-MARTIN; CARRO; SANCHEZ-ESGUEVILLAS,
2020; SERVIN; KUDENKO, 2005).

Figure 2.5 – General Taxonomy of Machine Learning Techniques

Source: Adapted from Liu e Lang (2019)

36

Table 2.2 – Advantages, Disadvantages and Improvement procedures for Shallow ML Algorithms

Algorithms Advantages Disadvantages Improvement Me-
asures

ANN handles non linear data; per-
forms excellent fitting

responds aptly to overfitting;
tendency to get stuck with lo-
cal optimum; Model training
requires a lot of time

used improved op-
timizer, activation
functions, and loss
functions

SVM Learn valuable information
from small dataset; High ca-
pability

Do not perform well on big
data or multiple classifica-
tion tasks; Sensitive to kernel
function parameters

Optimized para-
meters by Particle
Swarm Optimiza-
tion (PSO)

KNN Apply to large data; Good res-
ponse to noise; Train quickly;
Able to work with nonlinear
data

minority class has low accu-
racy; takes a long time to per-
form testing; Sensitive to the
parameter K

Optimization of
parameters via
Particle Swarm Op-
timization (PSO);
Balanced datasets
based on Synthetic
Minority Oversam-
pling TEchnique
(SMOTE)

Naïve
Bayes

Robust to noise; Able to learn
incrementally

Low response with attribute-
related data

Imported latent
variables to relax
the independent
assumption

LR Simple can be trained rapi-
dly; Automatically scale fea-
tures

Has low performance with
nonlinear data; Apt to over-
fitting

Imported regulari-
zation to avoid over-
fitting

Decision
Tree

Automatically select featu-
res; Strong interpretation

Majority class has prefe-
rence; Correlation of data is
not considered

Balanced datasets
with SMOTE; In-
troduced latent
variables

K-mean Simple, can be trained rapi-
dly; Strong scalability; Can
fit to big data

Low performance on non-
convex data; Initialization
set-up is important; Sensi-
tive to K (parameter)

Improved initializa-
tion method

Source: Liu e Lang (2019)

2.3.3.1 Shallow ML Algorithms

Here, we explain some of the traditional ML methods generally called (shallow mo-
dels) for IDS which can either be supervised or supervised such as Support Vector Machine
(SVM), Artificial Neural Network (ANN), K-nearest Neighbor (KNN), Decision Tree, Naïve
Bayes, Logistic Regression (LR), K-mean clustering, and combined or hybrid methods (LIN;

37

KE; TSAI, 2015; MISHRA et al., 2018; ALMSEIDIN et al., 2017; KAYACIK; ZINCIR-HEYWOOD,
2005).

Table 2.2 gives details on the advantages, disadvantages and improvement techniques
for the shallow ML algorithms.

a) Support Vector Machines (SVM)

A splitting hyperplane defines SVM, a discriminative classifier. SVMs employ a kernel
function to translate training data to a higher dimension space, allowing incursion
to be categorized linearly (MEYER; WIEN, 2015). SVMs are widely renowned for their
capacity to generalize and are most useful when the number of characteristics is
big but the number of data points is modest. By using a kernel, you may separate
different kinds of hyperplanes, such as linear, Gaussian Radial Basis Function (RBF),
polynomial, and hyperbolic tangent. Many characteristics in IDS datasets are unim-
portant or have little influence on classifying data items. As a result, feature selection
are considered during SVM model training. SVM can be used as well to classify data
into numerous categories. (BYVATOV; SCHNEIDER, 2003; HEBA et al., 2010; BHATI;
RAI, 2020a).

b) K-Nearest Neighbors (KNN) classifier

The k-Nearest Neighbor (k-NN) technique is a traditional non-parametric classifier
used in ML (PETERSON, 2009). The goal behind these methods is to give an unla-
beled data sample a name considering the classification of its k nearest neighbours
(where k represents an integer defining the total number of neighbors which are to
be considered) (HAN; KARYPIS; KUMAR, 2001).

c) Naïve Bayes This method is based on the Bayes’ principle, with robust independence
assumptions for the characteristics. Using conditional probability equations, Naïve
Bayes solves queries like what is the likelihood that a specific type of attack is occurring,

given the observed system activities? The Naïve Bayes method is based on traits
that have different odds of arising in assaults and regular activity. The Naïve Bayes
classification model is one of the most popular in IDS because of its ease of use and
computation efficiency, both of which are derived from its conditional independence
assumption characteristic. However, if this independence assumption is not valid,

38

the system does not perform well, as proved on the KDD’99 intrusion detection
dataset, which includes complicated attribute relationships. Many research works
implemented this approach with good classification accuracy (VEMBANDASAMY;
SASIPRIYA; DEEPA, 2015; PELING et al., 2017; SARITAS; YASAR, 2019; SHINDE et al.,
2015).

d) Logistic Regression (LR) The LR algorithm is widely used in binary classification
problems. LR utilizes gradient descent method to solve the optimal parameters of
loss function and improve the global convergence of the optimization algorithm.
This algorithm presents many iterations and it has a slow response to train large
amounts of data (ZOU et al., 2019). Thus, in the literature, there are some proposals
to improve the global performance of the LR algorithm (ZOU et al., 2019; LIU, 2018;
YANG; LI, 2019)

e) Decision Tree

Decision Trees (DTs) are data structures composed of elements called nodes. Fol-
lowing a hierarchical model, the tree has a root node, where the tree is started, se-
quentially the tree is composed of child nodes, where each node can have other
children or sub-trees. When a node has no children, it is known as a leaf or terminal
node. The initial data enters at the root of the tree and passes through the decision
nodes until reaching the leaf node, which in turn, presents the result of the proces-
sing. According to Khraisat e Alazab (2021), DT is a sequential model, which logically
combines a sequence of simple tests. Each test compares a numeric attribute with a
threshold (set) value or a nominal attribute with a set of possible values.

A DT classifies an unseen test instance through a series of decisions (MUSA et al.,
2020). Due to its simple configuration and ease of implementation, DT is particularly
well known as a single classifier. DT can be divided into 2 categories: (i) Regression
tree, which considers a range of class labels based on numerical values; and (ii)
Classification tree, having a range of symbolic class labels (MUSA et al., 2020). There
are many different decision trees algorithms including ID3 (QUINLAN, 1986), C4.5
(QUINLAN, 2014) and CART (BREIMAN, 1996).

39

f) K-Means Clustering Algorithm K-Means algorithm is an unsupervised learning
technique for pattern recognition that is widely used for clustering tasks. However,
this algorithm presents some disadvantages, such as the need for setting the number
of clusters (K), the arbitrary location of initial cluster centers, and the influence of
the noise points on data treated. To avoid these shortcomings, some improvements
were proposed in the literature (SINAGA; YANG, 2020; WANG; SU, 2011).

g) Random Forest (RF) RF is a well-known machine learning method (ensemble le-
arning algorithm). It is referred to as an ensemble learning algorithm because it
constructs several decision trees during the training phase of the algorithm and then
uses the most popular result as its categorization. This is why it is called a forest.
Because of its capacity to respond quickly and reliably, it may also be employed for
regression or prediction issues (ATAWODI, 2019). The random forest creates a forest
of independent subsets of the dataset.

Random forest generates N decision trees from training set data. During this process,
it randomly resamples the training set for each tree. Thus, N decision trees are
obtained, each of which is different from the other. Finally, voting is performed by
selecting new estimates from estimates made by N trees. The value with the highest
rating is determined as the final value (KOSTAS, 2018).

RF has the advantage of working well with very large and complicated datasets,
reducing overfitting which is a common problem in ordinary DT classifiers, and
handles missing values by replacing them with its own values. It also calculates
and uses the importance level of the variables when making the classification. This
feature is leveraged in selecting important features for machine learning problems.
We have also implemented this in training our ML classifiers in this work.

h) Artificial Neural Network (ANN)

The ANN algorithm attempts to be one of the most extensively used ML approaches
(TEODORO et al., 2021b), and it has been demonstrated to be effective in identifying
various malware and network intrusion attempts. The backpropagation (BP) pattern
is the most often used learning approach in solving supervised learning problems.
The BP method examines the error of the network gradient concerning its changing
weights. However, ANN-based IDS attack detection accuracy and precision still need

40

to be improved, particularly for less frequent attacks. The training dataset for less
frequent intrusion is less than that for more frequent attacks, making it challenging
for the ANN to appropriately understand the features of the attacks. Consequent
upon this, accuracy of attack detection for fewer frequent attacks is reduced.

In this area of information security, low-frequency attacks can create critical damage
to a security network if they are not aptly detected and overcome. For example,
if User to Root (U2R) attacks go undetected, a malicious user can gain the root
user’s authorization permissions and thus undertake malicious activities on the
victim’s computer networks. Most often, outliers tend to be the less common attacks
(MISHRA; SRIVASTAVA, 2014). Because ANNs frequently struggle with local minima,
learning can also become extremely time-consuming. Meanwhile, the advantage with
ANN is its ability to produce highly nonlinear models using one or more convolution
layer that capture complex relationships between input attributes and classification
labels. ANNs have become effective tools in many classification problems, including
IDS, with the development of many variants such as recurrent and convolutional
NNs. (BRASPENNING; THUIJSMAN; WEIJTERS, 1995).

i) AdaBoost (Adaptive Boosting), is a machine learning algorithm developed to improve
classification performance. It is an ensemble algorithm which can be implemented
with the use of the sklearn library in Python. The working principle of this algorithm
can be explained thus: First, certain rules called "rough draft rules"are used to divide
the data into groups. Each time the algorithm is executed, a new set of rules is created
and added to the rough draft rules. This leads to obtaining many different weak and
low performance rules generally referred to as "Basic rules".

Over time as the algorithm continues to work many times, these weak rules are
combined to achieve a stronger rule having better performance and more successful
probability of yielding a better result. During this process, the Algorithm assigns a
weighting coefficient to each weak rule, giving the highest coefficient value to the
lowest error rate. These weight values come into play when final rules are selected.
The final rule is created by giving priority to the high scored weak rules (SCHAPIRE,
2003; KOSTAS, 2018). Figure 2.6 demonstrates the basic operation of the AdaBoost
classification algorithm.

41

Figure 2.6 – Demonstration of basic operation of AdaBoost Algorithm

Source: Adapted from (KOSTAS, 2018)

j) Extra Tree (ET) Classifier

This algorithm improves the performance of DT and RF by incorporating a more
significant number of trees into its network. As a result, compared with other ML
algorithms, it has the highest number of trees and computational resource requi-
rements. This algorithm works on the principle of meta estimator and applies an
averaging rule to increase predicted accuracy and reduce overfitting. First, the meta
estimator fits several randomized decision trees on different sub-samples of the
same dataset. Then, it aggregates the results of multiple de-correlated decision trees
collected in a forest to output a classification result. The package is available in the
sklearn.ensemble.ExtraTreesClassifier library for use in any ML tasks (BHATI;
RAI, 2020b).

k) eXtreme Gradient Boosting (XGBoost)

XGBoost is an extension of the implementation of Gradient Boosting Tree proposed
by Friedman (2001). Because it offers parallel computation, cache awareness, a built-
in regularization strategy to avoid overfitting, and tree optimization by a split-finding
algorithm, XGBoost generally outperforms gradient boosting in terms of performance
as it has a quick training and inference time according to Chen e Guestrin (2016).
In Dhaliwal, Nahid e Abbas (2018), an efficient IDS model based on XGBoost was
proposed for computer networks. The model was trained and evaluated on the

42

network socket layer-knowledge discovery in databases (NSL-KDD) dataset with an
accuracy of 98.70%.

l) Light Gradient Boosting Machine (LightGBM)

Observing the high training time requirement for Gradient Boosting Decision Trees
(GBDT), Ke et al. (2017) proposed two novel techniques to overcome the challenge
based on Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling

(EFB). This new implementation was named LightGBM which improved training
and inference time of GBDT by 20%. Since its development, it has shown highly
impressive results even in IDS systems as shown in Liu, Gao e Hu (2021) and Yao et

al. (2021).

2.3.3.2 IDS Based on Deep Learning Techniques

DL is a branch of ML that deals with ANNs, which are algorithms motivated by the
study of functions and biological organization of the human brain(ZHANG; PATRAS; HAD-
DADI, 2019). It utilizes a hierarchical level of ANNs to carry out the process of ML leveraging
the functioning pattern of the human brain. It was built on ML to improve the performance
of information processing. Like ML, DL can be supervised, unsupervised or reinforcement
in information processing. (KARATAS; DEMIR; SAHINGOZ, 2018; AMINANTO; KIM, 2016;
KIM, 2017b).

DL networks are made up of numerous interconnected layers, the first of which
is referred to as the input layer, the final as the output layer, and all levels in between as
hidden layers. Each hidden layer is made up of multiple neurons, and the bias, weight, and
activation function are the primary components that influence the network’s strength.

DL techniques are further categorized into Generative, Descriptive, and hybrid
methods (AL-GARADI et al., 2020), in which Deep Boltzmann Machines (DBMs), Deep
auto-encoders, Deep Belief Networks (DBNs), and Generative Adversarial Networks (GANs)
are generative models while CNNs are considered a descriptive networks (SALLOUM et al.,
2020). Also, RNNs are categorized as both generative and descriptive models. Table 2.3
presents a deep comparison of the various deep learning algorithms classifying them as
either supervised or unsupervised. The major function performed is also outlined. From the
comparison, the autoencoders, RBM and GAN are unsupervised deep learning algorithms

43

while the DBN, Deep Neural Network (DNN), CNN and RNN are classified as supervised
deep learning algorithms. The latter four are best used for classification problems in cases
where labeled datasets are available.

Table 2.3 – Comparison of various Deep Learning Algorithms showing their basic functions

Algorithms Learning
Types

Suitable Data Types Application

AE unsupervised Raw data; Feature vectors used for Denoising, feature extrac-
tion and Feature reduction

RBM unsupervised Feature Vectors Denoising; feature extraction and
Feature reduction

DBN supervised Feature Vectors Feature extraction; Classification
DNN supervised Feature Vectors Feature extraction; Classification
CNN supervised Raw data; vectors of features;

Matrices
Feature extraction; Classification

RNN supervised Raw data; vectors of features;
Sequence data

Feature extraction; Classification

GAN unsupervised Raw data; Feature vectors Data augmentation; GAN training
Source: Author (2022)

a) Deep Neural Network

The architecture of DNN is as shown in Figure 2.7a. The network contains three main
layers which include: the input cells, the hidden cells and the output cell. These cells
or networks are connected deeply with each other such that the inputs and outputs
of the network are well represented. In Software Defined Networks (SDN), Tang et al.

(2016) proposed an intrusion detection system based on a DNN. The proposed IDS
system is implemented in the SDN controller which can monitor all the OpenFlow
switches. The authors used the NSL-KDD dataset which consisted of four different
attack categories, namely, (i) DoS attacks, (ii) R2L attacks, (iii) U2R attacks, and
(iv) Probe attacks. A two-class classification was performed during the process to
classify the attacks as either normal or anomaly. The major success recorded in the
experiment was achieving a lower learning rate which was of better performance
than others with the higher receiver operating characteristic curve (ROC).

Using the same dataset as Tang et al. (2016), Potluri e Diedrich (2016) developed a
DNN model to handle deep-category classification problems in huge network data.
The dataset which contained 39 different network attacks were grouped into four

44

Figure 2.7 – Basic Deep learning architecture for: 2.7 a: Deep Neural Network, 2.7 b: Restricted
Boltzmann Machine, 2.7 c: Recurrent Neural Network and 2.7 d: Deep Belief Network

Source: Author (2022)

categories (TANG et al., 2016), but regarding this, the developed model achieved a
high attack detection accuracy of about 96%.

As the network continues to enlarge, the transport systems are also prone to attacks.
Hence, Kang e Kang (2016) proposed an intrusion detection system based on the
DNN for vehicular networks. Malicious data packets were injected into an in-vehicle
controller area network bus to perform the attack scenario. The injected malicious
packets caused network obstruction in the vehicular movement. The proposed
system inputs the feature vector to the input nodes to classify packets into two
classes (a normal packet and an attack packet). The ReLU activation function was
used to compute the output of the network which was linked to the other hidden
layers of the network. With the false-positive error less than 1–2%, the proposed
system achieves a detection accuracy of about 98%.

In cyberspace, attempting to classify cyber-attacks, Zhou et al. (2018) proposed an
intrusion detection system based on the DNN. Specifically, the system uses three
phases, namely, (i) data acquisition (DAQ), (ii) data pre-processing, and (iii) deep
neural network classification. The system achieves an accuracy of 96.3% for the SVM
model with a learning rate of 0.01, training epochs 10, and input units 86. The results

45

show this approach to outperform the following three machine learning approaches
(i) linear regression, (ii) random forest, and (iii) k-nearest neighborhood.

Another application of the DNN algorithm was carried out by Kim et al. (2017) to
investigate evolving attacks on special networks using the KDD 1999 dataset. The
proposed intrusion detection model uses two parameters, namely, four hidden layers
and 100 hidden units. The ReLU function is used as the activation function and the
stochastic optimization method for deep neural network training. The proposed
model achieves an accuracy of approximately 99% with a false alarm rate of 0.08%

b) Auto-Encoders

Auto-encoders are feed-forward ANNs that maintain the same number of neurons
in the input and output layers of the network. It can have several hidden layers
and builds its inputs intending to minimize the differences between the output and
the input. Each auto-encoder has two steps: an encoder that is used for mapping
the input data into the code, and a decoder used for constructing input data from
the code. In more specific terms, auto-encoders support unsupervised learning of
dataset encoding for dimensionality reduction, by training the network to ignore
the signal noise (LANGE; RIEDMILLER, 2010). During training, the diversity that
exists between the input of the encoder and the output of the decoder is reduced.
When the decoder succeeds in reconstructing the data via the extracted features, it
means that the features extracted by the encoder represent the true nature of the
data. There exist some variations of auto-encoder such as denoising autoencoders,
stacked autoencoders, deep autoencoders, convolutional autoencoder, contractive
autoencoders under complete autoencoders and variational autoencoders (??).

A non-symmetric deep autoencoder with multiple hidden layers that provides better
classification results compared to Deep Belief Networks was proposed by Shone et

al. (2018) for cybersecurity intrusion detection. The KDD Cup ’99 and NSL-KDD
datasets were used with five performance metrics, including accuracy, precision,
detection, false alarm, and F-score. The results of evaluating the KDD Cup ’99 dataset
show that the proposed model has an average accuracy of 97.85%, which is better
than the work of Alrawashdeh e Purdy (2016). On the other hand, the results of

46

the evaluation of the NSL-KDD dataset show that the proposed model achieves an
accuracy of 85.42%, which is a 5% improvement over the Deep Belief Network model.

Khan et al. (2019) proposed an IDS based on a two-stage deep learning model cal-
led TSDL. The TSDL model uses a stacked auto-encoder with a soft-max classifier
consisting of three main layers, namely (i) the input layer, (ii) the hidden layers, and
(iii) the output layer. These three layers use a feed-forward neural network similar to
a multilayer perceptron. The study uses two public datasets, including the KDD99
and UNSW-NB15 datasets. The results for the KDD99 dataset achieve high detection
rates of up to 99.996%. In addition, the results for the UNSW-NB15 dataset achieve
high detection rates of up to 89.134%.

A self-adaptive and autonomous IDS using auto-encoder techniques were developed
by Papamartzivanos, Mármol e Kambourakis (2019). Specifically, the proposed sys-
tem was designed to operate in four phases, including (i) monitoring, (ii) analyzing,
(iii) planning, and (iv) execution of phases. The monitoring phase identifies any
changes that require adjustments to the IDS adaptation. Network audit tools such as
the Argus and CICFlowMeter were used to analyze the network data and transform
the raw data into network flows. This process was performed in the analysis phase.
In the planning phase, Sparse autoencoders are used to represent the input data
and the data are stored for further processing. However, two datasets are used for
performance evaluation, including KDDCup’99 and NSL-KDD, where an average
accuracy of 59.71% was achieved for the static model and 77.99% for the adaptive
model.

The model trained with the NSL-KDD and UNSW-NB15 datasets using a combination
of an improved conditional variational autoencoder and a deep neural network was
proposed by Yang et al. (2019) for cybersecurity intrusion detection. The datasets
NSL-KDD and UNSW-NB15 are used to validate the proposed model, and the default
learning rate of the Adam optimizer is 0.001, and the highest accuracy of 89.08% and
a detection rate of 95.68% were obtained for the UNSW-NB15 dataset. The proposed
study was conducted in three phases: (i) training, (ii) attack generation, and (iii)
attack detection. The training phase consists of the optimization of the encoder
and decoder losses. The distribution used in the new attack generation phase is a

47

multivariate Gaussian distribution. To detect attacks, a DNN is used in the detection
phase.

Another network IDS using an unsupervised learning algorithm autoencoder was
proposed by Choi et al. (2019) and the performance was evaluated using the accuracy,
recall, specificity and F1-score measures. The results obtained show, that the model
achieved an accuracy of 91.70%, which is a reliable performance.

c) Restricted Boltzmann Machine (RBM)

An RBM uses Markov random field approach based on an undirected probabilistic
graphical model that contains one visible layer and one or several hidden layers,
as shown in Figure 2.7b. An RBM through its learning approach learns the input’s
complex internal representations using very few labeled data for fine-tuning the re-
presentation created with a set of unlabeled input. The RBMs permit the application
of top-down or bottom-up training and inference procedures, thereby allowing them
to find the input’s representations. Nonetheless, the issue of slow speed has limited
their functionality and performance of RBM (SALAKHUTDINOV; HINTON, 2009;
LIU; ZHANG; SUN, 2014).

The RBM was used for intrusion detection by Fiore et al. (2013). Combining the
generative model’s expressive power with discriminative RBM, authors achieved
good classification result. The KDD Cup 1999 dataset was used with a set of 41
features and 97,278 instances and the trained model was found to accurately classify
the attacks into the normal and anomaly categories.

Salama et al. (2011) combined the RBM and SVM to develop a deep intrusion de-
tection model. In the research, the NSL-KDD dataset was used, setting the training
set to contain a total number of 22 training attack instances, and an additional 17
instances in the testing set. The result of the study states that this combination shows
a higher percentage of classification than when using a support vector machine.

Alrawashdeh e Purdy (2016) used the RMB with a deep belief network (DBN) on
the KDD 1999 dataset, which contains 494,021 training records and 311,029 testing
records. The detection algorithm is implemented using C++ and Microsoft Visual
Studio 2013. The study shows that the RBM classifier classified 92% of the attacks

48

accurately. The paper compared the results to the work by Salama et al. (2011), which
shows both a higher accuracy and detection speed.

Aldwairi, Perera e Novotny (2018) proposed a comparative study of RBM for cyber
security intrusion detection. Specifically, the study demonstrates the performance of
RBM to distinguish between normal and anomalous NetFlow traffic. The proposed
study was applied to the ISCX dataset, which showed the highest accuracy of 78.7 ±
1.9% when the learning rate was set to 0.004. In addition, the true positive rate and
true negative rates are 74.9 ± 4.6% and 82.4 ± 1.8%, respectively, at the learning rate
0.004.

Gao et al. (2014) attempted to integrate multilayer unsupervised learning networks
and applied them to intrusion detection. The study used a hybrid of RBM and
DNN algorithms in training the network following two training steps: (i) training the
restricted Boltzmann machine of layers n, and (ii) fine-tuning the parameters of the
entire RBM. The study shows that DBNs based on RBM outperform SVM and ANN
applied on the KDD CUP’99 dataset.

d) Deep Belief Networks (DBN)

DBNs are probabilistic generative models comprising of multiple stacked RBM mo-
dules, where the output of each RBM is used as input to the subsequent RBM. In
addition, neurons in the DBN layers have connections to the next layer, but not to neu-
rons in the same layer. DBNs eliminate the training problems of ANNs and prevent
problems such as falling into a local minimum, slow training, and the need for a large
training dataset. Figure 2.7d shows the architecture of the DBN algorithm. DBNs are
used in different domains, such as speech recognition, image identification, natural
language processing, and intrusion detection. These deep learning networks have
good feature classification and feature learning capabilities (SARIKAYA; HINTON;
DEORAS, 2014).

The DBN was used for intrusion detection in Thamilarasu e Chawla (2019) where
a feed-forward deep neural network was developed for the Internet of Things envi-
ronments. In a more specific approach, the authors proposed a cost-effective model
based on a binary cross-entropy loss function that can be used to train the model in a
short period. For performance evaluation, the Keras library, Cooja network simulator,

49

and Texas Instruments CC2650 sensor tags were used. The Keras library was used to
build a sequential DL model. The proposed model was tested against five different
attacks: including;(i) sinkhole attack, (ii) wormhole attack, (iii) blackhole attack,
(iv) opportunistic service attack, and (v) DDoS attack. The results show a higher
precision of 96% and a recall rate of 98.7% for DDoS attack detection.

In another study, Zhao, Zhang e Zheng (2017) proposed an IDS framework using DBN
and Probabilistic Neural Networks (PNN). The study carried out on the KDD CUP
1999 dataset, used 10% of the training dataset and 10% of the test dataset to evaluate
the trained model. In their study, Zhao, Zhang e Zheng (2017) concluded that the
proposed method performed better than three models, namely, (i) the traditional
probabilistic neural network, (ii) principal component analysis with the traditional
probabilistic neural network, and (iii) the unoptimized deep belief network with the
probabilistic neural network.

Zhang et al. (2019) proposed a combination of improved genetic algorithms and
DBNs for cybersecurity intrusion detection. Several RBMs were used in the study,
which mainly performs unsupervised learning from preprocessed data. The DBNk
module is divided into two steps in the training phase: (i) each restricted Boltzmann
machine is trained separately and (ii) the final layer of the deep belief network is set
as a backpropagation neural network. The performance evaluation with the dataset
NSL-KDD shows a recognition rate of 99%.

An intrusion detection approach based on an improved DBN was proposed to miti-
gate the problems of overfitting, low classification accuracy, and high false-positive
rate (FPR) in a large amount and variety of network data (TIAN et al., 2020). Here,
the dataset is processed by probabilistic mass function (PMF) and min-max normali-
zation method to simplify the data preprocessing. To overcome the issue of feature
homogeneity and overfitting, a penalty term based on the Kullback-Leibler diver-
gence (KL) and the non-mean Gaussian distribution of the unsupervised training
phase of DBN was combined, and the sparse distribution of the dataset was recovered
by sparse constraints. In simulation experiments performed on the NSL-KDD and
UNSW-NB15 datasets, an accuracy of 96.17% and 86.49% were achieved respectively.

e) Recurrent Neural Networks (RNNs)

50

RNNs can be considered as an improved version of feed-forward ANNs, since they
can remember the data processed at each step to compute subsequent results. For
this reason, in an RNN, the output of the neurons in each layer is connected to the
input of the neurons in the other layer and also to itself. In this way, RNNs can use
their internal memory to handle variable-length input sequences, such as time series,
and learn a data sequence to generate its new members, as shown in Figure 2.7c. In
RNNs, the input layer is unidirectionally connected to the hidden layers, while the
neurons of the hidden layers are connected to themselves and all other neurons of
the next layer to ensure complete information exchange. To this end, the RNNs can
be trained with current and historical inputs, with the probability of an attack based
on the current and previous states of the features (LEE et al., 2019).

The RNN-based IDS model proposed by Yin et al. (2017), and trained on the NSL-
KDD and KDDCup’99 datasets, was implemented to check the performance of the
model on multiclass and binary classification problems. The authors also inves-
tigated the consequences of different learning rates and a number of neurons on
the performance of their model. The results of this model were compared with the
shallow classifiers such as SVM, J48, Random Forest, and ANN. From the obtained
results, it was observed that the proposed model RNN-IDS gives good results with
high accuracy on binary and multiclass intrusion detection problems.

Kaur e Singh (2020) proposed D-Sign, a hybrid deep learning-based IDS scheme that
handles both anomalies and intrusions. This scheme, modeled to detect and generate
signatures of web-based security attacks, specifically detected security attacks in
network traffic by using an RNN with multiple Long Short-Term Memory (LSTM)
layers. The LSTM was integrated into the model to overcome the vanishing gradient
and long-term dependency problem, which is usually a challenge in RNN models.
In addition, a softmax activation function that receives inputs from a two-layer
LSTM network was used to detect new security attacks. The binary and multi-class
classification was investigated using the trained D-Sign model on the NSL-KDD
and CICIDS-2017 datasets. Metrics such as sensitivity, accuracy, specificity, false
negatives and false positives were used to study the performance of the model. The
hybrid model performed optimally compared to other classifiers.

51

In Lee et al. (2019), authors proposed an IDS approach to deal with high false positives
in anomaly detection systems and to cope with attacks with unbalanced training sets.
This scheme presents a feature selection model, referred to as Sequence Forward
Selection Decision Tree (SFSDT), that generates the best possible subset of features.
The SFSDT model consists of a decision tree and Sequence Forward Selection. Then, it
trains classifiers such as RNN, LSTM, and Gated Recurrent Unit (GRU) on the selected
features. Finally, the authors evaluated their anomaly detection scheme on the ISCX
and NSL-KDD datasets. Authors indicated that their scheme outperforms other
IDS approaches in terms of accuracy and detection rate and reduces the required
computation time.

An RNN model using the gated recurrent unit was proposed for anomaly detection in
the SDN environment by Tang et al. (2019). The GRU-RNN represents the relationship
between previous and current events and can increase the anomaly detection rate.
The authors concluded that the performance of the model was not affected by the
introduction of six raw features into the test dataset. The model was trained and
tested with the dataset NSL-KDD and achieved an accuracy of 89% without affecting
the performance of the network.

f) Generative Adversarial Networks (GAN)

GANs provide a way to learn deep representations without extensively annotated
training data. They achieve this by deriving backpropagation signals through a
concurrent process involving a pair of networks. They consist of two competing
ANNs that are trained in a zero-sum game with each other, where one ANN wins
while the other loses. After a GAN is trained, it can learn the distribution of data
and generate synthetic data instances that can be used as real data. GANs are used
extensively in various applications of different fields, such as speech, video, image
generation, and IDS (CRESWELL et al., 2018).

Liu et al. (2019) proposed a GAN based approach to data augmentation in a wire-
less network scenario. With an Encryption Policy Intrusion Detection (EPID) using
Channel State Information (CSI), the model was trained to achieve high accuracy in
dataset acquisition and feature extraction. In addition, a sparse autoencoder (SAE)
is used for feature extraction to reduce computational complexity and the risk of

52

false detections normally caused by redundant statistics. One-class classification
using a SVM was performed on the general intrusion detection dataset. In the model
evaluation, the EPID achieved a mean of 96.6% detection accuracy with practical
feasibility.

Shu et al. (2020), in an attempt to improve network security in a vehicular environ-
ment, authors combined DL with GANs and investigated distributed SDN to develop
a collaborative intrusion detection system (CIDS) for vehicular ad hoc networks
(VANETs). This model was designed to allow multiple SDN controllers to collaborati-
vely train a global intrusion detection model for the entire network without directly
exchanging their sub-network flows. The authors confirmed the correctness of our
CIDS in both Independent Identically Distribution (IID) and non-IID situations. The
performance of the model was evaluated by both theoretical analysis and experi-
mental evaluation of a real dataset. Detailed experimental results confirm that the
CIDS is efficient and effective in detecting intrusion in VANETs, using metrics, such
as precision, accuracy, F1-Score, recall, and AUC.

Shahriar et al. (2020) provide G- IDS, an IDS approach that uses GAN to generate
synthetic data samples to address issues such as missing data and imbalanced classes
when training the IDS. They evaluated their approach with the NSL-KDD dataset and
evaluated it using the following metrics: precision, recall, and F1-score. They compa-
red their approach with that of a stand-alone IDS in terms of the specified metrics.
However, it was not evaluated on other datasets or in real-time environments.

In Huang e Lei (2020), Huang and Lei investigate the challenge of imbalanced clas-
ses in intrusion detection datasets and propose IGAN or imbalanced GAN. IGAN
was achieved by adding convolutional layers and an imbalanced filter to the GAN
architecture, creating new data samples for a minority class in the dataset. Afterward,
using IGAN and the data samples it generated, an IDS approach called IGAN-IDS is
provided, which consists of feature extraction, IGAN, and DNN. The authors used a
feed-forward ANN to compute feature vectors from raw network features and evalua-
ted the performance of IGAN-IDS using datasets such as CICIDS2017, UNSW-NB15
and NSL-KDD. The obtained results were compared using metrics such as F1 score,
AUC and accuracy with some deep and shallow learning methods.

53

g) Convolutional Neural Networks (CNN)

CNN’s are DL networks that have high-performance accuracy in image processing but
have also been used in intrusion detection problems obtaining a good performance.
In IDS, CNNs are often used for feature extraction from raw data. CNN is a multi-layer
ANN, which consists of input and output layers as well as several hidden layers. It
receives its input as a 2D image and then assigns some meaning to different parts of
the image to recognize the output. A CNN benefits from several hidden layers such
as a convolutional layer, a fully-connected layer, a nonlinearity layer, and a pooling
layer, where the first two are parametric and the other two are nonparametric as
shown in Figure 2.8.

CNNs have been used for packet data anomaly detection by Mendonça et al. (2021)
and phasor measurement units-based state estimators in Basumallik, Ma e Eftekhar-
nejad (2019), Jo et al. (2020). They use a data filter based on a foldable neural network
to extract event signatures (features) from phasor measurement units. The busses
of the phasor measurement units are the IEEE -30 and IEEE118 bus systems. The
study claims a probability of 0.5 with 512 neurons in a fully connected layer and an
accuracy of 98.67%. The authors also claim that CNN-based filters outperform other
machine learning techniques, such as RNN, LSTM, SVM, bagged, and boosted.

The system proposed by Fu et al. (2016) was a CNN model to capture the intrinsic
patterns of fraud behavior, especially in credit card fraud detection. In the same
research direction, Zhang et al. (2018) developed a model to train and test an IDS
using a CNN and B2C online transaction data from a commercial bank. One month’s
data was split into a training set and a testing set. The study claims a 91% of precision
rate and a 94% of recall rate. These results are improved by 26% and 2%, respectively,
compared to Fu et al. (2016).

Nasr, Bahramali e Houmansadr (2018) introduced an IDS called DeepCorr, which
builds on a CNN framework to train a correlation function. DeepCorr consists of two
layers of CNN and three layers of fully connected neural networks. Experiments have
shown that DeepCorr achieves a true-positive rate of nearly 0.8 with a learning rate
of 0.0001 and a false-positive rate of 10−3, giving it a good performance rating for
detecting intrusion.

54

An anomalous traffic detection model based on two layers of neural networks. The
first layer is the improved LetNet-5 CNN. The second layer uses a long-term memory
proposed by Zhang et al. (2019). The first layer is designed to extract the spatial fea-
tures of the flow, while the second layer is designed to recover the temporal features
of the flow. On the CICIDS2017 dataset, the performance was 94% accuracy. The
proposed system achieves good accuracy, precision, recall and F1 measure compared
to other ML techniques (Naïve Bayes, Logistic Regression, Random Forest and Deci-
sion Tree). As a result, Zhang et al. (2019) proposed a lightweight framework called
deep-full range (DFR) for novel threat detection, encrypted traffic categorization,
and traffic classification (ALBAWI; MOHAMMED; AL-ZAWI, 2017; KALCHBRENNER;
GREFENSTETTE; BLUNSOM, 2014; KIM, 2017a).

Figure 2.8 – Architecture of a fully connected CNN that are implemented in IDS solutions

Source: Author (2022)

Table 2.4 presents the comparison of DL and ML techniques (SARKER, 2021), high-
lighting their main differences (XIN et al., 2018; APRUZZESE et al., 2018; FERRAG et al.,
2019). Meanwhile, the important issue in both methods is the quality of data, because it
determines the accuracy, F1-score, recall and precision of the results in each case.

In Table 2.5, we present a summary of the key features of the various deep learning
algorithms discussed earlier.

55

Table 2.4 – General comparison of deep learning and machine learning techniques

S/NO Machine Learning Deep Learning
1 ML models can be trained on small

datasets.
DL networks need a large dataset for trai-
ning.

2 ML algorithms need less time for
execution.

DL networks require more execution time.

3 The output of ML models is mostly
numeric.

The output of the DL models can be in va-
rious forms.

4 It is easier to interpret results obtai-
ned from solving a problem using
ML algorithms such as Decision
Trees.

The problem solving using deep learning
methods, based on multilayered ANNs, are
more intertwined and complex.

5 ML algorithms need to be retrai-
ned through human intervention.

DL networks do not require human inter-
vention.

6 ML model training requires la-
beled data, it is not appropriate
for handling large-scale problems
that need a large set of labeled
data.

Regarding the overheads of the deep lear-
ning methods, they are more appropriate
for dealing with large-scale problems.

7 External intervention is necessary
to provide the right input in ML.

DL networks can learn about features from
the raw data, hence does not require inter-
vention.

8 ML algorithms can be handled
using CPU on low-end computer
systems.

Solving large-scale problems using high-
end computer systems or dedicated
hardware such as Graphics Processing Unit
(GPU) can increase the performance of the
DL algorithms.

Source: Author (2022)

56

Table 2.5 – A summary of DL networks highlighting some key points

Deep Learning Techniques Descriptive Key Points
RBM An unsupervised learning algorithm that learns through

statistical distribution
It is probabilistic or stochastic
Mostly applied to feature selection and feature extraction.
Comprises the building blocks of DBNs

DBN A probabilistic generative model containing multiple
RBMs.
The ability to encode richer and higher-order network
structures
It can be applied to an unsupervised or a supervised set-
ting
Can be used in a large number of high-dimensional data
applications

GAN A form of generative model typically used for unsupervi-
sed learning problems
Generate new, synthetic instances of data with features
close to the actual data input
To make the DL models more robust

CNN Regularized version of multi-layer perceptrons
Can automatically learn or detect the key features from
data
Typically deal with the variability of 2D shapes, e.g., image

Auto Encoder An unsupervised learning algorithm that learns a repre-
sentation of the inputs
it is deterministic
To significantly reduce the noise in the input data
Used typically for dimensionality reduction, very similar
to PCA.

Source: Author (2022)

57

2.4 Publicly Available IDS Datasets

To develop an IDS, one of the basic requirements is a dataset on which the model
can be trained and tested. Since the 1990s, several datasets have been developed. Usually,
new datasets are improvements on existing datasets by adding new features. Some of the
widely used datasets include KDD99 (TAVALLAEE et al., 2009), NSL-KDD (INGRE; YADAV,
2015), Kyoto2006 , UGR2006 (PROTIĆ, 2018), UNSW-NB2015 (MOUSTAFA; SLAY, 2015a;
ALASADI, 2019), CICIDS2017 (PANIGRAHI; BORAH, 2018), CSE-CICIDS2018 (SHARAFAL-
DIN; LASHKARI; GHORBANI, 2018) and more. In this section, we provide a detailed review
of all the available datasets from 1998 to 2022.

2.4.1 DARPA 1998 dataset

This dataset, which is based on network traffic and audit records, was made accessible
for the first time in February 1998. The MIT Lincon developed the dataset whereas the
project was funded by DARPA. The data used for model training is based on network-based
attacks recorded in seven weeks. DARPA dataset was created for network security analysis
and revealed vulnerabilities that show connection with artificial injection of malicious
and benign traffic. Email, browsing, FTP, Telnet, IRC, and Simple Network Management
Protocol (SNMP) activities are included in this dataset. It includes Rootkit threats, remote
File Transfer Protocol, Nmap FTP, Guess password, Syn flood, DoS and Buffer overflow.
It has the drawback of not representing real-world network traffic and also has various
data inconsistencies. Also, the dataset is out of date for effective IDS evaluation on today’s
networks considering attack types as well as network infrastructure, as it lacks real attack
records (MCHUGH, 2000; LIPPMANN et al., 1999). Currently, the dataset has three different
versions:

1. 1998 DARPA ID Assessment Dataset: containing 7 weeks of training data and 2 weeks
of test data.

2. 1999 DARPA ID Assessment Dataset: inclusive of 3 weeks of training data and 2 weeks
of test data.

3. 2000 DARPA ID Scenario-Specific Dataset: Includes LLDOS 1.0 Attack Scenario Data,
LLDOS 2.0.2 Attack scenario data, Windows NT attack data.

58

2.4.2 KDD CUP 99 Datasets

The Knowledge Discovery and Data Mining Competition (KDD Cup) 99 dataset
(TAVALLAEE et al., 2009), which is based on the DARPA 1998 dataset, is one of the most
extensively used training sets. On record, there are 4 900 000 repeated attacks in this dataset.
There is one normal type with the identity normal and 22 attack types grouped into five
primary categories: Denial of Service (DoS) attacks, User to Root attack (U2R), Root to
Local attacks (R2L), Probe (Probing attacks), and Normal. The KDD Cup 99 training dataset
provides 41 fixed feature characteristics and a class identifier for each record. Seven of the
41 fixed feature traits are of the symbolic kind, while the others are continuous.

Despite the wide application of this dataset, there are inherent challenges associated
with usage as identified by (MCHUGH, 2000). This promoted the interest of the researcher
to propose other datasets. Other KDD Cup datasets are also available (ACM, 2016).

2.4.3 National Security Lab Knowledge Discovery and Data (NSL-KDD) Dataset

NSL-KDD is a dataset proposed to address most of the KDD’99 dataset’s intrinsic
flaws (MCHUGH, 2000). Although this new KDD dataset also contain some concerns as
discussed by McHugh, thus does not offer perfect representation of established real networks.
Nonetheless, it is an efficient standard dataset to assist scholars carry out comparative
research on different ID techniques considering lack of publicly accessible datasets for
network-based IDS. Also, the NSL-KDD train-test sets have a reasonable amount of data
records. This advantage enhances the execution of the experiments on the whole dataset
without having to pick a tiny sample at random. Hence, the evaluation outcomes of various
research projects will give consistent and comparable results. The data file features are as
shown in Table 2.6.

59

Table 2.6 – Data File Features of NSL-KDD

Parameter Meaning
KDDTrain+.ARFF NSL-KDD train set having the binary labels represen-

ted ARFF format
KDDTrain+.TXT The NSL-KDD train set containing the labelled attacks

and their difficulty level shown CSV format
KDDTrain+_20Percent.ARFF 20% subset of the KDDTrain+.arff file
KDDTrain+_20Percent.TXT 20% subset of the KDDTrain+.txt file
KDDTest+.ARFF NSL-KDD test set considering binary labels in ARFF

files
KDDTest+.TXT NSL-KDD test set including attack-type labels and dif-

ficulty level in CSV format
KDDTest-21.ARFF A subset of the KDDTest+.arff file that not include

data with difficulty level of 21 / 21
KDDTest-21.TXT A subset of the KDDTest+.txt file that not include data

with difficulty level of 21 / 21
Source: Author (2022)

Figure 2.9 – Training and Testing data distribution in NSL-KDD dataset

Source: Adapted from Wu et al. (2022)

60

2.4.4 DEFCON dataset

This data was generated in two versions in different years: DEFCON 8 (2000) and
DEFCON-10 (2002). The DEFCON-8 dataset contains ports scan and buffer overflow while
the DEFCON-10 dataset contains probing and non-probing attacks (such as bad packets,
ports scan, port sweeps, etc.). Both versions were used by Nehinbe Ojo Joshua (NEHINBE,
2011) for reclassifying network intrusions. One limitation of this dataset is that the traffic
generated during the Capture the Flag (CTF) competition differs from real-world network
activity in that it primarily consists of intrusive traffic rather than normal daily traffic. As a
result, it is unreliable for detecting intrusions and,thus, is not widely used by researchers.

2.4.5 ADFA Dataset

The ADFA1 dataset is a group of datasets from the Australian Defence Force Academy
(ADFA) that are commonly utilized in training and testing of IDS. Various system calls in this
dataset have been classified and labeled for the kind of attack. The global data contains two
operating systems, Linux (ADFA-LD) and Windows (ADFA-WD), which record the sequence
of system calls. The ADFA-LD keeps a record of the operating system’s invocation for a
certain amount of time. The kernel offers the user space program and the kernel space
interacts with a set of standard interfaces, the interface to the user program can be restricted
access hardware devices, such as use of system resources, operating equipment, etc. There
are mainly 5 different attack variations and 2 normal attack types as shown in Table 2.7

Table 2.7 – Attack Types in ADFA-LA Dataset

Attack Type Category Data Size
Training Normal 833
Validation Normal 4373
Hydra-FTP Attack 162
Hydra-SSH Attack 148
Adduser Attack 91
Java-Meterperter Attack 75
Webshell Attack 118

Source: Author (2022)
1 https://research.unsw.edu.au/projects/adfa-ids-datasets

61

2.4.6 ISCXIDS2012

ISCXIDS2012 is developed based on the idea of profiles, that include vivid explanati-
ons of intrusions as well as abstract delivery mechanisms for lower-level network entities,
protocols and applications. For simulating the user behavior, the profiles are applied. To
generate some profiles for agents that create real traffic for POP3, SMTP, FTP, HTTP, IMAP
and SSH, real traces of network activities were analyzed. These profiles are utilized for
generating a dataset using the required test-bed. For producing the anomalous section,
different scenarios for multi-stage attacks are used. Then, agents are used to running these
profiles imitating the user activity. This dataset contains seven days of malicious and normal
network activities as shown in Table 2.8. Some key features of this dataset include (SHIRAVI
et al., 2012):

1) Labelled dataset. The importance of labeled datasets in intrusion detection cannot
be over-emphasized. This ensures the impractical processing of manually labeling
the data before being employed for anomaly detection is eliminated.

2) Complete Capture: One of the primary bottlenecks for network security researchers
has always been privacy concerns associated to releasing genuine network traces,
as data providers are typically hesitant to give such information. As a result, the
primary purpose is to develop network traces in a regulated testing environment,
which eliminates the need for any proper cleaning and preserves the genuineness of
the final dataset.

3) Realistic network and traffic: A dataset is not expected to exhibit any unwanted
qualities, both for network and also traffic-wise, considering an ideal scenario. This is
to give more information about the true consequences of network threats and the
how the workstation responds to them. As a consequence, the traffic must appear and
behave in a realistic manner. This applies to both normal and unusual traffic.

4) Diverse Attack Scenarios: In recent years, the frequency, scale, variety, and sophisti-
cation of attacks have all increased. Attacks have also evolved to include increasingly
complicated strategies, such as service-network and application-targeted threats. The
goal is to undertake a broad set of multi-stage attacks, with each being carefully deve-
loped and directed at recent developments in security concerns, by performing attack
scenarios and applying anomalous behavior.

62

5) Total interaction capture: The availability of data to detection systems is critical since
it gives them the ability to detect abnormal activity. To put it another way, this data
is critical for post-evaluation and proper interpretation of the results. Therefore, all
network interactions, whether within or between internal LANs, is considered a major
criterion for a dataset.

Table 2.8 – Activity Description of the development of the ISCX-IDS-2012 dataset

Days Date Description File Size (GB)
Friday 11/6/2010 Normal Activity. There was no malicious acti-

vity performed
16.1

Saturday 12/6/2010 Normal Activity. Contains no malicious events 4.22
Sunday 13/6/2010 Obtained network infiltration and some nor-

mal events
3.95

Monday 14/6/2010 HTTP DoS + Normal network Activity 7 6.85
Tuesday 15/6/2010 DDoS obtained an IRC Botnet 23.4
Wednesday 16/6/2010 contains normal network events fr the whole

day
17.6

Thursday 17/6/2010 contains Brute Force SSH attacks + Normal
network Activity

12.3

Source: Author (2022)

2.4.7 UNSW- NB15

The dataset is majorly used to evaluate network IDS due to their capabilities in
detecting recent attacks. The software tool denoted as IXIA Perfect Storm is incorporated
to create its abnormal and normal network traffic traces. The IXIA tool which can mimic
nine types of security attacks and can also use new attacks which are updated from a site
including some security vulnerabilities information is an efficient tool in monitoring and
recording these attacks. Also, the Tcpdump is utilized for 16 h to capture 100 GBs of network
traffic (MOUSTAFA; SLAY, 2015b). In Table 2.9, we show the data attributes of this dataset
including the different attack types, train data and test data. The table shows over 93,000
normal attacks, 24,246 fuzzers, 2,677 analyses, 170 worms and more in the dataset.

63

Table 2.9 – Description of the properties of UNSW-NB15 Dataset

Class Description Train Test
Normal Normal connection record 56,000 37,000
Fuzzers Attacks related to spams, html files penetrati-

ons and port scans
18,184 6,062

Analysis Attacks related to html files penetration, spam
and port scan

2,000 677

Backdoors Backdoor is a mechanism used to gain access
to a computer by evaluating the background
existing security

1,746 583

DoS Intruder aims at making network resources
down and hence, resources are inaccessible to
authorized users.

12,264 4,089

Exploits The security hole of operating system or the
application software is understood by an at-
tacker with the aim to expoit vulnerabilities.

33,393 11,132

Generic Attackers are related to block-cipher 40,000 18,871
Reconnaissance A target system is observed by an attacker to

gather information for vulnerability
10,491 3,496

Shell Code A small part of program termed a payload used
in exploitation of software

1,133 378

Worms Worms replicate themselves and distribute to
other system through the computer network

130 44

Total 93,500 28,481

Source: Author (2022)

2.4.8 ISCX-URL2016

This is a dataset composed of several Universal Resources Locators (URLs) developed
to train IDS models to be able to detect URL attacks. The dataset contains 35,000 benign
URLs collected from the top Alexa websites in which the domains were passed through
a Heritrix web crawler to extract the needed URLs. Among over 500,000 URLs, obtained,
35,000 were selected after removing duplicates and domain names. The other content of
the dataset are 12,000 spam URLs collected from the WEBSPAM-UK2007 dataset, phishing
URLs having 10,000 addresses collected from the OpenPhish repository, malware URLs from
the DNS-BH project which maintains a list of malware sites to a tune of 11,500 URLs and
45,450 URLs from Defacement category (MAMUN et al., 2016).

64

2.4.9 CICIDS2017

The CIC-IDS2017 dataset includes benign and up-to-date known attacks, and it
almost considers actual data Packet Captures (PCAPs). This dataset gives the analysis results
of network traffic including labeled flows that are based on the source and destination IPs
and also ports, protocols, and attack using CICFlowMeter, and considering time stamp. The
most important goal in creating this dataset was to create similar traffic to real scenarios.
The B-Profile technology was used to generate naturalistic innocuous background traffic by
profiling the abstract behavior of human interactions. The abstract behavior of 25 users was
developed for this dataset using HTTP, FTP, SSH, HTTPS and email protocols. The dataset
was developed with the features shown in Table 2.10.

Table 2.10 – Features of CICIDS2017 Dataset

Feature Description
Complete Interaction By having two distinct networks and Internet communication, both

within and between internal LANs are covered.
Complete Network
configuration

The Firewall, Switches/Routers, and different OS, such as Windows,
Linux, and Mac OS X represent a complete network topology.

Available Protocols Shows all commonly available protocols, such as HTTPS, SSH, FTP,
HTTP and email protocols.

Labeled Dataset Shows that the dataset contains benign or attack labels. Also, infor-
mation about the attack timing are also made available.

Heterogeneity During the attack, network traffic from the main switch, as well as
memory dumps and system calls from all target PCs are recorded

Complete Capture All traffics events both normal and abnormal are recorded on an
appropriated server.

MetaData Contains complete details about the dataset such as attacks, the time,
flows and labels in published articles

Attack Diversity Containing the attacks of the 2016 McAfee report, such as Web-based,
Infiltration, DoS, DDoS, Heart-bleed, Brute force, Bot and Scan.

Feature Set The dataset considers more that 80 network features from network
traffic generated by CICFlowMeter and saved in an CSV file.

Complete Traffic Implementing user profiling agent, and twelve different nodes in
networks with actual attacks.

Source: Author (2022)

2.4.10 CSE-CICIDS2018

In the year 2018, the Communications Security Establishment (CSE) and the Cana-
dian Institute for Cybersecurity (CIC) collaborated on a project to develop a more recent
database for intrusion detection. The main goal of building the dataset was to create user

65

profiles that contained abstract representations of events and actions as viewed on the
network, as well as diverse and thorough information on innovative attacks. The final data-
set includes seven different attack scenarios: Heartbleed, brute-force, Botnet, Web attacks,
DoS, DDoS and network infiltration. The attack infrastructure consists of 50 machines,
while the victim organization consists of 5 departments with 420 machines and 30 servers.
Each machine’s network traffic and system logs are included in the dataset, as well as 80
features extracted from the collected traffic using CICFlowMeter-V3. The seven different
attack scenarios implemented in the development of the dataset as shown in Table 2.11
(SHARAFALDIN; LASHKARI; GHORBANI, 2018).

Table 2.11 – Attack Scenarios and Duration in CSE-CICIDS2018

Attack Tools Duration Attacker Victim

Bruteforce
attack

FTP – Patator
SSH – Patator One day Kali linux Ubuntu

16.4 (Web
Server)

DoS attack Hulk, GoldenEye,
Slowloris, Slowhttptest One day Kali linux Ubuntu

16.4 (Apa-
che)

DoS attack Heartleech One day Kali linux Ubuntu
12.04
(Open SSL)

Web attack
Damn Vulnerable Web App (DVWA)
In-house selenium framework
(XSS and Brute-force)

Two days Kali linux Ubuntu
16.4 (Web
Server)

Infiltration
attack

First level: Dropbox download in
a windows machine Second Level:
Nmap and portscan

Two days Kali linux Windows
Vista and
Macintosh

Botnet
attack

Ares (developed by Python): remote shell,
file upload/download, capturing
screenshots and key logging

One day Kali linux Windows
Vista, 7, 8.1,
10 (32-bit)
and 10
(64-bit)

DDoS and
PortScan

Low Orbit Ion Canon (LOIC) for
UDP, TCP, or HTTP requests

Two days Kali linux Windows
Vista, 7, 8.1,
10 (32-bit)
and 10
(64-bit)

Source: Author (2022)

66

2.4.11 CAIDAs datasets

The Center of Applied Internet Data Analysis have proposed several dataset for IDS,
including, RSDoS Attack Metadata (2018-09), CAIDA DDOS, and CAIDA Internet traces 2016.
More specifically, the RSDoS Attack Metadata (2018-09) includes randomly spoofed denial-
of-service attacks inferred from the backscatter packets collected by the UCSD Network
Telescope while the CAIDA DDOS includes one-hour DDoS attack traffic distributed within
5-minute PCAP files which are passive traffic traces from CAIDA’s Equinix-Chicago (GHARIB
et al., 2016).

2.4.12 CIC-DDoS2019

CIC-DDoS2019 (CIC, 2019) called the DDoS Evaluation Dataset was designed to
solve the challenges of real-time detection of DDoS in earlier versions of the dataset. It was
proposed and tested by Sharafaldin et al. (2019). The dataset contains 80 features collected
on two different days using the network analysis tool, CICFlowMeter-V3 with labeled flows
considering IPs and ports of source and and destination, protocols and attack, using the time
stamp for each flow. It has benign and recent forms of DDoS attacks built from the abstract
behavior of 25 users based on HTTP, FTP, e-mail, SSH and HTTPS protocols. The attacks in
the dataset include among others the UDP-Lag, TFTP, DNS, MSSQL, NetBIOS,UDP,UDP-
Lag,MSSQL,WebDDoS, SNMP,NetBIOS,LDAP,DNS,NTP, SSDP, SNMP, LDAP,PortMap, NTP,
SYN, UDP and SYN.

2.4.13 CIC-InvesAndMal2019

CIC-InvesAndMal2019 is an improved version of the CICAndMal2017 dataset and
it was made publicly available for research purposes in 2019 by Canadian Institute for
Cybersecurity2. Taheri, Kadir e Lashkari (2019) developed the dataset specifically to address
the issues of malware in Android devices. It includes permissions and intents as static
features and API calls and all generated log files as dynamic features which were captured
During installation, before restarting and after restarting the phone. 5000 samples of four
different malware categories are contained in the dataset such as Adware, Ransomware,
Scareware and SMS Malware. The authors trained a model using the data and succeeded in
achieving 95.3% precision in Static-Based Malware Binary Classification at the first layer,
2 https://www.unb.ca/cic/datasets/invesandmal2019.html

67

83.3% precision in Dynamic-Based Malware Category Classification and 59.7% precision in
Dynamic-Based Malware Family Classification at the second layer.

2.4.14 CICDarknet2020 dataset

In the CICDarknet20203 dataset, a two-layered approach is used to generate benign
and darknet traffic at the first layer. It was developed to detect the malicious activities that
go into the darknet which is considered illegal. The darknet traffic is composed of activities
such as Audio-Stream, Browsing, Chat, Email, P2P, Transfer, Video-Stream and VOIP which
is generated at the second layer. The ISCXTor2016 and ISCXVPN2016 were joined together to
generate the new dataset with improved features and combined the respective VPN and Tor
traffic in corresponding Darknet categories (LASHKARI; KAUR; RAHALI, 2020). On training,
the network achieved a detecting accuracy of 86%.

2.5 Activation Functions

Activation functions (AFs) also referred to as transfer functions in some literature are
functions applied in neural networks to calculate the weighted sum of input and biases for
neurons (NWANKPA et al., 2018). These weights and biases are of importance to decide if a
neuron gets activated or not. If the neuron is activated, it will be triggered, but if not, it stays.
Through series of gradient processing, the AFs manipulates the data usually using gradient
decent and thereafter produces an output for the neural network containing parameters of
the input data. There are many AFs which have been applied in DL projects of which some
are linear while others are non-linear depending on the type of function it represents and
can either be used in the input, hidden or output layers of the neural network.

2.5.1 Sigmoid

The Sigmoid is a non-linear AF which has been used frequently in feedforward neural
networks. It is a bounded differentiable real function with specific for real input values,
positive derivatives and having some degree of smoothness. The Sigmoid function is given
3 https://www.unb.ca/cic/datasets/darknet2020.html

68

by the relationship shown in Equation 2.1 and Figure 2.10.

f(x) =
(

1
1+ exp−x

)
(2.1)

Figure 2.10 – Sigmoid Function and its Derivative

Source: Author (2022)

The sigmoid function is mostly used in the output layers of the DL architectures for
predicting probability based output. It has been successfully applied in binary classification
problems, modeling logistic regression tasks as well as other neural network domains. The
AF is easy to understand and can be used in shallow networks which are its major advantages
as highlighted by Neal (1992). However, the AF is not very good when initializing NNs from
small random weights. Also, gradient saturation, slow convergence, sharp damp gradients
during backpropagation from deeper hidden layers to the input layers and non-zero centred
output thereby causing the gradient updates to propagate in different directions are some
of the major drawbacks of the AF. There are three variants of the Sigmoid AF which include
Hard Sigmoid Function, Sigmoid-Weighted Linear Units (SiLU) and Derivative of Sigmoid-

Weighted Linear Units (dSiLU) (ELFWING; UCHIBE; DOYA, 2018).

2.5.2 Hyperbolic Tangent Function (Tanh)

This was proposed as an alternative to overcome the draw back of the Sigmoid
function. It is also called tanh function. The range of values for this AF is between -1 to

69

1, having a smoother and zero-centered feature. Equation 2.2 shows the mathematical
representation of the function.

f(x) =
(
ex− ex

ex+ e−x

)
(2.2)

Tanh function gained more popularity over the predecessor (Sigmoid) because it
gives better training performance for multi-layer neural networks (KARLIK; OLGAC, 2011).
However, the problem of vanishing gradient experienced with Sigmoid was not solved by
the tanh function. Meanwhile, tanh function had the main advantage of producing zero
centered output thereby aiding back-propagation process. Figure 2.11 shows the normal
and derivative plots of the tanh function

Figure 2.11 – Hyperbolic Tangent Function and its Derivative

Source: Author (2022)

2.5.3 Softmax

Another prominent AF used in DL projects is the Softmax function. It is used to
compute probability distribution from a vector of real numbers. The Softmax function is
used in multi-class models where it returns probabilities of each class, with the target class
having the highest probability. Usually, the output of Sofmax function is in the range of

70

values between 0 and 1, and the sum of the probabilities equal to 1. The relationship in
Equation 3.14 shows the mathematical representation of the function.

f(xi) = exp(xi)
N∑
i=1

exp(xj)
(2.3)

The Softmax function mostly appears in almost all the output layers of the deep
learning architectures, where they are used (ROY et al., 2017). The main difference between
the Sigmoid and Softmax AF is that the Sigmoid is used in binary classification while the
Softmax is used for multivariate classification tasks.

2.5.4 Rectified Linear Unit (ReLU)

Nair e Hinton (2010) proposed the Rectified Linear Unit (ReLU) activation function
in 2010 and since then, it has been the most widely used AFs in deep learning computational
problems especially in the hidden layers of the networks. The major advantages of the ReLU
function includes faster learning, better performance and generalization and since it is nearly
linear, it preserves the properties of linear models, thus making it easy for optimization with
gradient descent methods. The ReLU activation function performs a threshold operation
to each input element where values less than zero are set to zero thus the ReLU is given
by Equation 2.4 and the corresponding graph showing the normal and derived function is
shown in Figure 2.12.

f(x) =max(0,x) = {0,forxi0xiforxi≥0 (2.4)

71

Figure 2.12 – Rectified Linear Unit Function and its Derivative

Source: Author (2022)

This function overcomes the vanishing gradient problem seen earlier by rectifying
the values of the inputs less than zero thereby forcing them to zero. In addition to using
the ReLU in hidden layers of DL networks, other AFs are normally used in the output layer.
However, the ReLU has a limitation that it easily overfits compared to the sigmoid function
although the dropout technique has been adopted to reduce the effect of overfitting of ReLUs
and the rectified networks improved performances of the deep neural networks. ReLU and
its variants have been used in RNNs and CNNs. Due to the fragility experienced with ReLU
AF, there are tendencies for some neurons to die while training. This drawback has led to
the development of some variants of the ReLU function to include: Leaky ReLU, Parametric

ReLU, Randomized Leaky ReLU, and S-shaped ReLU.

2.5.5 Soft Root Square (SRS)

SRS adaptively adjusts a pair of independent trainable parameters to provide a zero-
mean output, thereby achieving better generalization performance and faster learning speed.
It also prevents the distribution of the output from being scattered in the non-negative real
number space and corrects it to the positive real number space, making it more compatible
with batch normalization (BN) and less sensitive to initialization as defined by Equation 2.5.
Figure ?? shows the grap of the function with the maximum and minimum values which
can be controlled by altering the values of α and β (ZHOU et al., 2020).

72

SRS(p) = p
p
α + e−

p
β

(2.5)

where α and β variables are a pair of trainable positive parameters. The SRS presents
a non-monotonic region in which p < 0 provides the property with zero mean. When p > 0 ,
it avoids and rectifies the output distribution. The SRS derivative is defined as follows:

SRS′(p) =

(
1+ p

β

)
e−

p
β(

p
α + e−

p
β

)2 (2.6)

The output of an SRS is limited by the range

αβ

β−αε
,α (2.7)

2.6 Optimizer

During the training of Deep models, we aim at maximizing each neuron’s weights
and minimize loss functions. This objective is achieved through the application of optimizer.
An optimizer is a function or an algorithm that modifies the attributes of the neural network,
such as weights and learning rate. Thus, it helps in reducing the overall loss and improve
the accuracy. The choice of the optimizer to be used in deep learning problems determines
the performance of the model. There many optimizer functions used in deep learning tasks:
Gradient Descent (GD), Stochastic Gradient Descent (SGD), Stochastic Gradient descent
with momentum, Mini-Batch Gradient Descent, Adagrad, RMSProp, AdaDelta and Adam.
The commonly used of these are the SGD, RMSProp and Adam, with Adam having wider
application.

2.6.1 Stochastic Gradient Descent (SGD)

SGD is one of widely and most popular algorithm to implement for an optimizer to
reduce a cost and optimize neural networks (RUDER, 2016). It is expressed mathematically
as:

w(n+1) = w(n)−Lr ∗ ĝ (2.8)

where: w(n) is variable update at time n, Lr is learning rate ĝ is a gradient vector.

73

Processing in each epoch of neural networks has an aim to reduce an error which
many of work are defined in term of cross entropy. SGD performs variable update in every
epoch to minimize the error. The variable will update by using prior time step variable
minus with a result from learning rate multiple with a gradient vector.

2.6.2 RMSProp

RMSProp was proposed by Hinton, Srivastava e Swersky (2012). There is always the
case of differing magnitudes for gradients for different weights in SGD, and can also change
during learning, hence it is difficult to choose a single general learning rate. This limitation
is tackled with RMSProp by exponentially smoothing the average of squared gradients and
adjusting the weights updates for each training phase as shown in Equations 2.9 and 2.10

E
[
g2
]
t
= βE

[
g2
]
t−1

+(1−β)
(
δC

δW

)2
(2.9)

Wt =Wt−1−

 η√
E [g2]t

 δC

δW
(2.10)

2.6.3 Adams

Kingma e Ba (2014) proposed an adaptive learning rate optimizer algorithm, called
Adam. It is an algorithm for optimizing stochastic objective functions, based on adaptive
estimates of lower-order moments.The optimizer achieved fast convergence by merging
the ability of AdaGrad to deal with sparse gradients, and the ability of RMSProp to deal with
non-stationary objectives; hence, it becomes very resistant to model structures, making it
the top choice when deciding which algorithm to be used. The optimizer performs according
to Equation 2.11.

w(n+1) = w(n)−
Lr√
v̂n+ ε

m̂n (2.11)

and

74

m̂n = β1mn−1 (1−β1) ĝn
1−βn1

(2.12)

v̂n = β2vn−1 +(1−β2) ĝ2
n

1−βn2
(2.13)

where: w(n) is variable update at time n, Lr is learning rate, ĝ is a gradient vector,
mn is an estimation of the first moment (the mean) of the gradients and vn is the second
moment (the uncentered variance) of the gradients

By the default values of 0.9 for β1, 0.999 for β2, and 10−8 for ε. Adam optimizer is
straightforward to implement and can efficiently solve practical deep learning problems
with using large dataset.

2.7 Loss Function

ML/DL tasks usually either come as a regression or classification task. Where it is
regression, the model predicts on continuous data while in classification tasks, the model
predicts on categorical variables. Neural networks uses a strategy called stochastic gradient
descent as an optimization technique to minimize error in the algorithm. Loss Function
(LF) is used by the network to compute this error, the value of which quantifies how good
or bad the model is performing. Based on the class of problem being solved, we can have
Regression Loss and Classification Loss. There are several loss functions for ML/DL tasks
including Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Squared Logarithmic
Error (MSLE), Cross-Entropy (CE), Hing Loss (HL) and Kullback Leibler Divergence Loss
(KLDL). MSE, MAE and MSLE apply to regression task while CE, HL and KLDL are used for
classification tasks. The most commonly used is the cross-entropy loss.

2.7.1 Cross Entropy

Cross-entropy measures the classification model whose probability in the range of 0
to 1, cross-entropy loss nearer to 0 results low loss and loss nearer to 1 results high loss. We
calculate the individual loss for each class in a multi-class classification problem. When the
output is probability distribution we use cross-entropy which uses softmax activation in
the output layer. Consider a classification sample whose label y is associated with a class k,

75

and the model output shows that the sample is associated with class ŷ, so the cost function
equation for CE can be given according to the Equation 2.14

lCE(y, ŷ) =−
∑
j

yj · log(ŷ) (2.14)

where the probabilities of more than one sample is required, the cost function for
the CE can be obtained using the Equation 2.15

LCE =−
N∑
i=1

K∑
k=1

P (yi = k) · log(Q(yi = k)) (2.15)

where P (yi = k) is the probability distribution of the i-th sample over the real class,
and the probability distribution of the i-th observation being of the class k isQ(yi = k).

2.7.2 Binary Cross-Entropy

It gives the probability value between 0 and 1 for a classification task by calculating the
average difference between the predicted and actual probabilities as shown in Equation 2.15

2.7.3 Categorical Cross-Entropy

This loss function is used for multi-class problems to output a probability over the
classC for each image in the problem domain. In the specific (and usual) case of Multi-Class
classification the labels are one-hot, so only the positive classCp keeps its term in the loss.
There is only one element of the Target vector t which is not zero ti=tp. So discarding the
elements of the summation which are zero due to target labels, we can write the function as
shown in Equation 2.16.

CE =−log
 esp∑C

j e
sj

 (2.16)

where Sp is the CNN score for the positive class.
Also, the derivative function with respect to the positive and negative classes can be

expressed as given in Equation 2.17 and Equation 2.18 respectively.

∂

∂Sp

−log
 esp∑C

j e
sj

=
 esp∑C

j e
sj
−1

 (2.17)

76

∂

∂Sn

−log
 esp∑C

j e
sj

=
 esp∑C

j e
sj

 (2.18)

2.8 Feature Selection and Handling Data Imbalances

The performance of ML/DL classifiers is strongly related the features that are used to
train them and the issues of balanced datasets. In this section, we will discuss some of the
basic approaches used by ML/DL experts to ensure good models are achieved.

Feature Selection: In real-world model building, it is almost rare that all the variables
of a dataset will contribute to the performance of the model. It becomes important that to
reduce ambiguity and complexity of the resulting model, the most important features of the
dataset are used to build the model. In the past, many procedures have been established to
be used for this task. The following methods have been implemented viz: Filter Method,
Wrapper Method, Embedded Method and Hybrid Method (FERREIRA; FIGUEIREDO, 2012).

In the Filter method, the model starts with all features and selects the best features
subset based on statistical measures such as Pearson’s Correlation, Linear Discriminant
Analysis (LDA), ANOVA, Chi-square, Wilcoxon Mann Whitney test, and Mutual Information
(MI). All these statistical methods depend on the response and feature variable present
in the dataset. As the process continues, each feature is assigned a scoring value using
statistical measures. Features are organized in descending order based on the scores and
assign ranking for the features. A subset of features is selected using threshold value. Filter
method takes less computational time for selecting the best features. Some of the drawbacks
include none consideration of the correlation between the independent variables, this leads
to selection of redundant features; Failure to recognize the patterns properly during the
learning phase (VENKATESH; ANURADHA, 2019).

The wrapper method considers the correlation between the features and class labels
as well as the dependencies between the features, hence, more accurate results are obtained
compared to the Filter method. It is Computationally more complex and expensive and
while Iteratively evaluating the selected feature subset, some features may not be considered
for evaluation and dropped. It also has searching overhead which results to overfitting. The
Forward Feature Selection (FFS), Backward Feature Elimination (BFE), Exhaustive feature
Selection (EFS) and Recursive Feature Elimination (RFE) are the most common ways of
implementing this technique (VENKATESH; ANURADHA, 2019).

77

The Embedded Method encompasses the Filter and Wrapper methods by including
interactions of features. This method works in a way that the best features are selected
during the learning process. The blending of feature selection during learning process
has advantages of improving computational cost, classification accuracy and also avoids
training the model each time when a new feature is added. Despite the advantages, its
major drawback is that it cannot work well with high dimensionality data. Some of the well
known implementation of the embedded method includes LASSO Regularization (L1) and
the Random Forest Regressor (STAŃCZYK; JAIN, 2015).

Random Forests is a kind of a Bagging Algorithm that aggregates a specified number
of decision trees. The tree-based strategies used by random forests naturally rank by how
well they improve the purity of the node, or in other words a decrease in the impurity (Gini
impurity) over all trees. Nodes with the greatest decrease in impurity happen at the start of
the trees, while notes with the least decrease in impurity occur at the end of trees. Thus, by
pruning trees below a particular node, we can create a subset of the most important features.
This characteristics of Random Forest Regressor made it our choice in selecting the features
for our model.

2.9 Related Works

There are numerous works that have been done by various researchers in the area
of implementing CNN architecture in IDS. In this section, the most relevant related works
to our research are presented. Developing a precise and accurate model requires a holistic
approach consisting of the IDS type, ML algorithms, evaluation metrics and deployment.
Riyaz e Ganapathy (2020) proposed an IDS model based on CNN network to detect intrusion
in wireless networks. According to the authors, there was need to develop a new feature
selection approach called Conditional Random Field and Linear Correlation Coefficient-
based Feature Selection (CRF-LCFS) to choose the most important features for obtaining
a better performing model. The work was implemented and test on KDDCup 99 dataset
and achieved an accuracy of about 98.89%. Although the accuracy was high, the result is
biased as it cannot be applied to a real-world intrusion scenario due to the dataset used in
the model evaluation.

Wu, Chen e Li (2018) proposed an IDS framework which uses the CNNs to automati-
cally select relevant features from the dataset and to solve data imbalance problem, authors

78

set the cost function weight coefficient of each class based on its numbers. However, this
approach has some deficiencies as compared to SMOTE as it leads to data loss. Moreover,
the developed model decreases the false alarm rate (FAR) and enhances the classification
accuracy. The NSL-KDD dataset was used for evaluating the performance of the model.
This presents another challenge with the work. Unlike our proposed system, this model
was implemented for binary classification where the network traffic is identified as either
normal or attack.

An ID model CNNs-based classifier for enhancing the precision of model have been
proposed by Lin et al. (2018). In the proposed model, the LaNet-5 architecture was adapted
and revised with the adaptive delta optimization algorithm to fine-tune the model parame-
ters and minimize a classification error by using error derivatives of back-propagation and
quick response to intrusion detection using Tensor flow. The results obtained showed an
improvement in the accuracy of attack classification using the behaviour features of the
trained CNNs. The KDDCup 99 dataset was used and the model obtained an accuracy of
97.53%. In Varanasi e Razia (2021), authors also proposed a DL-IDS using the CNN architec-
ture for attack detection. The proposed model was evaluated on the CICIDS2017 dataset and
compared with DNN model. The result showed that the CNN model achieved an accuracy
of 99% compared to the DNN that showed an accuracy of 98%.

In Maseer et al. (2021), different ML models were proposed for IDS in computer
networks using ANN, DT, k-NN, NB, RF, SVM, CNN, EM, K-means, and Self Organizing
Map (SOM) were proposed and tested on CIC-IDS2017 which contained various attack
types. The AID system based on K-NN, DT, and NB models achieved excellent performance,
whereas the SOM and EM models achieved poor performance due to their high FP and FN
alarms. In Sun et al. (2020), a DL-IDS which uses the hybrid network of CNN and LSTM
to extract the spatial and temporal features of network traffic data and to provide a better
IDS was proposed. Authors used a category weight optimization method to improve the
robustness thereby overcoming the issues of unbalanced number of samples in the different
attacks present in the dataset. The hybrid model was used for multi-class classification task
and the DL-IDS reached 98.67% in overall accuracy, and the accuracy of each attack type
was above 99.50%. Ho et al. (2021) also proposed an IDS based on CNN and evaluated on
the CICIDS2017 dataset to classify network flows into normal or malicious activities. The
proposed model reached a True Negative Rate of 98.98% on the test data and 99.01% on the

79

training data. Although the model showed high negative rate, it still suffers from bias as the
data used contains imbalance which was not discussed or handled by the authors.

In Kim, Shin e Choi (2019), a CNN based IDS was proposed using different methods
and developed an IDS model for the CICIDS2018 dataset, which is a dataset sharing the
same feature set with CICIDS2017 but with larger sample counts. The training and test
of the models in the study were performed on sub-datasets which included a subset of
types of network traffic from CICIDS2018. Hence, the models were simulated for multi-class
classification for certain classes in the dataset, not using all of them at once. According to
the authors, the experimental results showed that the performance of the CNN based IDS
could be higher than that of the recurrent neural network (RNN), which is another DL model
popularly used for time series data analysis. The CNN model proposed in this study reached
a 96.77% accuracy in the sub-dataset which was composed by the benign and DoS samples
from CICIDS2018. On the other hand, the RNN model tested in this study reached a 82.84%
accuracy in the same dataset, which was significantly lower than of the CNN model.

In Khan (2021), a convolutional recurrent neural network (CRNN) was proposed to
create a DL-based hybrid ID framework that predicts and classifies malicious cyberattacks in
a network. In the hybrid convolutional recurrent neural network intrusion detection system
(HCRNNIDS), the CNN performs several convolution operation to capture local features, and
the RNN captures temporal features to improve the ID system’s performance and prediction.
In the work, authors based their research on the CSE-CIC-IDS20018 dataset which is publicly
available for research purposes. So, the efficacy of the model was evaluated on this dataset.
The simulation outcomes prove that the proposed HCRNNIDS substantially outperformed
other ID methodologies studied in the work, attaining a high malicious attack detection
rate accuracy of up to 97.75% for CSE-CIC-IDS2018 data with 10-fold cross-validation.
Meanwhile, the authors did not categorically handle the concerns with imbalanced data in
their research.

A comparative study involving several DL algorithms for cyber security IDs was
proposed by Ferrag et al. (2020). In the study, the authors implemented 10 different DL
models including the CNN on the CSE-CIC-IDS2018 and Bot-IoT datasets using the Google
Colaboratory4 platform using Python and TensorFlow with GPU acceleration. Authors used
only 5% of the entire datasets for their study and achieved good performances for the deep
4 https://colab.research.google.com/

80

autoencoders and CNN models. The highest accuracy for the Bot-IoT dataset (98.39%) was
obtained with a deep autoencoder, while the highest accuracy for CICIDS2018 (97.38%)
was obtained with an RNN. The highest recall for the Bot-IoT dataset (97.01%) came from a
CNN, whereas the highest recall for CICIDS2018 (98.18%) came from a deep autoencoder.

Many other authors have proposed several CNN models that where SMOTE was
used to handle data imbalance in the datasets. Lin, Ye e Xu (2019) proposed an LSTM DL
model for dynamic anomaly detection in networks. The author used the CSE-CIC-IDS2018
dataset to train and evaluate the model which achieved an accuracy of 96.2%. Meanwhile,
to achieve this accuracy, the SMOTE technique together with improved cost function were
used to handle class imbalance in the dataset, hence, obtaining a model that performs better
that some other models while presenting more practical application. Zhang et al. (2020a)
proposed a NIDS that combined the features of SMOTE and under-sampling for clustering
based on Gaussian Mixture Model (GMM), and referred to as SGM. The SGM-CNN, which
integrates imbalanced class processing with CNN, and investigate the impact of different
numbers of convolution kernels and different learning rates on model performance was
tested on UNSW-NB15 and CICIDS2017 datasets. The model achieved a detection rate
of 99.74% and 96.54% for UNSW-NB15 and CIC-IDS2017 respectively, on a binary class
classification and a detection rate of 99.85% for a multi-class classification.

Following the deficiencies identified in the related works such as the use of out-dated
dataset, ignoring data imbalance which leads to inability of the model to generalize on the
dataset, not considering multi-class approach to IDS design, model complexity and high
computational resource usage, our developed IDS model addresses these concerns. In our
contribution, we solved the challenge of data imbalance using two different techniques
and compared the results on a more comprehensive dataset. Using a search algorithm, we
obtained a more concise parameters to train our model thereby reducing training time.
Through transfer learning, we leveraged the existing models as feature extractor, hence
reducing computational cost. To ensure that our model can be deployed in any device, we
perform model quantization that reduces the memory capacity of the IDS while maintaining
a high level of accuracy.

81

3 MATERIALS AND METHOD

In this section, we discuss the materials and method used in our work including to
achieve our objectives.

3.1 Materials (Tools Used)

3.1.1 Software

In the development of the project, we have used Python programming language,
Jupyter Notebook integrated with the Anaconda IDE and other libraries discussed in this
section. Python1 is free and open source object-oriented programming language which is
widely used for Machine learning and data science projects due to its simple syntax and
dynamic structure. Writing and analyzing codes in Python is very easy. It also presents
another major advantages of easily accessible documentation in books, articles, videos, and
others . Also, Python can easily be integrated with other languages and libraries written in
other languages are compatible. This work uses the latest version of Python 3.10 to develop
the model.

Sklearn2 - (Scikit-learn) is a machine learning library that can be used with the
Python programming language. Sklearn offers a wide range of options to the user with its
numerous machine learning algorithms having extensive documentation and contains all
the algorithms needed for this work. Machine learning can be trained and evaluated with
the functions available in the sklearn library.

Pandas3 is a powerful data analysis library running on Python. When working with a
large dataset, Pandas allows you to easily perform many operations such as filtering, bulk
column / row deletion, addition, and replacement. Because of all these advantages, the
Pandas library has been used. We have used Pandas to read the datasets and perform other
functions associated with dataframes. Pandas-profiling is a feature of Pandas framework
that generates a comprehensive analysis report of the dataset including the correlation,
feature importance. Although this works best with small dataset, we used it to explore some
important feature of our dataset.
1 https://www.python.org/
2 https://scikit-learn.org/stable/
3 https://pandas.pydata.org/

82

Matplotlib4 is a library that runs on Python, allowing visualization of data. This
library is used to create graphs used in the study. We have used this library to create plots
and visualization of the data points to understand the distributions of the datasets. Other
Data visualization tools used include seaborn5 and Plotly6 packages. Plotly is s powerful
visualization tool that enable interactive display of objects.

NumPy7, a Python library that allows you to perform mathematical and logical ope-
rations quickly and easily, has been used in calculations in this work. All the mathematical
functions associated with the data processing was done using numpy. We also used it to
convert dataframes into arrays for the training of our model.

Tensorflow8 and Keras9 are deep learning frameworks integrated with Python lan-
guage. TensorFlow is an end-to-end open source platform for deep learning tasks especially
those involving large amount of datasets and requiring high computational power. These li-
braries have been used in the development of our DL models along with other dependencies.
In this work, the TensorFlow is used as the brain to build all the DL models.

3.1.2 Hardware

One of the major evaluation criteria of ML/DL models is the execution time. Howe-
ver, the execution time may vary depending on the performance or configuration of the
computing systems used in the training process. As a result, it is necessary to disclose the
technical specification of devices used. For this work, the technical characteristics of the
computer used in the implementation phase are discussed as follows:

• Central Processing Unit: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 3600Mhz, 4
Core(s)

• Random Access Memory: 16 GB (15.9 GB usable)

• Operating System: Windows 10 64-bit

• Graphics Processing Unit: NVIDIA GeForce GTX 1050 Ti
4 https://matplotlib.org/
5 https://seaborn.pydata.org/
6 https://plotly.com/python/
7 https://numpy.org/doc/stable/
8 https://www.tensorflow.org/
9 https://keras.io/

83

3.2 Performance Evaluation Metrics

There are many metrics that are used to measure the performance of ML/DL models
which are trained to detect network intrusion. Key parameters applied to the metrics are
defined as follow:

• True Positive (TPos)- represents the number of connection records that are correctly
classified to the Normal class.

• True Negative (TNeg) - the total number of connection records that are correctly
classified to the Attack class.

• False Positive (FPos) - the number of normal connection records that have been mista-
kenly categorized as an attack connection record.

• False Negative (FNeg) - the amount of Attack connection records that have been
incorrectly classified as normal connection entries.

1) Accuracy: The accuracy of a model estimates the ratio of the correctly recognized
connection records to the entire test dataset. If the accuracy is higher, the machine
learning model is better (Accuracy ε [0, 1]). Accuracy serves as a good measure for the
test dataset that contains balanced classes and is defined by the equation given in
Equation.

Accuracy = TPos+ TNeg

TPos+ TNeg + FPos+ FNeg
(3.1)

2) Precision: It is used to estimate the ratio of the correctly identified attacks records
to the overall number of identified attack connections. The higher the precision, the
better the performance of the ML model (Precision ε [0, 1]). Precision is defined by
the function

Precision = TPos
TPos+ FPos

(3.2)

3) Recall or True Positive Rate (TPR): It’s also known as sensitivity and calculates the
proportion of Attack connection records that are successfully categorized to the overall
number of Attack connection records. A higher value for the TPR implies that the ML
model is better (TPR ε [0, 1]). Mathematically, it is represented by the relation shown
in Equation 3.3.

Recall = TPos
TPos+ FNeg

(3.3)

84

4) F1-Score: F1-Score otherwise referred as F1-Measure is the harmonic mean of recall
and precision. A high F1-score shows that the ML model performs better (F1 Score ε
[0, 1]).

F_measure = 2× (precision× recall)
precision+ recall

(3.4)

5) False Positive Rate (FPR): The ratio of Normal connection records classified as At-
tacks to the total number of Normal connection records is calculated by FPR. A low
value of FPR is needed to obtain an ML model with good performance (FPR ε [0, 1]) as
shown in the relationship of Equation 3.5.

FPR = FPos
FPos+ TNeg

(3.5)

6) ROC Curve: An ROC curve (Receiver Operating Characteristic curve) is a graphical
representation of the performances of a classification model concerning at all classi-
fication thresholds. The curve usually takes two parameters which are the TPR and
FPR. The evaluation metrics work well only in binary classification problems, hence,
presents challenges as not all problems are binary classification. There are some pro-
posed strategies to work in multi-class classification scenarios (LANDGREBE; DUIN,
2008; YANG et al., 2021).

7) AUC: Area Under the Curve (AUC) measures the ability of a classifier to distinguish
between different classes and is used as a summary of the ROC curve (FERRIS et al.,
2015). With higher AUC, an implemented model performs better at distinguishing
between the positive and negative classes. The AUC can be calculated for multi-class
problems using the Equations 3.6 and 3.7.

AUC = 1
c(c−1)

c∑
j=1

c∑
k>j

(AUC(j | k)+AUC(k | j)) (3.6)

where c is the number of classes and AUC(j | k) is the AUC with class j as the positive
class and class k as the negative class. In general, AUC(j | k) 6= AUC(k | j) in the
multiclass case (PEDREGOSA et al., 2011).

85

Equation 3.7 extends Equation 3.6 to be used for calculating roc-auc curve which are
weighted by prevalence. This algorithm is used by setting the keyword argument multi-
class to ’OneVsOne (ovo) or OneVsRest (OVR)’ and average to ’weighted’. The ’weighted’

option returns a prevalence-weighted average as described in Fawcett (2006).

AUC = 1
c(c−1)

c∑
j=1

c∑
k>j

p(j∪k)(AUC(j | k)+AUC(k | j)) (3.7)

8) Matthew’s Correlation Coefficient (MCC)

MCC provided by Sci-kit learn library is available in the package K.matthews_corr-

coef(y_true, y_pred, *, sample_weight=None) whereK represents the sklearn.metrics
function is used to measure the quality of binary or multi-class classification tasks. It
accounts for the true and false positives and negatives and is generally regarded as
a balanced measure which can be used even if the classes have different sizes. The
MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of
+1 represents a perfect prediction, 0 an average random prediction and -1 an inverse
prediction. The statistic is also known as the phi coefficient10, 11. Given that tp, tn, fp
and fn are the true positive, true negative, false positive and false negative outputs of
a classification problem in a confusion matrix, the MCC for a binary classification can
be represented with the function in Equation 3.8.

MCC = tp× tn−fp×fn√
(tp+fp)(tp+fn)(tn+fp)(tn+fn)

(3.8)

In the multi-class case, the Matthews correlation coefficient can be defined in terms of
a confusion_matrix C forK classes. To simplify the definition consider the following
intermediate variables:

– tk =∑K
i Cik the number of times class k truly occur.

– pk =∑K
i Cki the number of times class k was predicted.

– c=∑K
k Ckk the total number of samples correctly predicted.

10 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041882
11 https://en.wikipedia.org/wiki/Phi_coefficient

86

– s=∑K
i
∑K
j Cij the total number of samples.

Then, the multi-class MCC can be defined as given in Equation 3.9.

MCC = c× s−∑K
k pk× tk√(

s2−∑K
k p

2
k

)
×
(
s2−∑K

k t
2
k

) (3.9)

In a situation where more than one labels exist, the value of the MCC will no longer
range between -1 and +1. Instead the minimum value will be somewhere between -1
and 0 depending on the number and distribution of ground true labels. The maximum
value is always +1 (BUITINCK et al., 2013)

3.3 Method for Dataset Preparation and Preprocessing

Having a suitable dataset is as good as having a well performing model. Data acquisi-
tion appears to be the most cumbersome and time consuming phase in data science and
machine learning. In this section, we describe the various steps taken to achieve a suitable
dataset for the training of our model. Figure 3.1 show the flow of actions in preparing the
dataset to be used in the IDS development. The work flow involve the dataset selection
phase, generating a novel dataset from the selected datasets, preprocessessing the generated
dataset (data cleaning, balancing, feature encoding, feature selection), data data splitting.

Figure 3.1 – Dataset Pre-processing flowchart for the IDS

Source: Author (2022)

3.3.1 Database Selection

This is the most critical aspect of intrusion detection systems model development
as performance of a model is to a large extent dependent on it. In the literature, more

87

than 10 different datasets were presented. To achieve the objectives of this work, we have
selected the CIC-IDS2017 and CSE-CICIDS2018 datasets to develop our IDS models. These
two datasets contain the most recent attack types as well as highest number of attacks
compared to other datasets. Henceforth, the name CIC-IDS2017 and IDS2017 will be used to
mean the same thing while CSE-CICIDS2018 and IDS2018 will also be used interchangeably.
Table 3.1 and Table 3.2 present the distribution streams of records in the IDS2017 and
IDS2018 datasets respectively. The IDS2018 dataset contains 16,232,943 traffic instances
among which about 17% of the dataset is attack type while 83% are normal network traffic.
Hence, there is serious data imbalance. Also, in the IDS2017 dataset, the total number of
instances is 3,119,345 consisting of approximately 81% benign and 19% attack activities.
Tables 3.1 and 3.2 show that records and percentage distribution of features in IDS2017 and
IDS2018 datasets respectively. Although the Table 3.1 shows that the Benign attacks contains
83.345%, this value was achieved after some irrelevant features such as the Timestamp, Flow
ID, Source IP, Destination IP are removed.

Table 3.1 – Distribution of stream records in CICIDS2017 dataset

Label Name Value Percentage (%)
BENIGN 2359289 83.3452
DoS Hulk 231073 8.1630
PortScan 158930 5.6144
DDoS 41835 1.4779
DoS GoldenEye 10293 0.3636
FTP-Patator 7938 0.2804
SSH-Patator 5897 0.2083
DoS slowloris 5796 0.2048
DoS Slowhttptest 5499 0.1943
Bot 1966 0.0695
Web Attack - Brute Force 1507 0.0532
Web Attack - XSS 652 0.0230
Infiltration 36 0.0013
Web Attack - Sql Injection 21 0.0007
Heartbleed 11 0.0004

Source: Author (2022)

88

Table 3.2 – Distribution of stream records in CSE-CIC-IDS2018 dataset

Label Name Value Percentage (%)
Benign 13484708 83.07001
DDOS attack-HOIC 686012 4.22605
DDoS attacks-LOIC-HTTP 576191 3.54952
DoS attacks-Hulk 461912 2.84552
Bot 286191 1.76303
FTP-BruteForce 193360 1.19116
SSH-Bruteforce 187589 1.15561
Infiltration 161934 0.99756
DoS attacks-SlowHTTPTest 139890 0.86177
DoS attacks-GoldenEye 41508 0.25570
DoS attacks-Slowloris 10990 0.06770
DDOS attack-LOIC-UDP 1730 0.01066
Brute Force -Web 611 0.00376
Brute Force -XSS 230 0.00142
SQL Injection 87 0.00054

Source: Author (2022)

3.3.2 Data Preprocessing

In this stage of developing our model, data cleaning, selection of important features,
dimensionality reduction, encoding and standardization of the data are performed. We use
this stage to understand and prepare the dataset to meet our need. The two datasets used in
this work contains over 80 features each. First, we generate a new dataset containing all the
attacks and benign activities in one CSV file. This is necessary because the CICIDS2017 and
CSE-CIC-IDS2018 contains 7 and 10 different CSV files respectively with each file containing
both benign and attacks. For better performance of our model using a comprehensive
dataset, it is important to merge these files into a new dataset. Pandas library was used
to perform this task of generating a robust dataset. It is noteworthy that to the best of our
knowledge, this work is the first to use all the network files in the IDS2017 and IDS2018
datasets to model an IDS for computer networks.

3.3.2.1 Data Cleaning and Visualization

To avoid bias in our model, we need to clean the data to ensure there are no duplicate
values, missing values in the form of Not a Number (NAN), -nan, naf. We also drop all co-
lumns that does not contribute to the performance of our model. These are columns whose
mean is zero. This means that the features do not have correlation with other features. This

89

activity is generally called Exploratory Data Analysis (EDA). It involves the use of statistical
tools to gain more insight about the dataset. Python provides the matplotlib, plotly, seaborn,
pandas framework and pandas-profiling function for visualization and manipulation of
Dataframes. From the EDA, we observed that the features of the two datasets are provided
in both forward and backward directions of network flow and packets. CICFlowMeter12

(software for extracting network traffics) generates Bidirectional Flows (BiFlow), where the
first packet determines the forward (source to destination) and backward (destination to
source) directions, hence the 83 statistical features such as Duration, Number of packets,
Number of bytes, Length of packets, etc. are also calculated separately in the forward and
reverse direction. The distribution of the streams of data points in the two datasets are
shown in Tables 3.1 and 3.2. About 288,602 data instances are incorrect incomplete in the
IDS2017 dataset, so these were removed resulting to the features consisting of almost 83%
benign and 17% attack in both datasets.

Also, an error was observed in the columns of the dataset. Such properties as Flow
ID, Source IP, Source Port are not necessary for the model training as they are not part of
the packets transmitted from the attack devices but are usually assigned by the network
capturing and extraction software called CICFlowMeter. In both datasets, the "Flow Bytes/s",
"Flow Packets/s"features include the values "Infinity"and "NaN"in addition to the numerical
values, which can be modified to -1 and 0 respectively to make them suitable for machine
learning algorithms.

3.3.2.2 Feature Selection

In a network traffic, every packet play important role in deciding the generalized
property of such flow defining it as an attack or not. Notwithstanding, not all these features
help in the IDS performance, This is why feature selection is important as it helps to reduce
model overloading. In our work, the Random Forest Regressor (RFR) was used for the feature
selection. In all, a total of 64 out of the 80 features with higher significance were extracted
for each of the datasets and for each attack type. During the selection phase, we calculate
the importance using the standard deviation of the total values in a particular network
traffic which then determines to what extent the feature contributes to the characteristic
of that flow. The features were used in the both ML/DL based implementation of the
12 https://www.unb.ca/cic/research/applications.htmlCICFlowMeter

90

proposed models. However, Deep Learning algorithms such as CNN are incorporated
with the capacity to extract the most important features necessary for obtaining a better
performance automatically. We use this characteristics of CNN to select the most important
feature of the datasets necessary for obtaining more precise results and increasing the model
performance. Figures 3.2 and 3.3 show the first 20 selected most important features for the
entire dataset consisting of all attack types and benign activities for CICIDS2017 and CSE-
CICIDS2018 datasets respectively. We observe that Bwd Packet Length Std with a standard
deviation of 0.51486000 is the strongest feature that determine the nature of network flows
in the CICIDS2017 dataset but the Dst Port having the standard deviation of 0.301898 mostly
defines the behaviour of all features of the CSE-CICIDS2018 dataset.

Figure 3.2 – Selected Important features of all attacks and benign activities for IDS2017 dataset.

Bw
d

Pa
ck

et
 L

en
gt

h
St

d

Fl
ow

 B
yt

es
/s

To
ta

l L
en

gt
h

of
 F

wd
 P

ac
ke

ts

Fw
d

Pa
ck

et
 L

en
gt

h
St

d

Fl
ow

 IA
T

St
d

Fl
ow

 IA
T

M
in

Fw
d

IA
T

To
ta

l

Fl
ow

 D
ur

at
io

n

Bw
d

Pa
ck

et
 L

en
gt

h
M

ax

Fl
ow

 IA
T

M
ax

Fl
ow

 IA
T

M
ea

n

To
ta

l L
en

gt
h

of
 B

wd
 P

ac
ke

ts

Fw
d

Pa
ck

et
 L

en
gt

h
M

in

Fl
ow

 P
ac

ke
ts

/s

Fw
d

Pa
ck

et
 L

en
gt

h
M

ea
n

Bw
d

Pa
ck

et
 L

en
gt

h
M

ea
n

To
ta

l B
ac

kw
ar

d
Pa

ck
et

s

Fw
d

Pa
ck

et
 L

en
gt

h
M

ax

To
ta

l F
wd

 P
ac

ke
ts

Bw
d

Pa
ck

et
 L

en
gt

h
M

in

Features

0.00

0.05

0.10

0.15

0.20

0.25

Im
po

rta
nc

e

all_data Attack - Feature Importance
importance

Source: Author (2022)

91

Figure 3.3 – Selected Important features of all attacks and benign activities for IDS2018 dataset.

Ds
t P

or
t

To
tL

en
 F

wd
 P

kt
s

Fl
ow

 D
ur

at
io

n

Fw
d

IA
T

To
t

Fw
d

IA
T

St
d

Bw
d

Pk
t L

en
 M

ea
n

Fl
ow

 IA
T

M
in

Fl
ow

 IA
T

St
d

Fl
ow

 IA
T

M
ea

n

Fw
d

IA
T

M
ea

n

Fl
ow

 IA
T

M
ax

Fl
ow

 B
yt

s/
s

Fw
d

IA
T

M
ax

Bw
d

Pk
t L

en
 M

ax

Bw
d

Pk
t L

en
 S

td

Fl
ow

 P
kt

s/
s

Fw
d

Pk
t L

en
 M

ax

To
t F

wd
 P

kt
s

Fw
d

Pk
t L

en
 S

td

Fw
d

Pk
t L

en
 M

ea
n

Features

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Im
po

rta
nc

e

 All data - Feature Importance
Importance

Source: Author (2022)

Regarding the classification of the network traffic as attacks or benign, we observe that
different features the nature of each packet class, hence, we calculate the feature importance
for describing each of the network flows as attack or not. Tables 3.3 and 3.4 show the
first seven most important features for each attack type selected for the ML while Table 3.5
represents selected features for all the labels in the CIC-IDS2017 dataset . Similarly, Tables 3.6
and 3.7 show the most important features selected for each attack and Table 3.8 demonstrates
the selected feature for the entire dataset with their corresponding importance for the
CICIDS2018 dataset, respectively.

92

Table 3.3 – Distribution of Seven most important features of each attack types in CICIDS2017

Attack &
Feature Name

Weight
Importance

Attack &
Feature Name

Weight
Importance

Bot DoS Hulk
Bwd Packet Length Mean 0.351579 Bwd Packet Length Std 0.51486
Flow IAT Max 0.012488 Fwd Packet Length Std 0.06757
Flow IAT Min 0.011538 Fwd Packet Length Max 0.00521
Flow IAT Std 0.00978 Flow IAT Min 0.00189
Flow Duration 0.009112 Flow Duration 0.00143
Flow IAT Mean 0.001649 Total Backward Packets 0.00038
Flow Bytes/s 0.001461 Flow IAT Max 0.00027
DDoS DoS Slowhttptest
Bwd Packet Length Std 0.470994 Flow IAT Mean 0.644977
Total Backward Packets 0.093082 Fwd Packet Length Min 0.07578
Fwd IAT Total 0.009132 Bwd Packet Length Mean 0.024823
Flow Duration 0.006553 Fwd Packet Length Std 0.021984
Total Length of Fwd Packets 0.006271 Fwd Packet Length Mean 0.017339
Flow IAT Min 0.005916 Bwd Packet Length Std 0.012957
Flow IAT Std 0.005452 Total Length of Bwd Packets 0.00781
DoS GoldenEye DoS Slowloris
Flow IAT Max 0.512499 Flow IAT Mean 0.46975
Total Backward Packets 0.0335 Total Length of Bwd Packets 0.075171
Flow IAT Min 0.02252 Bwd Packet Length Mean 0.031522
Bwd Packet Length Std 0.018482 Fwd IAT Total 0.012912
Fwd Packet Length Min 0.007583 Total Fwd Packets 0.010462
Fwd Packet Length Max 0.001629 Fwd Packet Length Max 0.000881
Flow IAT Mean 0.001367 Flow Bytes/s 0.000766

Source: Author (2022)

93

Table 3.4 – Distribution of Seven most important features of each attack types in CICIDS2017 (cont’d)

Attack &
Feature Name

Weight
Importance

Attack &
Feature Name

Weight
Importance

FTP-Patator Heartbleed
Fwd Packet Length Max 0.201079 Bwd Packet Length Mean 0.052
Fwd Packet Length Std 0.02709 Total Backward Packets 0.044
Fwd Packet Length Mean 0.010558 Bwd Packet Length Max 0.04
Bwd Packet Length Mean 0.000773 Total Length of Bwd Packets 0.04
Total Length of Bwd Packets 0.00048 Flow IAT Min 0.04
Flow IAT Min 0.000214 Total Fwd Packets 0.036
Total Fwd Packets 0.000204 Total Length of Fwd Packets 0.032
Infiltration PortScan
Total Length of Fwd Packets 0.167736 Flow Bytes/s 0.3124
Fwd Packet Length Mean 0.110285 Total Length of Fwd Packets 0.3047
Total Backward Packets 0.030409 Flow IAT Max 0.0006
Bwd Packet Length Mean 0.023994 Flow Duration 0.0003
Bwd Packet Length Std 0.019637 Fwd IAT Total 0.0002
Flow Duration 0.013585 Flow IAT Mean 0.0002
Flow IAT Min 0.009838 Fwd Packet Length Max 0.0001
SSH-Patator Web Attack
Fwd Packet Length Max 0.001212 Bwd Packet Length Std 0.006545
Flow Duration 0.000652 Total Length of Fwd Packets 0.002554
Flow IAT Mean 0.00055 Flow Bytes/s 0.002129
Flow IAT Max 0.00054 Bwd Packet Length Max 0.00183
Flow IAT Std 0.00043 Fwd Packet Length Std 0.001519
Flow Packets/s 0.000359 Flow IAT Min 0.001285
Total Length of Fwd Packets 0.000274 Fwd Packet Length Max 0.001051

Source: Author (2022)

Table 3.5 – Selected important features for all data in the CICIDS2017 Dataset

Features Importance Features Importance
Bwd Packet Length Std 0.51486000 Flow IAT Mean 0.00012480
Fwd Packet Length Std 0.06757244 Bwd Packet Length Mean 0.00003376
Fwd Packet Length Max 0.00521211 Flow IAT Std 0.00003127
Flow IAT Min 0.00189296 Flow Bytes/s 0.00003034
Flow Duration 0.00142572 Bwd Packet Length Max 0.00001560
Total Backward Packets 0.00038006 Total Length of Fwd Packets 0.00000868
Flow IAT Max 0.00027001 Bwd Packet Length Min 0.00000814
Flow Packets/s 0.00019481 Total Fwd Packets 0.00000711
Total Length of Bwd Packets 0.00017732 Fwd Packet Length Mean 0.00000675
Fwd IAT Total 0.00016574 Fwd Packet Length Min 0.00000017

Source: Author (2022)

94

Table 3.6 – Important Features for each Attack Selected for Training ML Models in CICIDS2018

Attack &
Feature Name Weight Importance Attack &

Feature Name Weight Importance

Bot DoS attacks-Hulk
Dst Port 0.9778002 Dst Port 0.1217184
Bwd Pkt Len Mean 0.0016399 Fwd Pkt Len Std 0.0005904
Fwd Pkt Len Mean 0.0001549 Bwd Pkt Len Std 0.0004640
Tot Fwd Pkts 0.0000391 Bwd Pkt Len Max 0.0004525
Flow Duration 0.0000346 Fwd Pkt Len Max 0.0004123
Flow Pkts/s 0.0000320 Fwd Pkt Len Mean 0.0001294
Flow IAT Mean 0.0000291 TotLen Fwd Pkts 0.0001158
DDOS attack-HOIC DoS attacks-SlowHTTPTest
Dst Port 0.1860614 Flow Duration 0.001858
Flow Duration 0.0006483 Flow IAT Max 0.001823
Flow IAT Max 0.0001887 Flow IAT Mean 0.001689
Flow IAT Std 0.0000182 Flow Pkts/s 0.001408
Fwd Pkt Len Mean 0.0000175 Dst Port 0.00068
TotLen Bwd Pkts 0.0000164 TotLen Fwd Pkts 0.000000
Bwd Pkt Len Max 0.0000138 TotLen Bwd Pkts 0.000000
DDOS attack-LOIC-UDP DoS attacks-Slowloris
Tot Fwd Pkts 0.204000 Dst Port 0.1244648
TotLen Fwd Pkts 0.152000 Flow IAT Mean 0.0000197
Dst Port 0.000019 Flow Pkts/s 0.0000181
Bwd Pkt Len Max 0.000000 Flow IAT Max 0.0000151
Flow IAT Std 0.000000 Flow Duration 0.0000125
Flow IAT Mean 0.000000 Flow Byts/s 0.0000057
Flow Pkts/s 0.000000 TotLen Fwd Pkts 0.0000051

Source: Author (2022)

95

Table 3.7 – Important Features for each Attack Selected for Training ML Models in CICIDS2018
(Cont’d)

Attack & Feature Name Weight Importance Attack & Feature Name Weight Importance
DDoS attacks-LOIC-HTTP FTP-BruteForce
Flow IAT Max 0.30239180 Dst Port 0.00521824
TotLen Fwd Pkts 0.24173650 Flow Duration 0.00193359
Flow Duration 0.12394880 Flow IAT Max 0.00162984
Dst Port 0.03648575 Flow IAT Mean 0.00146722
Bwd Pkt Len Std 0.00399764 Tot Fwd Pkts 0.00000012
Flow IAT Mean 0.00137322 Bwd Pkt Len Min 0.00000000
Fwd Pkt Len Std 0.00100608 Flow IAT Std 0.00000000
DoS attacks-GoldenEye Infiltration
Dst Port 0.11784600 Dst Port 0.113557
Flow IAT Max 0.00000344 Flow Byts/s 0.096748
Flow IAT Mean 0.00000344 Flow IAT Max 0.053656
Flow Duration 0.00000330 Flow IAT Mean 0.034847
Tot Bwd Pkts 0.00000234 Flow Duration 0.032149
Flow Pkts/s 0.00000151 Flow Pkts/s 0.02261
Tot Fwd Pkts 0.00000041 Flow IAT Std 0.018963
SSH-Bruteforce Web Attack
Dst Port 0.9410732 Dst Port 0.231259
Flow Pkts/s 0.0002628 Fwd Pkt Len Mean 0.142589
Flow IAT Mean 0.0002277 Flow IAT Max 0.073328
Flow IAT Max 0.0000304 Flow Duration 0.009586
Flow IAT Std 0.0000169 Flow IAT Mean 0.008623
Flow Duration 0.0000045 Fwd Pkt Len Min 0.005125
Protocol 0.0000000 TotLen Fwd Pkts 0.002925

Source: Author (2022)

Table 3.8 – Selected important features for all data in the CICIDS2018 Dataset

Features Importance Features Importance
Dst Port 0.301898 Flow IAT Max 0.002816
TotLen Fwd Pkts 0.099690 Flow Byts/s 0.002406
Flow Duration 0.088873 Fwd IAT Max 0.001474
Fwd IAT Tot 0.046164 Bwd Pkt Len Max 0.001353
Fwd IAT Std 0.028198 Bwd Pkt Len Std 0.001102
Bwd Pkt Len Mean 0.027077 Flow Pkts/s 0.000941
Flow IAT Min 0.018644 Fwd Pkt Len Max 0.000934
Flow IAT Std 0.003375 Tot Fwd Pkts 0.000456
Flow IAT Mean 0.003282 Fwd Pkt Len Std 0.000307
Fwd IAT Mean 0.002989 Fwd Pkt Len Mean 0.000246

Source: Author (2022)

3.3.2.3 Feature Scaling and Label Encoding

Usually, it is important to have the various labels encoded into numerical values
so that the algorithm can present accurate interpretation of them. Also, there are high

96

differences in the values of the data points. Some are in thousands while some are in tens.
This can create a high bias in the model performance, hence, there is need to scale the values
to lie between 0 and 1. The LabelEncoder, StandardScaler, MaxAbsScaler and MinMaxScaler

methods of sklearn were tested. In the end, we observed the MaxAbsScaler method achieved
better results as it scales and translates each feature individually such that the maximal
absolute value of each feature in the training set will be 1.0. It does not shift/center the data,
and thus does not destroy any sparsity.

3.3.2.4 Handling Data Imbalance

One of the factors that affects the performances of ML/DL models is the issue of
data imbalance which occurs when there is an uneven distribution of the instances in the
dataset. In our case, the datasets were observed to contain data imbalance since it contains
about 83% benign features and only 17% attack features. According to Gosain e Sardana
(2017) there are many approaches which have been used to handle data imbalance which
are categorized into Over-sampling or Under-sampling techniques.

In ML, there are several method of handling data imbalance which are grouped as
either oversampling or undersampling technique. In oversampling, samples of the existing
data points are generated based on the characteristics of the existing data. In this work, we
used the method proposed in Chawla et al. (2002) called SMOTE and Borderline_Smote
proposed by Han, Wang e Mao (2005). Unlike the Undersampling techniques which ran-
domly removes some of the majority class, the SMOTE and Borderline_Smote generates
synthetic instances of the minority class based on the existing data points, thereby ensuring
no information loss. Assuming that T , N and k defined by SMOTE(T, N, k) are inputs to
the SMOTE algorithm where T is the number of minority class samples; N is the amount
of SMOTE and k is the number of nearest neighbours, the output of the operation can be
define as (N/100)∗T synthetic minority class samples (CHAWLA et al., 2002).

These techniques are used to generate artificial minority examples along the line
segments joining the minority samples and its ‘k’ minority class nearest neighbors. Based
on the rate of oversampling required, the neighbors from the ‘k’ nearest neighbors are
randomly chosen. Hence, this technique implements the kNN algorithm in its core. we
have chosen this technique due to its ability to overcome overfitting and the challenge of
removing important information from the dataset as experienced in other methods.

97

3.3.3 Creation of Training and Testing Data

In order to obtain our model, it needs to be trained, validated and tested on different
samples of the datasets. The behaviour of the model on the test dataset determines the
performance of our model. The two datasets used in this project has only one unbundled
CSV file created during the preprocessing stage. Therefore, we split each of the datasets into
training, validation and testing data. Usually, ML operations used 80:20 percent ratio for
the train-test sets. This approach over time has proven to be inefficient as the model fails
to generalize well on the dataset. This paved the way for the use of cross-validation while
training the model. Sklearn library provides different cross-validation split mechanisms
such as K-Fold, StratifiedKFold etc. In our work, the K-Fold and StratifiedKFold methods
were tested and at the end, StratifiedKfold of 10 splits was adopted as it yielded better
performance because it ensures that each set contains approximately the same percentage
of samples of each target class as the complete set.

3.4 Proposed IDS Model Implementation

The general implementation approach for the proposed model architecture is shown
in Figure 3.4. Considering our dataset that is originally in tabular form, we develop two
different models where one is based on tabular data and the other on image data according
to the flowchart shown in Figure 3.4. The first model is trained using classical ML algorithms
(Random forest, Decision Tree, AdaBoost, Extra tree, LightGBM and XGBoost) discussed earlier
in Chapter 2 and One-Dimensional CNN (1D-CNN) on the tabular data. The second model
is achieved using two dimensional (2D) CNN architecture based on pre-trained models
implemented on image data as discussed later in Section 3.4 for transfer learning.

98

Figure 3.4 – Flowchart for the Implementation of the Model Development

Source: Author (2022)

CNN is widely used for its special properties of automatically learning and extracting
features from images for image recognition and segmentation tasks (TEODORO et al., 2021a).

99

Images can easily be supplied as inputs into the CNN without additional feature description,
extraction and reconstruction process. A typical CNN comprises of convolutional layers,
pooling layers and fully connected layers.

Correlation(f ∗g)(i, j) =
∑
a

∑
b

f(a,b)g(i+a,j+ b) (3.10)

Convolution(f ∗g)(i, j) =
∑
a

∑
b

f(a,b)g(i−a,j− b). (3.11)

In convolutional layers, the feature patterns of images are automatically extracted
by convolution operations using filters of different sizes which can be 3 X 3, 4 X 4 etc but
generally an nxnmatrix of weights. Through back propagation, the filter values get updated
iteratively as the model learns the patterns in the images going by the epochs. For this
reasons, many authors and ML engineers usually employ the cross-correlation operation that
is computationally cost effective because inverting the filter at each operation is unnecessary.
According to Zhang et al. (2020), the functions used for determining the cross-correlation
and spatial features of convolution operation are quiet alike as shown in Equations 3.10 and
3.11, respectively.

In our research, we have used the 3 X 3 filter to perform the convolution operation
leading the feature learning and extraction in the base CNN architecture. In pooling layers,
the data complexity can be reduced without losing important information through local
correlations to avoid overfitting. Also, Pooling layer sub-samples the output of the layer
above which reduces the dimensionality resulting in fewer learned parameters. When a
pooling layer is used in conjunction with a convolutional layer it adds translation invariance
to the network.

Optionally, Dropout and Batch Normalization layers can also be added to improve
the performance of the learning process depending on the input parameters and model
architecture. A dropout layer works by omitting data with a fixed probability to help prevent
overfitting. It also reduces bias towards weights from the layer before the dropout layer.
The effects of a dropout layer are larger when the dataset is small. Batch normalization is a
technique that normalizes the values with respect to the current batch, it can be applied to
either the inputs directly or the activation of the previous layer. Batch normalization speeds
up training of the network, adds regularization and reduces the generalization error in the
network.

100

The output of the input layer and hidden layers after applying all the necessary
parameters are Flatten into a one dimensional array and passed into the Dense (Fully
Connected Layers). Fully-connected layer consists of neurons that are connected to all
neurons of the layer before, these are the layers that are used to build an ANN. The fully-
connected layer is sometimes referred to as a dense or linear layer and they serve as a channel
to connect all feature maps and generate the output. Figure 3.5 shows a typical convolution
operation in a CNN.

Figure 3.5 – A typical 2 layer convolution operation in a CNN

Source: Author (2022)

Transfer Learning (TL) is a system in DL where the weights of existing models trained
on large amount of data are reused in another dataset (TEODORO et al., 2021a). Sometimes,
TL may be the best option for image classification tasks where datasets are not enough as
CNN requires a large amount of dataset for good performance. The successful application
of TL in image tasks is because the feature patterns learned by the bottom layers of CNN
models are usually general patterns that are applicable to many different tasks, and only the
features learned by the top layers are specific features for a particular dataset. Therefore,
the bottom layers of CNN models can be directly transferred to different tasks. To improve
the effectiveness of TL, fine-tuning can be used in the TL process of IDS models design.
In fine-tuning, most of the layers of the pre-trained model are frozen (i.e., their weights
are retained), while a few of the top layers are unfrozen to re-train the model on a new
dataset. Fine-tuning enables the learning model to update the higher-order features in
the pre-trained model to better fit the target task or dataset (LI et al., 2021). One of the
most important issues in the TL methods is unifying distribution of the source and target
samples (WEISS; KHOSHGOFTAAR; WANG, 2016). Maximum Mean Discrepancy (MMD)
(BORGWARDT et al., 2006) is one of the successful distribution distance estimators that is

101

used frequently in TL methods. MMD estimates distance between two distributions based
on Reproducing Kernel Hilbert Space (RKHS) (BORGWARDT et al., 2006).

In the proposed architecture, we have selected VGG16, VGG19, MobileNetV3 (MNV3),
EfficientNetV2 (ENV2B0) and InceptionV3 (IV3) as the base learners due to their success in
image classification tasks (PETROV; HOSPEDALES, 2019; TEODORO et al., 2021a). These
are pre-trained CNN models on the ImageNet dataset which is a benchmark dataset for
image classification tasks consisting of over 14 million images of 1, 000 classes (PETROV;
HOSPEDALES, 2019). The VGG architecture is composed of convolutional layers (CLs)
and rectified linear unit (ReLU) activation function. VGG come in two different variations
of VGG16 and VGG19 with the VGG16 having a total of 16 layers and VGG19 having 19
layers; and both implementing the 3 X 3 filter dimensions for the CLs (ALOM et al., 2018).
Due to the wide adoption (PETROV; HOSPEDALES, 2019; ALOM et al., 2018) and non-
complexity of implementation of the VGG architecture with both the 16 and 19 layers
variations, we have used both in this work to demonstrate its applicability in IDS systems.
Another CNN based pre-trained model architecture that has high relevance in application is
the Inception model that was published by GoogLeNet having the V1, V2 and V3 variations
(IOFFE; SZEGEDY, 2015). With V2 and V3 being the improved versions of the original
V1 architecture, the V2 modified the V1 with the inclusion of batch normalization layers
(IOFFE; SZEGEDY, 2015) for training streamlining and improved performance while V3 that
included larger spatial features and factoring convolutions for improved computational
efficiency. We have used InceptionV3 (IV3) architecture in our work as it is more flexible
and lightweight in comparison to the earlier versions in terms of memory requirement and
trainable parameters. IV3 has a file size of 92 MB and 23.9 million trainable parameters
(SZEGEDY et al., 2016).

As the depth, width and resolutions of the network architecture increases, more
computational cost is required for training. To overcome this, the study by Tan e Le (2019)
proposed the EfficientNet CNN architecture that dynamically grows all the dimensions
efficiently using a simple composite coefficient. Based on the mobile inverted bottleneck
convolution (MBConv), the various versions of the EfficientNets ranging from EfficientNetB0
to EfficientNetB7 were developed. The EfficientNetV2 comes with higher performance
advantages to include faster training speed and better parameter efficiency than previous
architectures (TAN; LE, 2021). This architecture family has variations of EfficientNetV2B0-B4

102

and EfficientNetV2S, EfficientNetV2M and EfficientNetV2L that were developed using a
combination of training-aware neural architecture search and scaling, to jointly optimize
training speed and parameter efficiency. The neurons and other parameters were searched
from the search space enriched with new ops such as Fused-MBConv to obtain a algorithm
that trained faster than state-of-the-art algorithms while being up to 6.8x smaller. Based on
the literature, we selected the EfficientNetV2B0 (ENV2B0) with 79MB memory capacity and
7.2 million training parameters (TAN; LE, 2021; TAN; LE, 2019).

In Howard et al. (2017) another class of efficient architecture called MobileNets that
target applications on mobile and embedded devices was proposed. Using a streamlined
architecture that operates on Depth-Wise Separable Convolutions (DWSC), authors develo-
ped the light weight CNN pre-trained models with better performances on edge devices.
Two simple global hyper-parameters that permits sufficient trade off between accuracy and
latency were implemented; thus, grants model builder privilege to define and choose the
best model sizes for their projects. Just like other pre-trained models, the MobileNet comes
in different forms to include the MobileNet, MobileNetV2 and MobileNetV3 (Small and
Large) (HOWARD et al., 2017; HOWARD et al., 2019; SANDLER et al., 2018). For the purpose
of this work, we selected the MobileNetV3Small (MNv3S) that has 2.9 million trainable
parameters and 14 MB memory consumption.

In all, for the TL part of the proposed model training process, the VGG16, VGG19,
MNV3S, ENV2B0 and IV3 architecture were re-trained on the datasets together with base
CNN and were used to implement the proposed IDS. Top three (top-3) performing models
are selected to construct the ensemble model proposed in this work. The flowchart for
implementing the proposed model is shown in Figure 3.4 and the overall architecture of the
TL approach is shown in Figure 3.6.

103

Figure 3.6 – Transfer Learning Model Implementation Architecture

Source: Author (2022)

3.4.1 Image Generation and Formatting

After the preprocessing stage, we need to prepare the data to be suitable as an input to
the CNN architecture. AS earlier stated, the CNN achieves better performance when working
on image data. Since our data is a tabular data in the CSV file format, we need to carry
out transformation to obtain image samples according to (LI et al., 2021; HUSSAIN et al.,
2020a). There are mainly three basic transformation algorithms which are frequently being
used for data transformation. They are Normalization with Min Max Scaler (MMS), Quantile
Transformation (QT) and Power Transformation (PT). MMS defined by Equation 3.12 is
known to be the most used normalization technique but it’s drawback is hinged on its
inability to completely handle outliers, thus, may lead to some values been extremely small.
For this reason, we adopted the QT method proposed in (LOKMAN et al., 2019).

X ′ = X−Min(X)
Max(X)−Min(X) ×255 (3.12)

The QT normalization method transforms the feature distribution to a normal distri-
bution and re-calculates all the features values based on the normal distribution. Therefore,
the majority of variable values are close to the median values, which is effective in handling

104

outliers. Based on the formula, QT distributes all features according to the same specified
pattern as shown in Equation 3.13.

Q=G−1(F (x)) (3.13)

whereF is the cumulative distribution function of the feature andG−1 is the quantile
function of the desired output distributionG13 (BUITINCK et al., 2013). Power transforms
are a family of parametric, monotonic transformations that aim to map data from any
distribution to as close to a Gaussian distribution as possible in order to stabilize variance
and minimize skewness.

During the image generation phase, based on the timestamp and feature size of the
network traffic dataset, the data samples are converted in chunks of various sizes. In the
case of our dataset, each of them has 64 important features which needs to be converted
into 3 channel image representing the RGB color. Therefore, each color image generated
is transformed to 64 x 64 x 3 total feature values, meaning that each channel of the RGB
has 64 features. This implies that, the first 64 samples of each chunk were converted into
image matrix of channel 1, next 64 samples of each chunk were converted into image matrix
of channel 2 and the last 64 samples of each chunk were converted into image matrix of
channel 3, then, all are generally mapped into the RGB channel of the image. This means
that each chunk of the dataset consists of 64 X 3 = 192 consecutive data samples. This step is
repeated until all the labels in both datasets are correctly transformed. It is important to
note here that the time-series correlation of the original network traffic data can be retained
since the images generated are based on the timestamps of the sample data, hence, obtained
results are assured of correctness.

Following the transformation, we label the generated images accordingly based on
the attack pattern in the chunks. For instance, image labelled "Normal"if the sample in the
chunk/image are normal. Also, if the sample in the chunk/image contains attack samples,
the image is labelled with the corresponding frequent attack type in the chunk to either
of the attack types in the datasets including "DDoS Attack", "Web Attack", "Infiltration",
"DoS", "Botnet", "PortScan", "Heartbleed"as the case may be.

The last pre-processing procedure is re-scaling the image to be in suitable input
format for the CNN models. The images generated are in the range of 64 X 64 X 3 but the
13 https://en.wikipedia.org/wiki/Power_transform

105

pre-trained models such as VGG16, MobileNetV3 and others expect images in the range of
224 X 224 X 3. So, we resized the images in the range of 256 X 256 X 3. This will allow the
CNN to learn easily all the patterns in the image and therefore improve the learning speed
as the filters convolve on the images. Representative sample of the images in the datasets
are shown in Figure 3.8 and 3.7 respectively.

Figure 3.7 – Image Samples of the CSE-CIC-IDS2017 dataset after conversion

Source: Author (2022)

Figure 3.8 – Image Samples of the CSE-CIC-IDS2018 dataset after conversion

Source: Author

106

From both datasets, it can be seen that there are large differences in the feature
patterns between the normal samples and different types of attacks. The feature patterns of
Web attacks images in Figure 3.8 are more random concentrated at the top and bottom of
the images and sparse at the center while in Figure 3.7, are some what more dense through
out the image. The difference in the patterns of the images results in the frequency and
techniques of each attack strategy employed by the attacker. Sequel to this variations, the
CNN model is able to learn more features there making it more robust for attack detection
and classification.

3.4.2 ELETL-IDS: Ensemble Transfer Learning Model

In this section, we discuss the proposed ensemble model. Ensemble learning is a
technique that combines various base learning models to create an enhanced single model.
Because an aggregation of several learners performs better than a single learner in detection
rate and specificity (YANG; MOUBAYED; SHAMI, 2021; DAS et al., 2021).

Model averaging is an ensemble technique where multiple sub-models contribute
equally to a combined prediction. This may lead to overfitting which is a deep challenge
in ML tasks. A variation of this approach, called a weighted average ensemble, weighs
the contribution of each ensemble member by the trust or expected performance of the
model on a holdout dataset. This allows well-performing models to contribute more and
less-well-performing models to contribute less. The weighted average ensemble provides
an improvement over the model average ensemble, hence, it has been used in this work and
compared with concatenation method. With Softmax activation function which returns the
predicted probability for each class in a classification task, we obtain the confidence of each
class. The model averaging method calculates the average classification probability of base
learners for each class, and then returns the class label with the highest average confidence
which are output of the softmax function as discussed in (LARGE; LINES; BAGNALL, 2019).

Softmax(z)i = ezi∑C
j=1 e

zj
(3.14)

where Z is the input vector, C is the number of classes in the dataset, ezi and ezj

are the standard exponential functions for the input and output vectors, respectively. The
predicted class label obtained by the model confidence averaging method can be defined by

107

Equation 3.15. This is obtained by taking the argmax of the predicted labels in the selected
class

ŷ = argmax
i∈{1,··· ,c}

∑k
j=1 pj (y = i |Bj ,x)

k
(3.15)

whereBj is the jth base learner, k is the number of selected base CNN learners, and k
= 3 in the proposed IDS; pj(y = i|Bj,x) indicates the prediction confidence of a class value
i in a data sample x usingBj .

Given thatN is the number of instances,K is the number of base CNN models, and
C is the number of classes, we can calculate the computational complexity of the ELETL-IDS
and that of the time for the model averaging method asO(NKC). With small values ofK
and C, the speed of execution of the averaging method is usually high.

3.4.3 Best Model through Hyper-Parameter Optimization (HPO)

One of the most important steps in ML/DL tasks is handling hyper-parameters
(HPs). While the model itself adjusts the model parameters during the learning process to
achieve optimal results, we can fine tune the hyper-parameters such that it aids the model
to achieve best performance at optimized time. Such hyper-parameters as learning rate,
epochs, Batch Normalization, Dropout, weights are usually tuned for the model. In the
proposed TL framework, the dropout rate, learning rate and the percentage of frozen layers
are defined as model-design parameters while batch size, epochs and early stop patience
level are model-training hyper-parameters aimed at increasing the model training speed
and overall performance. These parameters directly influence the architecture, efficiency
and effectiveness of the CNN models.

HPO is an automated process of selecting the best parameters for model performance
in ML or DL using optimization techniques. Particle Swam optimization (PSO), Genetic
Algorithm (GA), Random Search (RS), Bayesian Optimization - Tree Parzen Estimator (BO-
TPE) (YANG; SHAMI, 2020) are some of the many search algorithms for performing HPO.
TPE algorithm is implemented on Hyperopt (a library for hyperparams tuning with bayesian
optimization in Python). We have adopted the BO-TPE (BERGSTRA; YAMINS; COX, 2013)
technique in thus research due to its ability to keep conditional dependencies; yet providing
an optimal performance results with efficiency with all types of HPs.

108

3.4.4 Deep Learning Model Quantization

Generally, ML/DL models are usually heavy due to the number of parameters which
were trained to get a highly accurate model. Where these models are to be deployed on
cloud servers, there is no challenge as the servers have the capacity to host these models.
Notwithstanding, the issue of latency still exist. But when we are meant to use these models
on edge devices such as mobile phones, tablets, embedded device and other devices, this
becomes a huge problem. This challenge is solved using the quantization mechanism.

Model Quantization according to Guo (2018), Krishnamoorthi (2018), Wang et al.

(2019), Banner, Nahshan e Soudry (2019) involves replacing data types with reduced width
data types. In the IDS datasets, the features are encodes and Float64 and Int64. These
require too large memory space for the dataset to be loaded into memory which also results
to a heavy model. In this approach, quantization helps to transform the data types of the
features of the trained model with little or no loss of accuracy. For example, replacing 32-bit
Floating Point (FP32) with 8-bit Integers (INT8). The values can often be encoded to preserve
more information than simple conversion. Quantization can be post-training Quantization
(PTQ) or Training-Aware Quantization (TAQ). In post-training quantization, the chosen
quantization method is applied to the resulting model while the TAQ is applied during the
model training. Both methods yields good accuracy with reduced model size as described
Jacob et al. (2018) and Krishnamoorthi (2018).

In PTQ, model size can be reduced to a desirable size by compressing the wights
and/or both weight and activation for better inference without retraining the model (KRISH-
NAMOORTHI, 2018). This method is simpler to use but may lead to loss of accuracy. Through
weight only quantization, we reduce the precision of the weights of the network to 8-bits
float format. This is a simple approach as validation of the result may not be required;
thus somehow inefficient. On the other hand, we can choose to quantize both the weights
and activation to achieve better precision, hence, calibration data is required along with
calculated dynamic ranges of activation.

The latter approach, TAQ deals with building the model and training it from scratch.
This approach can lead to improved accuracy in comparison to the corresponding floating
point 32bit (FP32) results (NOGAMI et al., 2019), but with high compression rate. However, to
build, train and tune the new model can be a lot demanding and time consuming (FUKETA
et al., 2018; LIN; TALATHI; ANNAPUREDDY, 2016). In this work, we utilized the Model

109

Optimization Toolkit14 provided by TensorFlow called TensorFlow Lite or TFLite. This library
was used to perform both TAQ and PTQ on our model such that it can be applied to devices
which : (i) have low memory capacity and therefore can only run optimized models (ii) has
low energy resources, hence, need to optimize energy usage in order to save battery life
(iii) requires low latency thereby presenting faster inference time to the users making them
assume that the process happens instantaneously.

Particularly designed for mobile, edge, or Internet of Things (IoT) devices, TFLite
optimizes for performance, model size, and power consumption. Additionally, it supports
Graphic Processing Units (GPU) representatives for model inference on the GPU. Through
their Application Peripheral Interfaces (APIs), these delegates can interact with the native
libraries for GPU acceleration. For instance, the GPU delegate leverages the Metal API for
iOS devices and the Android Neural Network API for Android devices to perform hardware-
accelerated inference operations.

In our work, we implemented both the TAQ and PTQ methods on the 1D-CNN model
while on the ensmble model, we only used the PTQ method. This is because the ensemble
architecture does not support Train Aware Quantization due to the heterogeneous nature of
the layers consisting the ensemble network.

14 https://www.tensorflow.org/model_optimization/guide/quantization/training

110

4 RESULTS AND DISCUSSION

In this chapter, we present and discuss the main results obtained in this work ranging
from the models trained on tabular data and the transfer learning models implemented on
image data. The results are present in different segments. The entire work is carried out
on multi-class classification of the network traffic using the method described earlier. The
results presented are based on the various metrics defined in Chapter 3. First, we merged the
similar attack types such as DoS GoldenEye, DoS Slowloris, DoS Hulk, DoS Slowhttptest were
combined into a single DoS attack. Similarly, the FTP-Patator, SSH-Patator combined into
Brute Force and Web Attack Sql Injection, Web attack XSS, Web attack Brute Force combined
into the Web Attack class for the IDS2017 dataset. This procedure was carried out on IDS2018
dataset in which DDOS attack-HOIC, DDoS attacks-LOIC-HTTP, DDOS attack-LOIC-UDP:
DDoS, DoS attacks-Hulk, DoS attacks-SlowHTTPTest, DoS attacks-GoldenEye, DoS attacks-

Slowloris: DoS, FTP-BruteForce, SSH-Bruteforce: Brute Force and Brute Force -Web, Brute

Force -XSS, SQL Injection: Web Attacks classes. We encoded the categorical feature (label)
into numeric data using the LabelEncoder function. The result of the merged dataset is
shown in Table 4.1.

Table 4.1 – Distribution of samples in the Data sets after merging similar attacks to obtain the 7
classes for IDS2018 and 9 classes for IDS2017

CIC-IDS2017 CSE-CICIDS2018
Attack Distribution Encoded Labels Attack Distribution Encoded Labels
Benign 2359289 0 Benign 13484708 0

DoS 252661 4 DDoS 1263933 3
PortScan 158930 7 DoS 654300 4

DDoS 41835 3 BruteForce 380940 2
BruteForce 13835 2 Botnet 286191 1
WebAttacks 2180 8 Infiltration 161934 5

Botnet 1966 1 WebAttacks 923 6
Infiltration 36 6 Heartbleed Nil Nil
Heartbleed 11 5 PortScan Nil Nil

Source: Author (2022)

4.1 Models Developed on Tabular Data

Different machine learning classifiers including the Random Forest (RF), Adaboost
(AD), Decision Tree (DT), LightGBM (LGBM), Extra Tree (ET) , XBGoost (XGB) and 1D-CNN

111

were trained on the datasets. For each algorithm, we first used the default parameters as
shown in Table 4.2 to train and evaluate the performance of the resulting IDS model; then,
performed tuning to using GridSearchCV. The obtained parameters from the grid was used
to fine-tune the model and compared the results in terms of train time, test time, error and
other metrics.

Table 4.2 – Default parameters for the ML Algorithms

Algorithm Default Parameters

Random Forest Classifier

n_estimators=100, criterion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0,
bootstrap=True,oob_score=False,n_jobs=None,
random_state=None,verbose=0,warm_start=False,
class_weight=None,ccp_alpha=0.0,max_samples=None

Extra Tree Classifier

n_estimators=100,criterion=’gini’,max_depth=None,
min_samples_split=2,min_samples_leaf=1,
min_weight_fraction_leaf=0.0,max_features=’auto’,
max_leaf_nodes=None,min_impurity_decrease=0.0,
bootstrap=False,oob_score=False,n_jobs=None,
random_state=None,verbose=0,warm_start=False,
class_weight=None,ccp_alpha=0.0,max_samples=None

Decision Tree Classifier

criterion=’gini’,splitter=’best’,max_depth=None,
min_samples_split=2,min_samples_leaf=1,
min_weight_fraction_leaf=0.0,max_features=None,
random_state=None,max_leaf_nodes=None,
min_impurity_decrease=0.0,class_weight=None,
ccp_alpha=0.0

AdaBoost base_estimator=None,n_estimators=50,learning_rate=1.0,
algorithm=’SAMME.R’,random_state=None,

LGBMClassifier

boosting_type=’gbdt’,num_leaves=31,max_depth=-1,
learning_rate=0.1,n_estimators=100,
subsample_for_bin=200000,objective=None,
class_weight=None,min_split_gain=0.0,
min_child_weight=0.001,min_child_samples=20,
subsample=1.0,subsample_freq=0,colsample_bytree=1.0,
reg_alpha=0.0,reg_lambda=0.0,random_state=None,
n_jobs=-1,silent=True,importance_type=’split’,

4.1.1 Classical Machine Learning Model Performance

The results obtained for the different IDS models is presented in Table 4.3 for CSE-
CICIDS2018 dataset. From Table 4.3, it can be observed that XGB has the highest accuracy,

112

precision, recall, F-score and AUC, thus making it the best performing model on the dataset.
This is expected as it has shown very high accuracy in previous works outperforming some
ML models in same datasets (SHARAFALDIN; LASHKARI; GHORBANI, 2018). The LGBM
model follows the XGB having obtained an accuracy, precision, recall, F-score and AUC
of 98.8%, 98.83%, 98.83%, 98.83% and 99.96% respectively. A close look at the evaluation
metrics shows proximate values for each of the models for each metric. For instance, DT
reached almost 99% for all the metrics, RF having approximately 98% for all the metrics as
well as ET classifier. Since the ML IDS models has relatively similar metrics performance, we
measured the train and test time for each of the models which helps to understand more and
better differentiate each model accurately with respect to their performance. As shown in
Table 4.3, more test time of about 15.1 seconds is required for the ET classifier to predict all
the classes present in the test set as a result of higher number of trees in its architecture. DT
has the lowest detection time of 0.25sec while LGBM has a memory size of 2.4MB, hence, the
lowest in file size. Therefore, based on the file size and detection time for LGBM, IDS model
based on LGBM would be preferred for implementation in the domains where low memory
and latency is highly needed while IDS model based on XGB would be most suitable for high
larger memory device where accuracy of performance is paramount.

Table 4.3 – Performance Evaluation of the trained models on CSE-CICIDS2018 dataset showing the
time for prediction and model size

Model / Metrics Accuracy Precision Recall F-Score AUC File Size Test Time (s)
DT 98.7 98.67 98.67 98.67 99.25 10MB 0.25
RF 98.4 98.43 98.43 98.43 99.93 1200MB 9.98
ET 98.3 98.35 98.35 98.35 99.85 5500MB 15.1
AD 97.8 97.74 97.65 97.8 98.8 350MB 14.2

LGBM 98.8 98.83 98.83 98.83 99.96 2.4MB 3.4
XGB 98.9 98.97 98.98 98.97 99.9 1500MB 4.25

Source: Author (2022)

Similarly, performance results obtained for the CIC-IDS2017 dataset using the va-
rious metrics is shown in Table 4.4. All the classifiers used in this case achieved an overall
performance of 99% in terms of all the evaluation metrics expect AD which only achieved
an accuracy of 66%. ET in this case achieved the best performance in all metrics although
having the highest detection or prediction time and memory requirement. On the other
hand, DT has the prediction time of 0.18sec in comparison with other classifiers. LGBM

113

being a lightweight model, has the lowest memory requirement of about 3.1MB with an
accuracy of 99.16%.

Table 4.4 – Performance Evaluation of the trained models on CIC-IDS2017 dataset showing the time
for prediction and model size

Model / Metrics Accuracy Precision Recall F-Score AUC File Size Test Time (s)
DT 99.59 99.59 99.59 99.59 99.76 5.7MB 0.18
RF 99.49 99.48 99.47 99.47 99.98 319MB 6.83
ET 99.68 99.68 99.67 99.67 99.97 1630MB 11.09
AD 69.67 66.79 66.78 66.68 67.9 400MB 12

LGBM 99.16 96.96 96.43 96.43 96.81 3.1MB 5.49
XGB 99.51 99.52 99.51 99.51 99.97 3.76MB 3.37

Source: Author (2022)

An IDS model can be described as reliable, efficient and accurate when the perfor-
mance of such model in classifying each of the classes in the dataset is closely related to other
metrics. From Table 4.5 which show the class report on each class, we can observe that not
much differences exist between the precision, recall and F1-score demonstrated by the IDS
model in identifying the class to which the detected network traffic belongs. For instance, in
classifying benign class using DT, the model achieved a precision of 95.67%, recall 95.03 and
F1-score 95.35%. This shows that when the IDS alerts that the traffic is benign, it does so
with a confidence level of 95.67%. Similarly, with the XGB classifier, Brute Force attack is
identified with 100% confidence level applying to precision, recall and F1-score. This shows
how robust the models are in performance.

Table 4.5 – Report on the model Performances in classifying each label in the IDS2018 dataset

Decision Tree Classifier Random Forest Classifier AdaBoost Classifier

Labels Performance Metrics Performance Metrics Performance Metrics
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Benign 95.67 95.03 95.35 94.16 94.97 94.56 96.53 96.22 96.37
Bot 100.00 99.99 100.00 100.00 99.99 100.00 97.80 97.88 97.77
Brute Force 100.00 100.00 100.00 100.00 100.00 100.00 96.70 96.60 96.66
DDoS 100.00 100.00 100.00 100.00 100.00 100.00 97.23 97.60 98.00
DoS 100.00 100.00 100.00 100.00 100.00 100.00 98.60 97.50 98.80
Infiltration 95.08 95.70 95.39 95.37 94.09 94.72 98.80 98.60 99.00
Web Attacks 99.99 100.00 99.99 99.52 1.00 99.76 96.70 98.70 97.00

LightGBM Classifier Extra Tree Classifier XGBoost Classifier
Benign 98.22 93.33 95.71 94.47 93.97 94.22 93.50 85.52 89.33
Bot 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
BruteForce 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
DDoS 100.00 100.00 100.00 99.99 99.99 99.99 99.97 99.99 99.98
DoS 100.00 100.00 100.00 100.00 100.00 100.00 99.98 100.00 99.99
Infiltration 93.67 98.31 95.94 94.02 94.51 94.26 86.94 93.98 90.32
Web Attacks 99.98 100.00 99.99 99.99 100.00 99.99 99.56 99.95 99.75

Source: Author (2022)

114

4.1.2 1D-CNN Model Evaluation

We used three different approaches in developing the IDS based

a) 1D-CNN based on imbalanced dataset. In this scenario, we evaluated the performance
of the model on unbalanced dataset achieved an accuracy, precision, recall, f1-score of
0.9776, 0.9827, 0.9911, 0.9867, respectively and MCC of 0.9240. Figure4.1 demonstrates
the performance of the model on the CSE-CICIDS2018 dataset in terms of the precision,
recall and F-Score in detecting each of the network traffic classes. The classification
report in Table 4.6, Evaluation metric plot in Figure 4.1 and Confusion matrix in
Figure 4.2 (a) show that the model was able to detect with high accuracy the classes
with higher instances but was unable to accurately classify those with less number of
instances like Infiltration and Heartbleed having only 6 and 2 instances in the test set
respectively.

Figure 4.1 – Precision, Recall and F1-Score showing the model performance on balanced (SMOTE)
data

Source: Author (2022)

115

Table 4.6 – Comparing the effect of imbalance on the detection rate of 1D-CNN in classifying each
class in the IDS2017 dataset

1D CNN Imbalance 1D CNN + SMOTE
Attack / Metrics Precision Recall F1-Score Support Attack / Metrics Precision Recall F1-Score Support

Benign 0.9827 0.9911 0.9869 353893 Benign 0.9935 0.9307 0.9610 37899
Botnet 0.0982 0.3729 0.5405 293 Botnet 0.9936 0.9970 0.9959 37899

BruteForce 0.9580 0.7908 0.8664 2075 BruteForce 0.9940 0.9993 0.9967 37899
DDoS 0.9528 0.2512 0.3715 6275 DDoS 0.9659 0.9997 0.9825 37899
DoS 0.9742 0.9858 0.9800 37899 DoS 0.9931 0.9977 0.9954 37899

Heartbleed 1.0000 0.5000 0.6667 2 Heartbleed 1.0000 1.0000 1.0000 37899
Infiltration 1.0000 0.5000 0.6667 6 Infiltration 0.9997 0.9996 0.9996 37899
PortScan 0.9214 0.9900 0.9586 23839 PortScan 0.9872 0.9997 0.9934 37899

WebAttacks 1.0000 0.0642 0.1201 327 WebAttacks 0.9933 0.9946 0.9939 37899
Source: Author (2022)

116

Figure 4.2 – Confusion Matrix showing the three implementation approaches used for the 1D-CNN
model (a) 1D-CNN based on unbalanced data. (b) 1D-CNN based on balanced (SMOTE)
data

Source: Author (2022)

117

Figure 4.3 – Confusion Matrix showing the three implementation approaches used for the 1D-CNN
model (c) 1D-CNN based on SMOTE + StratifiedKFold

Source: Author (2022)

b) 1D-CNN based on Balanced Dataset (SMOTE) On the balanced data, the model per-
formed better than the case of unbalanced data as it was able to classify the samples
which were mis-classified previously. In contrast to the 1D-CNN unbalanced that clas-
sified the Heartbleed and Infiltration with 0.5000 precision, this approach identified
both attack classes with precision of 1.0000 and 0.9997 respectively showing that it is a
more effective way to model IDS systems. Figure 4.4 shows the performance of the
model with respect to the precision, recall and f1-score while Figure4.2 (b) show the
confusion matrix.

118

Figure 4.4 – Classification Report showing the model performance on balanced (SMOTE) data

Source: Author (2022)

c) 1D-CNN based on SMOTE and Stratified Split In this scenario, we use 10-fold cross
validation split on the balanced dataset during the training process to ensure that the
same amount of each class is present in the splits, thereby reducing bias and data
leakage. This approach showed the best performance as can be seen in Figures 4.5
and 4.3 (c). This therefore is the best approach to develop an IDS using 1D-CNN
architecture as it gives the best result considering all the evaluation metrics reaching
an accuracy of 99.17%, 99.98% precision, 99.97% recall, 99.97% f-score and 99.06 MCC
on the test set as shown in Figure 4.6.

119

Figure 4.5 – Classification Report showing the model performance SMOTE + StratifiedKFold

Source: Author (2022)

In conclusion, as can be seen in Figure 4.6, with StratifiedKFold (10 splits), a more
robust model is achieved. This is because the model trains and learns better on the dataset
so that it can easily adapt to unseen data. In all the cases, the performance of the model
is within same range in all the metrics achieving almost 100%. For instance, the MCC
improved from 89.78% to 99.10% on training (+9.32%) and FS improved from 98.67% to
99.97% on testing (+1.3%). In each case, a batch size of 128, filter size of 3, softmax function
and categorical cross-entropy were used. Each model was trained for 20 epochs with a
learning rate of 0.01 and decay momentum of 0.9. The ROC curve for the 1D-CNN is shown
in Figure 4.7, indicating that the 1D-CNN achieves a micro-average ROC curve of 99.99%
and macro-average ROC curve of 99.99%. implying that the FPR is almost zero (0) while the
TPR is approximately 1% for all the classes in the dataset.

120

Figure 4.6 – Training and Testing performance comparison of the three scenarios implemented with
the 1D-CNN method. Where Acc = Accuracy, PR = Precision, RC = Recall and FS = F1-
Score.

Source: Author (2022)

Figure 4.7 – Receiver Operating curve for the 1D-CNN for the IDS2017

Source: Author (2022)

4.2 Models Based on Image Data

The proposed architecture is evaluated on two benchmark datasets CIC-IDS2017 and
CSE-CIC-IDS2018 as discussed in Subsection 2.4.9 and 2.4.10 respectively. StratifiedKFold

121

split with 10-folds was used to split the dataset during training which ensures that there
is even distribution of each class in the folds, hence overcoming model overfit. Usually,
network traffic dataset are composed of high volume of normal traffic and less number of
attacks as in the case of our datasets, so we handled data imbalance before converting the
samples to image. Table 4.7 shows the total number of images generated for each dataset. A
total of 19,055 images was generated for the CIC-IDS2017 dataset consisting of 9 classes and
21, 230 images comprising of 7 classes for the CSE-CIC-IDS2018 dataset.

Table 4.7 – Distribution of generating images of the datasets used in the model training and evalua-
tion.

Classes CIC-IDS2017 CSE-CICIDS2018
Benign 2575 4470

Bot 2062 2241
Brute Force 2057 3004

DDoS 2062 4189
DoS 2060 3614

Heartbleed 2057 -
Infiltration 2060 2036
Port Scan 2059 -

Web Attack 2063 1676
Total 19055 21230

Source: Author (2022)

The transformed images are used in the model training. We first trained the selected
six models with the default parameters to evaluate the behaviour of the IDS models in
classifying the threats in a computer network. Then, we perform an algorithmic search to
determine the most suitable parameters to be used during the training process in order to
reduce the training time while achieving similar or improved results. After performing the
HPO with the BS-TPE algorithm, the best hyper-Parameter were used to train the model.
During the search, the parameters used are shown in Table 4.8. Number of epochs, batch
size, learning rate, dropout rate, early stopping patience and number of frozen layers were
selected as the search space to be optimized as shown in the Table 4.8. The Early stopping
patience is used to save training time as the algorithm saves the best model performances
during the training and stops training when the validation accuracy does not increase
between two consecutive epochs. This is because, the validation accuracy is monitored
during the training as it helps to determine if the model overfits or not. Other metrics such

122

as the accuracy, precision, loss or recall can be monitored but we chose to monitor the
validation accuracy.

Table 4.8 – Hyper-Parameters obtained after BS-TPE optimization for the Model Configuration

Hyper-Parameter Model Search Range Optimal Value
Number of Epochs

All CNN pre-trained Models

[5,30] 20
Batch size [32,256] 128

Early stop patience [1,4] 2
Learning rate [0.001,01] 0.003
Dropout rate [0.2, 0.8] 0.5

Number of layers frozen
from the pre-trained layers

MobileNetV3Small [100,232] 232
EfficientNetV2B0 [200,323] 236

InceptionV3 [80,159] 148
VGG16 [8,16] 15
VGG19 [10,19] 19

Source: Author (2022)

4.2.1 IDS Evaluation Using Transfer Learning

Each of the selected CNN based network was trained on both datasets and the results
obtained in each case is shown in Table 4.9 and 4.10 for the CIC-IDS2017 and CSE-CIC-
IDS2018 respectively. With the search parameters defined in Table 4.8, we performed both
the IDS modelling for optimized and non-optimized training. The best parameters obtained
with the BS-TPE were used in the HPO models while for the non-optimized case, we ran-
domly selected some values for the learning-rate=0.01, batch-size=256, number of frozen
layers in VGG16=14. On the CIC-IDS2017 dataset shown in Table 4.9, the base CNN architec-
ture with 14 layers and 184,007 trainable parameters achieved an accuracy, recall, precision,
F-score of 0.9976. AUC and MCC were 0.9980 and 0.9984 respectively. AUC and MCC are
within the same range which show that the performance of the model is consistent. Notably,
this was the lowest performance obtained on the dataset as compared to the pre-trained
architectures. IV3 outperformed all other models achieving an overall performance in all
metrics of 100% in both optimized and non-optimized scenarios. Considering the AUC and
MCC, the IV3-HPO also performed better than all other models. Again, MobileNetV3Small
ranks second in both scenarios of optimization and non-optimization with AUC and MCC of
almost 100% (0.9999). As defined in Equation3.8, the MCC value is used to validate the AUC
value for the models which best shows the performance of each model. From the forgoing,

123

each of the models has a very high DR and low FAR showing that they can detect each attack
at a fast rate.

Table 4.9 – Performance Evaluation of Optimized and non-Optimized trained Models on CIC-
IDS2017

Models Accuracy Precision Recall F-Score AUC MCC
Base CNN 0.9976 0.9976 0.9976 0.9976 0.9980 0.9984
VGG16 0.9993 0.9993 0.9993 0.9993 0.9995 0.9998
VGG19 0.9981 0.9981 0.9981 0.9981 0.9982 0.9988
IV3 1.0000 1.0000 1.0000 1.0000 0.9993 0.9992
MNV3S 0.9999 0.9999 0.9999 0.9999 0.9998 0.9995
ENV2B0 0.9982 0.9982 0.9982 0.9982 0.9986 0.9990
Base CNN - HPO 0.9978 0.9978 0.9978 0.9978 0.9979 0.998
VGG16 - HPO 0.9996 0.9996 0.9996 0.9996 0.9995 0.9997
VGG19 - HPO 0.9994 0.9994 0.9994 0.9994 0.9996 0.9992
IV3 - HPO 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999
MNV3S - HPO 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998
ENV2B0 - HPO 0.9999 0.9999 0.9999 0.9999 0.9989 0.9988

Source: Author (2022)

Table 4.10 shows the IDS model performance on the CSE-CICIDS2018 dataset. In
this case, the base CNN model also achieved the least performance showing that pre-trained
models tends to have the possibility of performing better than CNN architecture with res-
pect to time and accuracy. This is due to the fact that pre-trained models already learned
from a large volume of dataset and can easily learn new patterns from new input data.
Notwithstanding, the architectural design of CNN networks developed from scratch may af-
fect its performance compared to the pre-trained networks. VGG19-HPO and ENV2B0-HPO
are the best performing model on the dataset reaching the accuracy of 0.9900 and 0.9910
respectively against the base CNN with 0.9797 accuracy.

With the BS-TPE optimization algorithm used for the Hyper-Parameter search in
the search space, we obtain models with better performances. In Tables 4.9 and 4.10, the
models trained with selected Hyper-Parameters tend to have better performances in terms
of evaluation metrics and the time cost function. The learning curves for the models on
the datasets is shown in Figures 4.8 and 4.9 for the IDS2017 dataset and 4.10 and 4.11 for
the CSE-CICIDS2018 dataset. The learning curves show the performance rate of learning
and loss during the model training phase. Cross-entropy loss function was used to control
the loss during the training. This helps to determine if a model overfits or under-fits. A
good indicator of this is the validation loss and validation accuracy. Where the validation

124

accuracy is above or these same with the training accuracy, we obtain a normal IDS model.
In Figures 4.8 and 4.10, we can observe that the validation accuracy in each of the IDS models
are in the same range with the training accuracy which validates that the model did not
overfit during the training; hence confirms the specificity and reliability of the results.

Table 4.10 – Performance Evaluation of Optimized and non-Optimized trained Models on CSE-CIC-
IDS2018

Models Accuracy Precision Recall F-Score AUC MCC
Base CNN 97.97 0.9806 0.9797 0.9799 0.9798 0.9800
VGG16 0.9880 0.9897 0.9897 0.9897 0.988 0.9886
VGG19 0.9887 0.9887 0.9887 0.9887 0.9877 0.9890
IV3 0.9769 0.9777 0.9769 0.9770 0.9796 0.9775
MNV3S 0.9832 0.9833 0.9832 0.9831 0.9852 0.9854
ENV2B0 0.9890 0.9889 0.9890 0.9890 0.9870 0.9895
Base CNN - HPO 0.9890 0.9890 0.9890 0.9890 0.9880 0.9892
VGG16 - HPO 0.9899 0.9899 0.9899 0.9899 0.99 0.9912
VGG19 - HPO 0.9900 0.9900 0.9900 0.9900 0.9890 0.9932
IV3 - HPO 0.9870 0.9870 0.9870 0.9870 0.9880 0.9897
MNV3S - HPO 0.9888 0.9888 0.9888 0.9888 0.9890 0.9899
ENV2B0 - HPO 0.9910 0.9910 0.9910 0.9910 0.9916 0.9920

Source: Author (2022)

125

Figure 4.8 – Learning Curves for each of the models (a) Base CNN, (B)ENV2B0, (C)MNV3S considering
the number of epochs and batch size in each case on IDS2017 dataset

Source: Author (2022)

126

Figure 4.9 – Learning Curves for each of the models (D) VGG16, (E) VGG19 and (F) IV3 considering
the number of epochs and batch size in each case on IDS2017 dataset

Source: Author (2022)

127

Figure 4.10 – Learning Curves for each of the models (a) Base CNN, (B)ENV2B0, (C)MNV3S conside-
ring the number of epochs and batch size in each case on IDS2018 dataset

Source: Author (2022)

128

Figure 4.11 – Learning Curves for each of the models (D) VGG16, (E) VGG19 and (F) IV3 considering
the number of epochs and batch size in each case on IDS2018 dataset

Source: Author (2022)

4.2.2 Ensemble Model based on Transfer Learning

In constructing the ensemble model, some key parameters used in selecting the best
three models include: the training time Tt(s) (total time taken for the model to be trained on
the dataset), test time tt(s) (i.e the total time taken to predict all the images in the test set),
the overall MCC and AUC values, and the F-Score in additions to all the regular evaluation
metrics. Therefore, the Tt(s) and tt(s) including test time per packet tt/p(s) were measured

129

during the training and evaluation phases. Test time per packet is the average time taken to
detect a packet of data. This is equivalent to the total test time divided by the total number
of images in the sample. The results obtained for is shown in Tables 4.13.

From Table 4.13, we observe that the training and testing time for the IV3, MNV3S
and ENV2B0 are the lowest. Since the accuracy and other metrics are good, compared
to other IDS models that has higher parameters and more training time, we considered
them to be best fit for the construction of the ELETL-IDS model. This is aimed at reducing
model complexity, memory consumption, latency while maintaining good accuracy. On
CICIDS2017, IV3-HPO was trained for about 5272 seconds and it took 859 second to complete
test on all the data in the test set. The same IDS model was trained in 6793.55 seconds on
IDS2018 and evaluation time took 793 seconds. Similarly, for MNV3S-HPO, 1025 seconds
was the training time on CIC-IDS2017 and 831 seconds to train on the CSE-CIC-IDS2018. In
both scenarios of optimization and non-optimization, the IV3, MNV3S and ENV2B0 had the
least time and resource requirement compared to other pre-trained models.

The performance evaluation of the model in terms of the metrics is shown in Ta-
bles 4.11 and 4.12 for the IDS2017 and IDS2018 respectively. The reason for the lower training
and testing times as seen is due to some of the neurons in the network were frozen and only
selected layers were trained.

Table 4.11 – Performance Evaluation ELETL-IDS Model on CIC-IDS2017

Models Accuracy Precision Recall F-Score AUC MCC
ELETL-IDS (Train) 1.00 1.00 1.00 1.00 0.9995 0.9994
ELETL-IDS (Valid) 1.00 0.9998 0.9986 1.00 - -
ELETL-IDS (Test) 1.00 1.00 1.00 1.00 0.9993 0.9992

Source: Author (2022)

Table 4.12 – Performance Evaluation of ELETL-IDS Model on CSE-CIC-IDS2018

Models Accuracy Precision Recall F-Score AUC MCC
ELETL-IDS (Train) 0.9999 0.9999 0.9999 0.9999 0.9986 0.9985
ELETL-IDS (Valid) 0.9997 0.9998 0.9996 0.9995 - -
ELETL-IDS (Test) 0.9999 0.9999 0.9999 0.9999 0.9993 0.9990

Source: Author (2022)

Comparing the base CNN trained from scratch with the pre-trained, we can observe
that more training and testing time is required to get optimum performance. This means
high computational power is also required and thus; transfer learning presents a more

130

convenient approach to training CNN based IDS models. While 43649.54 seconds was
needed to train base CNN on CSE-CICIDS2018 dataset, only 934.22 seconds was required to
train a better performing model on the same dataset using ENV2B0-HPO approach showing
a time variation of over 191.62 seconds. In this case, models trained using TL show better
lower latency in the detection of network traffics and taking a decision on it as appropriate.

Table 4.13 – Time-base model Evaluation

CIC-IDS2017

Models Train Time (Tt(s)) Test Time (tt(s)) Test time per
packet (tt/p(s))

Base CNN 39772 1341 0.2837
VGG16 16669 1638 0.3466
VGG19 10990 1759 0.3722
IV3 6578 1057 0.2237
MNV3S 1170 857 0.1813
ENV2B0 4172 930 0.1967
Base CNN - HPO 30932 1120 0.237
VGG16 - HPO 13679 1268 0.2683
VGG19 - HPO 8980 1420 0.3005
IV3 - HPO 5272 859 0.1817
MNV3S - HPO 1025 748 0.1582
ENV2B0 - HPO 3282 856 0.1811

CSE-CICIDS2018

Models Train Time (Tt(s)) Test Time (tt(s)) Test time per
packet (tt/p(s))

Base CNN 43649.54 1048 0.2468
VGG16 21229.61 1499 0.3530
VGG19 21316.19 1792 0.4220
IV3 7848.12 890 0.2096
MNV3S 975.67 838 0.1974
ENV2B0 10032.56 875 0.2483
Base CNN - HPO 36987.56 912 0.2588
VGG16 - HPO 18964.59 988 0.2804
VGG19 - HPO 19121.76 1021 0.2897
IV3 - HPO 6793.55 793 0.225
MNV3S - HPO 831.23 739 0.2097
ENV2B0 - HPO 934.22 781 0.2216

Source: Author (2022)

131

Figure 4.12 – Prediction Result of the proposed ELETL-IDS model on IDS2017

Source: Author (2022)

Confusion matrix helps us to understand the performance of the models with respect
to the various tasks being classified by the model. In Figure 4.14, we present the confusion
metrics for ELETL-IDS obtained on the CIC-IDS2017 and CSE-CIC-IDS2018 datasets res-
pectively. We can observe that ELETL-IDS correctly classified all the attacks and benign
features in each case with an accuracy of 100% since there is no mis-classification of the
attack signatures. Our model only failed to classify all the classes in IDS2018 dataset, hence,
it mis-classified 18 benign classes as infiltration and 27 infiltration attacks as benign, with
an accuracy of 99.76% and an error rate of 0.24%. This shows that even though there were
mis-classification of events, the FAR and FPR are very small, therefore the IDS model predic-

132

tions are reliable. The predicted results are shown in Figures 4.12 and 4.13 for IDS2017 and
IDS2018 respectively.

Figure 4.13 – Prediction Result of the proposed ELETL-IDS model on IDS2018

Source: Author (2022)

133

Figure 4.14 – Confusion Matrix showing the performance of the proposed ELETL-IDS model on
selected dataset (a) CIC-IDS2017 and (b) CSE-CIC-IDS2018

Source: Author (2022)

In Figure 4.15, we present the learning curves for the ELETL-IDS model showing
the reconstruction error and training loss of the model while extracting and learning the
features of the input images. On both datasets, our model during training maintained both
training and validation accuracy of almost 100% from the first epoch with 100 batch size
using the categorical cross-entropy loss function.

134

Figure 4.15 – Learning Curves for the ELETL-IDS Model on the selected Data sets

Source: Author (2022)

We compare the performance of ELETL-IDS and 1D-CNN IDS models with other
state-of-the-art. In terms of accuracy, our proposed models achieved better performances
compared to the presented models in Table 4.14. The CNN used in Zhang et al. (2020b)
showed an accuracy of 99.85% on the CICIDS2017 dataset while our IDS model showed an
accuracy of 100.00% on the same dataset. In a similar situation, the work of Farhana et al.

(2020) can classify the traffic features with an accuracy of 98.18% on the IDS2018 dataset
and 97.38% on the IDS2017 dataset using a method similar to our work.

135

Ta
bl

e4
.1

4–
Co

m
pa

ris
on

of
th

eI
DS

m
od

el
sw

ith
Re

la
te

d
wo

rk
s

ID
S

M
od

el
Ev

al
.M

et
ri

cs
Fe

at
ur

e
Ex

tr
ac

ti
on

D
at

as
et

Ac
c

(%
)

En
se

m
bl

eK
im

(2
01

7a
)

PR
,R

C,
FS

-
CI

CI
DS

20
17

99
.0

2
Hy

br
id

(C
N

N
+L

ST
M

)S
un

et
al

.(
20

20
)

PR
,R

C,
FS

-
CI

CI
DS

20
17

98
.6

7
En

se
m

bl
eV

ar
an

as
ie

Ra
zia

(2
02

1)
PR

,R
C,

FS
CN

N
CI

CI
DS

20
17

99
.0

0
En

se
m

bl
eK

im
,S

hi
n

eC
ho

i(
20

19
)

-
CN

N
CI

CI
DS

20
18

99
.7

7
En

se
m

bl
eP

ar
va

te
ta

l.
(2

01
7)

PR
,R

C,
FS

Ga
us

sia
n

na
ïv

eb
ay

es
N

SL
-K

DD
81

.2
7

En
se

m
bl

eH
u

et
al

.(
20

20
)

AC
C,

D
R,

FP
R

CN
N

N
SL

-K
DD

83
.8

3
CN

N
Ri

ya
ze

Ga
na

pa
th

y(
20

20
)

AC
C

Li
ne

ar
Co

rre
la

tio
n

Co
effi

ci
en

t
N

SL
-K

DD
99

.8
8

En
se

m
bl

eW
u,

Ch
en

eL
i(

20
18

)
AC

C,
D

R,
FP

R
CN

N
N

SL
-K

DD
79

H
CR

N
N

ID
SK

ha
n

(2
02

1)
PR

,R
C,

FS
-

CI
CI

DS
20

18
97

.7
5

CN
N

Fe
rra

ge
ta

l.
(2

02
0)

FP
R,

FN
R,

AC
C

CN
N

CI
CI

DS
20

17
,

CI
CI

DS
20

18
ID

S2
01

7=
97

.3
8,

ID
S2

01
8=

98
.1

8

CN
N

Zh
an

ge
ta

l.
(2

02
0b

)
AC

C,
DR

,F
PR

,F
S

Co
nd

iti
on

al
Ra

nd
om

Fi
el

d
an

d
LC

C
CI

CI
DS

20
17

99
.8

5

SV
M

Pr
ee

th
ie

Kh
ar

e(
20

21
)

RC
,P

R,
AC

C,
FS

Pr
in

ci
pa

lC
om

po
ne

nt
An

al
ys

is/
Au

to
En

co
de

r
N

SL
-K

DD
97

LS
TM

-D
L

Li
n,

Ye
eX

u
(2

01
9)

RC
,P

R,
AC

C,
FS

CN
N

ID
S2

01
8

96
.2

Re
sN

et
50

M
as

um
eS

ha
hr

ia
r(

20
21

)
AC

C
CN

N
N

SL
-K

DD
81

.1
5

VG
G-

19
+

D
N

N
M

as
um

eS
ha

hr
ia

r(
20

21
)

AC
C

VG
G1

9
N

SL
-K

DD
86

.6
VG

G-
16

+
D

N
N

M
as

um
eS

ha
hr

ia
r(

20
21

)
AC

C
VG

G1
6

N
SL

-K
DD

89
.3

RB
M

M
ay

ur
an

at
ha

n,
M

ur
ug

an
eD

ha
na

ko
ti

(2
02

1)
FP

R,
FN

R,
AC

C
Ra

nd
om

Ha
rm

on
yS

ea
rc

h
KD

D
Cu

p’
99

99
.7

9

En
se

m
bl

e
EL

ET
L-

ID
S

[P
ro

po
se

d]
FP

R
,F

N
R

,A
C

C
C

N
N

/R
FR

C
IC

ID
S2

01
7,

C
IC

ID
S2

01
8

ID
S2

01
7

=
10

0.
0,

ID
S2

01
8

=
99

.9
9

1D
-C

N
N

[P
ro

po
se

d]
FP

R
,F

N
R

,A
C

C
,M

C
C

C
N

N
/R

FR
C

IC
ID

S2
01

7,
C

IC
ID

S2
01

8
ID

S2
01

7
=

99
.3

0,
ID

S2
01

8
=

99
.2

0

EL
ET

L-
ID

S
[Q

ua
nt

iz
ed

]
FP

R
,F

N
R

,A
C

C
,M

C
C

C
N

N
/R

FR
C

IC
ID

S2
01

7,
C

IC
ID

S2
01

8
ID

S2
01

7
=

98
.9

,
ID

S2
01

8
=

98
.9

1D
-C

N
N

[Q
ua

nt
iz

ed
]

FP
R

,F
N

R
,A

C
C

,M
C

C
C

N
N

/R
FR

C
IC

ID
S2

01
7,

C
IC

ID
S2

01
8

ID
S2

01
7

=
98

.2
0,

ID
S2

01
8

=
98

.2
0

So
ur

ce
:A

ut
ho

r(
20

22
)

136

4.3 Evaluation of Models Optimized using Quantization

With quantization, we reduced the memory requirement capacity of the model such
that it can be deployed on edge devices thereby achieving a robust model on the low memory
capacity devices. Original model expects an input of FP32 bits. After apply half-integer
quantization, the input data type was converted to INT32. With this, the resulting model
size was reduced by approximately 67% for the Base CNN model from 21.2MB to 7.1MB
and 77% for the proposed ELETL-IDS model from 338.199 MB to 77.976 MB as shown in
Table 4.15. Similarly, the accuracy of the models dropped to about 0.7% for the Base CNN-
PTQ, 0.81% for Base CNN-TAQ and 1.1% for the ELETL-IDS model using the PTQ weight
only quantization as shown in Table 4.16. The quantization scheme discussed here is as
described in TensorFlow Lite1.

Table 4.15 – Comparison of Original Model size and Model sizes after quantization

Models Original Model Size Model Size After Quantization Reduction
Base CNN 21.2MB 7.1MB 67%
ELETL-IDS 338.199MB 77.976MB 77%

Source: Author (2022)

Table 4.16 – Comparison of Accuracy of Original and Quantize Models

Models Original Accuracy % Quantize Model Acc % Reduction
Base CNN-ATQ 98.90 98.20 0.707
Base CNN-PTQ 97.7 96.90 0.81%
ELETL-IDS-PTQ 100 98.9 1.1%

Source: Author (2022)

1 https://www.tensorflow.org/model_optimization/guide/quantization/post_training

137

5 CONCLUSION AND FUTURE WORK

The field of Computing and computer Networks and related domains that use Inter-
net connection is largely threatened by so many intrusive activities. Several approaches have
been used including knowledge-based expert systems to monitor and deter the attacks from
occurring such as the firewalls, anti-virus software and even network monitoring agents like
humans. Due to the inefficiencies experienced in these approaches, more suitable way is
the implementation of IDS developed with intelligence based on ML/DL algorithms. In this
work, we have studied and evaluated different algorithms including classical ML and DL to
develop suitable IDS model that can be efficiently used in different platforms in mitigating
network intrusion.

A typical IDS functions in four difference mechanisms: packet decoding, packet
Preprocessing, decision system and detection mechanisms. Using this architecture, we
first obtained two datasets comprising high volume of network traffic flow of up to 16
million generated in both forward and backward directions over a long period of time using
different attack strategies. We used several methods to preprocess the dataset such that
they are suitable for the IDS model development. Feature engineering was done to select
important features; hence, 64 features of the datasets were used for the model development.
To overcome data imbalance so that a robust model was developed, we over-sampled the
minority classes in the datasets using SMOTE. During the model training, reconstruction
error and training loss were controlled using cross-entropy loss function.

Two approaches were adopted in this work in order to achieve a robust IDS model.
We first implemented ML and 1D-CNN algorithms on Tabular data and then, converted
the dataset to images having 64 x 64 x 3 image size. Six different ML models including
Decision Tree (DT), Random Forest (RF), Extra Tree (ET), AdaBoost (AD), XGBoost (XGB)
and LightGBM (LGBM) were trained on the Tabular data which was first scaled using Ma-
xAbsScaler. Going on, we implemented 1D-CNN using three approaches on the dataset
including imbalanced data, balanced with train-test-split and balanced with StratifiedKFold
split. The results in each scenario showed improvement in previous method. Specifically, the
training accuracy of the three 1D-CNN models are 97.76% for imbalanced dataset, 99.11%
for balanced dataset and 99.20% for the balanced dataset with stratifiedKFold split. This
presents an improvement in IDS model in comparison with the work of Ferrag et al. (2020)

138

which showed an accuracy of 97.38% on CIC-IDS2017 and 98.18% on CSE-CICIDS2018
dataset.

On the image dataset, to make the image suitable for feature extraction and learning
process, we resized each image to 256 x 256 x 3 and used transfer learning with VGG16, VGG19,
IV3, MNV3S and ENV2B0 to develop the proposed model. In the end, we constructed an
ensemble model (ELETL-IDS) based on IV3, MNV3S and ENV2B0 which were found to be
the best performing models. The ELETL-IDS achieved an accuracy of 100% on the IDS2017
dataset and 99.99% on the IDS2018 dataset. To enhance the usage coverage of the model,
we employed quantization technique to obtain a low memory capacity model which can be
deployed on any device. The results obtained show that our developed models are efficient,
reliable and compatible to operate on any device with memory requirement of about 77MB
(4x smaller) than original model size. 1D-CNN and ELETL-IDS can classify up to 9 different
network traffic with average accuracy of 99.99%. The proposed models can be implemented
either as NIDS or HIDS. In general, the results obtained demonstrated an advancement in
IDS model design using pre-trained models compared to the work of Masum e Shahriar
(2021).

5.1 Challenges and Recommendations

Several challenges were encountered during the research but were all overcome
except the deployment of the model on a network interface to test using flow packets
generated by us in real-time scenario. Therefore, in the future, we hope to test the model
developed in a test-bed while exploring other available algorithms that can improve the
performance of the IDS in terms of latency and complexity.

139

REFERENCES

ACM. Data Mining and Knowledge Discovery - SIGKDD - KDD Cup. 2016. <https:
//kdd.org/kdd-cup>. (Accessed on 03/03/2022).

AHMAD, T.; ANWAR, M. A.; HAQUE, M. Machine learning techniques for intrusion
detection. In: Handbook of Research on Intrusion Detection Systems. [S.l.]: IGI Global,
2020. p. 47–65.

AL-GARADI, M. A. et al. A survey of machine and deep learning methods for internet
of things (iot) security. IEEE Communications Surveys & Tutorials, IEEE, v. 22, n. 3, p.
1646–1685, 2020.

AL-TASHI, Q. et al. Approaches to multi-objective feature selection: A systematic literature
review. IEEE Access, IEEE, v. 8, p. 125076–125096, 2020.

ALASADI, S. A. Anomaly detection system for internet traffic based on tf-idf and bfr
clustering algorithms. International Journal of Engineering & Technology, v. 8, n. 1.5, p.
131–137, 2019.

ALBAWI, S.; MOHAMMED, T. A.; AL-ZAWI, S. Understanding of a convolutional neural
network. In: IEEE. 2017 International Conference on Engineering and Technology
(ICET). [S.l.], 2017. p. 1–6.

ALDWAIRI, T.; PERERA, D.; NOVOTNY, M. A. An evaluation of the performance of restricted
boltzmann machines as a model for anomaly network intrusion detection. Computer
Networks, Elsevier, v. 144, p. 111–119, 2018.

ALJAWARNEH, S.; YASSEIN, M. B.; ALJUNDI, M. An enhanced j48 classification algorithm
for the anomaly intrusion detection systems. Cluster Computing, Springer, v. 22, n. 5, p.
10549–10565, 2019.

ALMSEIDIN, M. et al. Evaluation of machine learning algorithms for intrusion detection
system. In: IEEE. 2017 IEEE 15th International Symposium on Intelligent Systems and
Informatics (SISY). [S.l.], 2017. p. 000277–000282.

ALOM, M. Z. et al. The history began from alexnet: A comprehensive survey on deep
learning approaches. arXiv preprint arXiv:1803.01164, 2018.

ALRAWASHDEH, K.; PURDY, C. Toward an online anomaly intrusion detection system
based on deep learning. In: IEEE. 2016 15th IEEE international conference on machine
learning and applications (ICMLA). [S.l.], 2016. p. 195–200.

AMINANTO, E.; KIM, K. Deep learning in intrusion detection system: An overview.
In: HIGHER EDUCATION FORUM. 2016 International Research Conference on
Engineering and Technology (2016 IRCET). [S.l.], 2016.

ANDERSON, J. P. Computer security threat monitoring and surveillance. Technical Report,
James P. Anderson Company, 1980.

APRUZZESE, G. et al. On the effectiveness of machine and deep learning for cyber security.
In: IEEE. 2018 10th international conference on cyber Conflict (CyCon). [S.l.], 2018. p.
371–390.

https://kdd.org/kdd-cup
https://kdd.org/kdd-cup

140

ATAWODI, I. S. A machine learning approach to network intrusion detection system using k
nearest neighbor and random forest. 2019.

AXELSSON, S. Intrusion detection systems: A survey and taxonomy. Citeseer, 2000.

BALRAM, S.; WISCY, M. Detection of tcp syn scanning using packet counts and neural
network. In: IEEE. 2008 IEEE International Conference on Signal Image Technology
and Internet Based Systems. [S.l.], 2008. p. 646–649.

BANNER, R.; NAHSHAN, Y.; SOUDRY, D. Post training 4-bit quantization of convolutional
networks for rapid-deployment. Advances in Neural Information Processing Systems,
v. 32, 2019.

BASUMALLIK, S.; MA, R.; EFTEKHARNEJAD, S. Packet-data anomaly detection in
pmu-based state estimator using convolutional neural network. International Journal of
Electrical Power & Energy Systems, Elsevier, v. 107, p. 690–702, 2019.

BERGSTRA, J.; YAMINS, D.; COX, D. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In: PMLR. International
conference on machine learning. [S.l.], 2013. p. 115–123.

BHATI, B. S.; RAI, C. Analysis of support vector machine-based intrusion detection
techniques. Arabian Journal for Science and Engineering, Springer, v. 45, n. 4, p.
2371–2383, 2020.

BHATI, B. S.; RAI, C. S. Ensemble based approach for intrusion detection using extra tree
classifier. In: SOLANKI, V. K. et al. (Ed.). Intelligent Computing in Engineering. Singapore:
Springer Singapore, 2020. p. 213–220.

BHUYAN, M. H.; BHATTACHARYYA, D. K.; KALITA, J. K. Network anomaly detection:
methods, systems and tools. Ieee communications surveys & tutorials, IEEE, v. 16, n. 1, p.
303–336, 2013.

BISWAS, S. K. et al. Intrusion detection using machine learning: A comparison study.
International Journal of pure and applied mathematics, v. 118, n. 19, p. 101–114, 2018.

BORGWARDT, K. M. et al. Integrating structured biological data by kernel maximum mean
discrepancy. Bioinformatics, Oxford University Press, v. 22, n. 14, p. e49–e57, 2006.

BORKAR, A.; DONODE, A.; KUMARI, A. A survey on intrusion detection system (ids) and
internal intrusion detection and protection system (iidps). In: IEEE. 2017 International
conference on inventive computing and informatics (ICICI). [S.l.], 2017. p. 949–953.

BRAEI, M.; WAGNER, S. Anomaly detection in univariate time-series: A survey on the
state-of-the-art. arXiv preprint arXiv:2004.00433, 2020.

BRASPENNING, P. J.; THUIJSMAN, F.; WEIJTERS, A. J. M. M. Artificial neural networks: an
introduction to ANN theory and practice. [S.l.]: Springer Science & Business Media, 1995.
v. 931.

BREIMAN, L. Bagging predictors. Machine learning, Springer, v. 24, n. 2, p. 123–140, 1996.

141

BUITINCK, L. et al. API design for machine learning software: experiences from the
scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and
Machine Learning. [S.l.: s.n.], 2013. p. 108–122.

BYVATOV, E.; SCHNEIDER, G. Support vector machine applications in bioinformatics.
Applied bioinformatics, v. 2, n. 2, p. 67–77, 2003.

CAI, J. et al. Feature selection in machine learning: A new perspective. Neurocomputing,
Elsevier, v. 300, p. 70–79, 2018.

CENKERAMADDI, L. R. et al. A survey on sensors for autonomous systems. In: IEEE. 2020
15th IEEE Conference on Industrial Electronics and Applications (ICIEA). [S.l.], 2020.
p. 1182–1187.

CHANDOLA, V.; BANERJEE, A.; KUMAR, V. Anomaly detection: A survey. ACM computing
surveys (CSUR), ACM New York, NY, USA, v. 41, n. 3, p. 1–58, 2009.

CHANDRASHEKHAR, S.; TAMANE, M.; BHARATI. Patent on Deep Learning
Based Intrusion Prediction Model - MGM University Aurangabad. 2021. <https:
//mgmu.ac.in/deep-learning-based-intrusion-prediction-model/>. (Accessed on
09/08/2022).

CHAUHAN, M.; AGARWAL, M. Study of various intrusion detection systems: A survey.
Smart and Sustainable Intelligent Systems, Wiley Online Library, p. 355–372, 2021.

CHAWLA, N. V. et al. Smote: synthetic minority over-sampling technique. Journal of
artificial intelligence research, v. 16, p. 321–357, 2002.

CHEN, T.; GUESTRIN, C. Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining.
[S.l.: s.n.], 2016. p. 785–794.

CHEN, W. et al. Distributed resilient filtering for power systems subject to denial-of-service
attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, IEEE, v. 49, n. 8,
p. 1688–1697, 2019.

CHEN, Y.-K. Challenges and opportunities of internet of things. In: IEEE. 17th Asia and
South Pacific design automation conference. [S.l.], 2012. p. 383–388.

CHOI, H. et al. Unsupervised learning approach for network intrusion detection system
using autoencoders. The Journal of Supercomputing, Springer, v. 75, n. 9, p. 5597–5621,
2019.

CHOI, J.-W. Web server hacking and security risk using dns spoofing and pharming
combined attack. Journal of the Korea Institute of Information and Communication
Engineering, The Korea Institute of Information and Commucation Engineering, v. 23,
n. 11, p. 1451–1461, 2019.

CIC. DDoS 2019 | Datasets | Research | Canadian Institute for Cybersecurity | UNB.
2019. <https://www.unb.ca/cic/datasets/ddos-2019.html>. (Accessed on 02/27/2022).

CRESWELL, A. et al. Generative adversarial networks: An overview. IEEE Signal Processing
Magazine, IEEE, v. 35, n. 1, p. 53–65, 2018.

https://mgmu.ac.in/deep-learning-based-intrusion-prediction-model/
https://mgmu.ac.in/deep-learning-based-intrusion-prediction-model/
https://www.unb.ca/cic/datasets/ddos-2019.html

142

DAS, S. et al. Network intrusion detection and comparative analysis using ensemble
machine learning and feature selection. IEEE Transactions on Network and Service
Management, p. 1–1, 2021.

DENNING, D. E. An intrusion-detection model. IEEE Transactions on software
engineering, IEEE, n. 2, p. 222–232, 1987.

DHALIWAL, S. S.; NAHID, A.-A.; ABBAS, R. Effective intrusion detection system using
xgboost. Information, MDPI, v. 9, n. 7, p. 149, 2018.

DOULIGERIS, C.; MITROKOTSA, A. Ddos attacks and defense mechanisms: classification
and state-of-the-art. Computer networks, Elsevier, v. 44, n. 5, p. 643–666, 2004.

DOWELL, C. The computerwatch data reduction tool. In: 13th National Computer
Security Conference. [S.l.: s.n.], 1990. p. 99–108.

ELFWING, S.; UCHIBE, E.; DOYA, K. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, Elsevier, v. 107, p.
3–11, 2018.

FARHANA, K. et al. An intrusion detection system for packet and flow based networks
using deep neural network approach. International Journal of Electrical & Computer
Engineering (2088-8708), v. 10, n. 5, 2020.

FARNAAZ, N.; JABBAR, M. Random forest modeling for network intrusion detection system.
Procedia Computer Science, Elsevier, v. 89, p. 213–217, 2016.

FAWCETT, T. An introduction to roc analysis. Pattern Recognition Letters, v. 27, n. 8, p.
861–874, 2006. ISSN 0167-8655. ROC Analysis in Pattern Recognition. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S016786550500303X>.

FERRAG, M. A. et al. Deep learning techniques for cyber security intrusion detection: A
detailed analysis. In: 6th International Symposium for ICS & SCADA Cyber Security
Research 2019 6. [S.l.: s.n.], 2019. p. 126–136.

FERRAG, M. A. et al. Deep learning for cyber security intrusion detection: Approaches,
datasets, and comparative study. Journal of Information Security and Applications,
Elsevier, v. 50, p. 102419, 2020.

FERREIRA, A. J.; FIGUEIREDO, M. A. Efficient feature selection filters for high-dimensional
data. Pattern recognition letters, Elsevier, v. 33, n. 13, p. 1794–1804, 2012.

FERRIS, M. H. et al. Using roc curves and auc to evaluate performance of no-reference image
fusion metrics. In: 2015 National Aerospace and Electronics Conference (NAECON).
[S.l.: s.n.], 2015. p. 27–34.

FIORE, U. et al. Network anomaly detection with the restricted boltzmann machine.
Neurocomputing, Elsevier, v. 122, p. 13–23, 2013.

FIORESE, T.; MONTINO, P. Learning-based intrusion detection system for on-board vehicle
communication. In: ITASEC. [S.l.: s.n.], 2021. p. 180–192.

FRIEDMAN, J. H. Greedy function approximation: a gradient boosting machine. Annals of
statistics, JSTOR, p. 1189–1232, 2001.

https://www.sciencedirect.com/science/article/pii/S016786550500303X

143

FU, K. et al. Credit card fraud detection using convolutional neural networks. In: SPRINGER.
International conference on neural information processing. [S.l.], 2016. p. 483–490.

FUKETA, H. et al. Image-classifier deep convolutional neural network training by 9-bit
dedicated hardware to realize validation accuracy and energy efficiency superior to the
half precision floating point format. In: IEEE. 2018 IEEE International Symposium on
Circuits and Systems (ISCAS). [S.l.], 2018. p. 1–5.

GAO, N. et al. An intrusion detection model based on deep belief networks. In: IEEE.
2014 Second International Conference on Advanced Cloud and Big Data. [S.l.], 2014. p.
247–252.

GASTI, P. et al. Dos and ddos in named data networking. In: IEEE. 2013 22nd International
Conference on Computer Communication and Networks (ICCCN). [S.l.], 2013. p. 1–7.

GENTLEMAN, R.; CAREY, V. J. Unsupervised machine learning. In: Bioconductor case
studies. [S.l.]: Springer, 2008. p. 137–157.

GHARIB, A. et al. An evaluation framework for intrusion detection dataset. In: 2016
International Conference on Information Science and Security (ICISS). [S.l.: s.n.], 2016.
p. 1–6.

GHARIB, M. et al. Autoids: auto-encoder based method for intrusion detection system.
arXiv preprint arXiv:1911.03306, 2019.

GOSAIN, A.; SARDANA, S. Handling class imbalance problem using oversampling
techniques: A review. In: IEEE. 2017 international conference on advances in
computing, communications and informatics (ICACCI). [S.l.], 2017. p. 79–85.

GUO, Y. A survey on methods and theories of quantized neural networks. arXiv preprint
arXiv:1808.04752, 2018.

HALIMAA, A.; SUNDARAKANTHAM, K. Machine learning based intrusion detection system.
In: IEEE. 2019 3rd International conference on trends in electronics and informatics
(ICOEI). [S.l.], 2019. p. 916–920.

HAN, E.-H. S.; KARYPIS, G.; KUMAR, V. Text categorization using weight adjusted k-nearest
neighbor classification. In: SPRINGER. Pacific-asia conference on knowledge discovery
and data mining. [S.l.], 2001. p. 53–65.

HAN, H.; WANG, W.-Y.; MAO, B.-H. Borderline-smote: a new over-sampling method in
imbalanced data sets learning. In: SPRINGER. International conference on intelligent
computing. [S.l.], 2005. p. 878–887.

HEBA, F. E. et al. Principle components analysis and support vector machine based
intrusion detection system. In: IEEE. 2010 10th international conference on intelligent
systems design and applications. [S.l.], 2010. p. 363–367.

HEBERLEIN, L. T. et al. A network security monitor. [S.l.], 1989.

HINTON, G.; SRIVASTAVA, N.; SWERSKY, K. Neural networks for machine learning lecture
6a overview of mini-batch gradient descent. Cited on, v. 14, n. 8, p. 2, 2012.

144

HO, S. et al. A novel intrusion detection model for detecting known and innovative
cyberattacks using convolutional neural network. IEEE Open Journal of the Computer
Society, v. 2, p. 14–25, 2021.

HONDA, S. et al. Topase: Detection of brute force attacks used disciplined ips from
ids log. In: IEEE. 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM). [S.l.], 2015. p. 1361–1364.

HOWARD, A. et al. Searching for mobilenetv3. In: Proceedings of the IEEE/CVF
international conference on computer vision. [S.l.: s.n.], 2019. p. 1314–1324.

HOWARD, A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

HU, Z. et al. A novel wireless network intrusion detection method based on adaptive
synthetic sampling and an improved convolutional neural network. IEEE Access, IEEE, v. 8,
p. 195741–195751, 2020.

HUANG, S.; LEI, K. Igan-ids: An imbalanced generative adversarial network towards
intrusion detection system in ad-hoc networks. Ad Hoc Networks, Elsevier, v. 105, p.
102177, 2020.

HUSSAIN, F. et al. Iot dos and ddos attack detection using resnet. In: 2020 IEEE 23rd
International Multitopic Conference (INMIC). [S.l.: s.n.], 2020. p. 1–6.

HUSSAIN, F. et al. Machine learning in iot security: Current solutions and future challenges.
IEEE Communications Surveys Tutorials, v. 22, n. 3, p. 1686–1721, 2020.

INGRE, B.; YADAV, A. Performance analysis of nsl-kdd dataset using ann. In: IEEE. 2015
international conference on signal processing and communication engineering
systems. [S.l.], 2015. p. 92–96.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: PMLR. International conference on machine
learning. [S.l.], 2015. p. 448–456.

JACOB, B. et al. Quantization and training of neural networks for efficient integer-arithmetic-
only inference. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2018. p. 2704–2713.

JO, W. et al. Packet preprocessing in cnn-based network intrusion detection system.
Electronics, Multidisciplinary Digital Publishing Institute, v. 9, n. 7, p. 1151, 2020.

JOHNSON, D. Unsupervised Machine Learning: Algorithms, Types with Exam-
ple. 2022. <https://www.guru99.com/unsupervised-machine-learning.html#
applications-of-unsupervised-machine-learning>. (Accessed on 03/13/2022).

JOSE, S. et al. A survey on anomaly based host intrusion detection system. In: IOP
PUBLISHING. Journal of Physics: Conference Series. [S.l.], 2018. v. 1000, n. 1, p. 012049.

KALCHBRENNER, N.; GREFENSTETTE, E.; BLUNSOM, P. A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

https://www.guru99.com/unsupervised-machine-learning.html#applications-of-unsupervised-machine-learning
https://www.guru99.com/unsupervised-machine-learning.html#applications-of-unsupervised-machine-learning

145

KANG, M.-J.; KANG, J.-W. Intrusion detection system using deep neural network for
in-vehicle network security. PloS one, Public Library of Science San Francisco, CA USA,
v. 11, n. 6, p. e0155781, 2016.

KANNARI, P. R.; SHARIFF, N. C.; BIRADAR, R. L. Network intrusion detection using sparse
autoencoder with swish-prelu activation model. Journal of Ambient Intelligence and
Humanized Computing, Springer, p. 1–13, 2021.

KARATAS, G.; DEMIR, O.; SAHINGOZ, O. K. Deep learning in intrusion detection systems.
In: IEEE. 2018 International Congress on Big Data, Deep Learning and Fighting Cyber
Terrorism (IBIGDELFT). [S.l.], 2018. p. 113–116.

KAREEM, F. Q. et al. Sql injection attacks prevention system technology. Asian Journal of
Research in Computer Science, v. 13, p. 32, 2021.

KARLIK, B.; OLGAC, A. V. Performance analysis of various activation functions in generalized
mlp architectures of neural networks. International Journal of Artificial Intelligence and
Expert Systems, Citeseer, v. 1, n. 4, p. 111–122, 2011.

KAUR, G.; KAUR, N. Penetration testing–reconnaissance with nmap tool. International
Journal of Advanced Research in Computer Science, v. 8, n. 3, 2017.

KAUR, S.; SINGH, M. Hybrid intrusion detection and signature generation using deep
recurrent neural networks. Neural Computing and Applications, Springer, v. 32, n. 12, p.
7859–7877, 2020.

KAYACIK, H. G.; ZINCIR-HEYWOOD, N. Analysis of three intrusion detection system
benchmark datasets using machine learning algorithms. In: SPRINGER. International
Conference on Intelligence and Security Informatics. [S.l.], 2005. p. 362–367.

KE, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Advances in
neural information processing systems, v. 30, 2017.

KHAN, F. A. et al. A novel two-stage deep learning model for efficient network intrusion
detection. IEEE Access, IEEE, v. 7, p. 30373–30385, 2019.

KHAN, L. U. et al. Federated learning for internet of things: Recent advances, taxonomy, and
open challenges. IEEE Communications Surveys Tutorials, v. 23, n. 3, p. 1759–1799, 2021.

KHAN, M. A. Hcrnnids: Hybrid convolutional recurrent neural network-based network
intrusion detection system. Processes, v. 9, n. 5, 2021. ISSN 2227-9717. Disponível em:
<https://www.mdpi.com/2227-9717/9/5/834>.

KHRAISAT, A.; ALAZAB, A. A critical review of intrusion detection systems in the internet of
things: techniques, deployment strategy, validation strategy, attacks, public datasets and
challenges. Cybersecurity, Springer, v. 4, n. 1, p. 1–27, 2021.

KHRAISAT, A. et al. A novel ensemble of hybrid intrusion detection system for detecting
internet of things attacks. Electronics, Multidisciplinary Digital Publishing Institute, v. 8,
n. 11, p. 1210, 2019.

KHRAISAT, A. et al. Survey of intrusion detection systems: techniques, datasets and
challenges. Cybersecurity 2, 20 (2019). 2019.

https://www.mdpi.com/2227-9717/9/5/834

146

KIM, J. et al. Method of intrusion detection using deep neural network. In: IEEE. 2017 IEEE
international conference on big data and smart computing (BigComp). [S.l.], 2017. p.
313–316.

KIM, J.; SHIN, Y.; CHOI, E. An intrusion detection model based on a convolutional neural
network. Journal of Multimedia Information System, Korea Multimedia Society, v. 6, n. 4,
p. 165–172, 2019.

KIM, J.-Y.; BU, S.-J.; CHO, S.-B. Zero-day malware detection using transferred generative
adversarial networks based on deep autoencoders. Information Sciences, Elsevier, v. 460,
p. 83–102, 2018.

KIM, P. Convolutional neural network. In: MATLAB deep learning. [S.l.]: Springer, 2017. p.
121–147.

KIM, P. Deep learning. In: MATLAB Deep Learning. [S.l.]: Springer, 2017. p. 103–120.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

KOSTAS, K. Anomaly Detection in Networks Using Machine Learning. Dissertação
(Mestrado) — University of Essex, Colchester, UK, 2018.

KRISHNAMOORTHI, R. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

LAKSHMINARAYANA, D. H.; PHILIPS, J.; TABRIZI, N. A survey of intrusion detection
techniques. In: 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA). [S.l.: s.n.], 2019. p. 1122–1129.

LANDGREBE, T. C.; DUIN, R. P. Efficient multiclass roc approximation by decomposition
via confusion matrix perturbation analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, v. 30, n. 5, p. 810–822, 2008.

LANGE, S.; RIEDMILLER, M. Deep auto-encoder neural networks in reinforcement learning.
In: IEEE. The 2010 International Joint Conference on Neural Networks (IJCNN). [S.l.],
2010. p. 1–8.

LARGE, J.; LINES, J.; BAGNALL, A. A probabilistic classifier ensemble weighting scheme
based on cross-validated accuracy estimates. Data mining and knowledge discovery,
Springer, v. 33, n. 6, p. 1674–1709, 2019.

LASHKARI, A. H.; KAUR, G.; RAHALI, A. Didarknet: A contemporary approach to detect and
characterize the darknet traffic using deep image learning. In: 2020 the 10th International
Conference on Communication and Network Security. [S.l.: s.n.], 2020. p. 1–13.

LEE, C. et al. Automatic disease annotation from radiology reports using artificial intelligence
implemented by a recurrent neural network. American Journal of Roentgenology, Am
Roentgen Ray Soc, v. 212, n. 4, p. 734–740, 2019.

LEE, S.-W. et al. Towards secure intrusion detection systems using deep learning techniques:
Comprehensive analysis and review. Journal of Network and Computer Applications,
Elsevier, p. 103111, 2021.

147

LEEVY, J. L.; KHOSHGOFTAAR, T. M. A survey and analysis of intrusion detection models
based on cse-cic-ids2018 big data. Journal of Big Data, SpringerOpen, v. 7, n. 1, p. 1–19,
2020.

LI, X. et al. Transfer learning based intrusion detection scheme for internet of vehicles.
Information Sciences, Elsevier, v. 547, p. 119–135, 2021.

LIN, D.; TALATHI, S.; ANNAPUREDDY, S. Fixed point quantization of deep convolutional
networks. In: PMLR. International conference on machine learning. [S.l.], 2016. p.
2849–2858.

LIN, P.; YE, K.; XU, C.-Z. Dynamic network anomaly detection system by using deep learning
techniques. In: SPRINGER. International conference on cloud computing. [S.l.], 2019. p.
161–176.

LIN, W.-C.; KE, S.-W.; TSAI, C.-F. Cann: An intrusion detection system based on combining
cluster centers and nearest neighbors. Knowledge-based systems, Elsevier, v. 78, p. 13–21,
2015.

LIN, W.-H. et al. Using convolutional neural networks to network intrusion detection for
cyber threats. In: 2018 IEEE International Conference on Applied System Invention
(ICASI). [S.l.: s.n.], 2018. p. 1107–1110.

LIPPMANN, R. et al. Results of the darpa 1998 offline intrusion detection evaluation. In: .
[S.l.: s.n.], 1999.

LIU, H.; LANG, B. Machine learning and deep learning methods for intrusion detection
systems: A survey. applied sciences, mdpi, v. 9, n. 20, p. 4396, 2019.

LIU, J.; GAO, Y.; HU, F. A fast network intrusion detection system using adaptive synthetic
oversampling and lightgbm. Computers & Security, Elsevier, v. 106, p. 102289, 2021.

LIU, J. et al. Adversarial machine learning: A multi-layer review of the state-of-the-art and
challenges for wireless and mobile systems. IEEE Communications Surveys Tutorials,
p. 1–1, 2021.

LIU, K.; ZHANG, L. M.; SUN, Y. W. Deep boltzmann machines aided design based on genetic
algorithms. In: TRANS TECH PUBL. Applied mechanics and materials. [S.l.], 2014. v. 568,
p. 848–851.

LIU, L. Research on logistic regression algorithm of breast cancer diagnose data by machine
learning. In: 2018 International Conference on Robots Intelligent System (ICRIS). [S.l.:
s.n.], 2018. p. 157–160.

LIU, M. et al. Host-based intrusion detection system with system calls: Review and future
trends. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 51, n. 5, p. 1–36,
2018.

LIU, Y. et al. Deep learning based encryption policy intrusion detection using commodity
wifi. In: 2019 IEEE 5th International Conference on Computer and Communications
(ICCC). [S.l.: s.n.], 2019. p. 2129–2135.

148

LOKMAN, S.-F. et al. The impact of different feature scaling methods on intrusion detection
for in-vehicle controller area network (can). In: SPRINGER. International Conference on
Advances in Cyber Security. [S.l.], 2019. p. 195–205.

LOPEZ-MARTIN, M.; CARRO, B.; SANCHEZ-ESGUEVILLAS, A. Application of deep
reinforcement learning to intrusion detection for supervised problems. Expert Systems
with Applications, Elsevier, v. 141, p. 112963, 2020.

LUNT, T. Detecting intruders in computer systems. In: Proceedings of the 1993 conference
on auditing and computer technology. [S.l.: s.n.], 1993. v. 61.

LUNT, T. F. Ides: An intelligent system for detecting intruders. In: ROME, ITALY. Proceedings
of the symposium: computer security, threat and countermeasures. [S.l.], 1990. p.
30–45.

LUNT, T. F. et al. Knowledge based intrusion detection. In: Proceedings of the Annual AI
Systems in Government Conference, Washington, DC. [S.l.: s.n.], 1989.

LYON, G. Nmap security scanner. línea] URL: http://nmap. org/[Consulta: 8 de junio de
2012], 2014.

LYU, M. R.; LAU, L. K. Firewall security: Policies, testing and performance evaluation. In:
IEEE. Proceedings 24th Annual International Computer Software and Applications
Conference. COMPSAC2000. [S.l.], 2000. p. 116–121.

MAMUN, M. S. I. et al. Detecting malicious urls using lexical analysis. In: SPRINGER.
International Conference on Network and System Security. [S.l.], 2016. p. 467–482.

MASDARI, M.; KHEZRI, H. A survey and taxonomy of the fuzzy signature-based intrusion
detection systems. Applied Soft Computing, Elsevier, v. 92, p. 106301, 2020.

MASEER, Z. K. et al. Benchmarking of machine learning for anomaly based intrusion
detection systems in the cicids2017 dataset. IEEE Access, v. 9, p. 22351–22370, 2021.

MASUM, M.; SHAHRIAR, H. A transfer learning with deep neural network approach for
network intrusion detection. International journal of intellligent computing research,
v. 12, n. 1, 2021.

MAYURANATHAN, M.; MURUGAN, M.; DHANAKOTI, V. Best features based intrusion
detection system by rbm model for detecting ddos in cloud environment. Journal of
Ambient Intelligence and Humanized Computing, Springer, v. 12, n. 3, p. 3609–3619,
2021.

MCHUGH, J. Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory. ACM
Transactions on Information and System Security (TISSEC), ACM New York, NY, USA,
v. 3, n. 4, p. 262–294, 2000.

MEHROTRA, L.; SAXENA, P. S. An assessment report on: Statistics-based and signature-
based intrusion detection techniques. In: Information and Communication Technology.
[S.l.]: Springer, 2018. p. 321–327.

149

MENDONçA, R. V. et al. Intrusion detection system based on fast hierarchical deep
convolutional neural network. IEEE Access, v. 9, p. 61024–61034, 2021.

MERYEM, A.; OUAHIDI, B. E. Hybrid intrusion detection system using machine learning.
Network Security, Elsevier, v. 2020, n. 5, p. 8–19, 2020.

MEYER, D.; WIEN, F. T. Support vector machines. The Interface to libsvm in package
e1071, v. 28, 2015.

MILENKOSKI, A. et al. Evaluating computer intrusion detection systems: A survey of
common practices. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 48, n. 1,
p. 1–41, 2015.

MISHRA, M.; SRIVASTAVA, M. A view of artificial neural network. In: IEEE. 2014
International Conference on Advances in Engineering & Technology Research
(ICAETR-2014). [S.l.], 2014. p. 1–3.

MISHRA, P. et al. A detailed investigation and analysis of using machine learning techniques
for intrusion detection. IEEE Communications Surveys & Tutorials, IEEE, v. 21, n. 1, p.
686–728, 2018.

MORE, S. et al. A knowledge-based approach to intrusion detection modeling. In: IEEE.
2012 IEEE Symposium on Security and Privacy Workshops. [S.l.], 2012. p. 75–81.

MOUSTAFA, N.; SLAY, J. The significant features of the unsw-nb15 and the kdd99 data sets
for network intrusion detection systems. In: IEEE. 2015 4th international workshop on
building analysis datasets and gathering experience returns for security (BADGERS).
[S.l.], 2015. p. 25–31.

MOUSTAFA, N.; SLAY, J. Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set). In: IEEE. 2015 military communications
and information systems conference (MilCIS). [S.l.], 2015. p. 1–6.

MUKKAMALA, S.; SUNG, A. H.; ABRAHAM, A. Intrusion detection using an ensemble of
intelligent paradigms. Journal of network and computer applications, Elsevier, v. 28, n. 2,
p. 167–182, 2005.

MUSA, U. S. et al. Intrusion detection system using machine learning techniques: A review.
In: IEEE. 2020 international conference on smart electronics and communication
(ICOSEC). [S.l.], 2020. p. 149–155.

MUTZ, D. et al. Anomalous system call detection. ACM Transactions on Information and
System Security (TISSEC), ACM New York, NY, USA, v. 9, n. 1, p. 61–93, 2006.

NAIR, V.; HINTON, G. E. Rectified linear units improve restricted boltzmann machines. In:
Icml. [S.l.: s.n.], 2010.

NASR, M.; BAHRAMALI, A.; HOUMANSADR, A. Deepcorr: Strong flow correlation attacks
on tor using deep learning. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. [S.l.: s.n.], 2018. p. 1962–1976.

NEAL, R. M. Connectionist learning of belief networks. Artificial intelligence, Elsevier,
v. 56, n. 1, p. 71–113, 1992.

150

NEHINBE, J. O. A critical evaluation of datasets for investigating idss and ipss researches.
In: IEEE. 2011 IEEE 10th International Conference on Cybernetic Intelligent Systems
(CIS). [S.l.], 2011. p. 92–97.

NGUYEN, D. C. et al. Federated learning for internet of things: A comprehensive survey.
IEEE Communications Surveys Tutorials, v. 23, n. 3, p. 1622–1658, 2021.

NOBLE, C. C.; COOK, D. J. Graph-based anomaly detection. In: Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data mining. [S.l.:
s.n.], 2003. p. 631–636.

NOGAMI, W. et al. Optimizing weight value quantization for cnn inference. In: IEEE. 2019
International Joint Conference on Neural Networks (IJCNN). [S.l.], 2019. p. 1–8.

NWANKPA, C. et al. Activation functions: Comparison of trends in practice and research for
deep learning. arXiv preprint arXiv:1811.03378, 2018.

PANDA, M.; ABRAHAM, A.; PATRA, M. R. A hybrid intelligent approach for network
intrusion detection. Procedia Engineering, Elsevier, v. 30, p. 1–9, 2012.

PANIGRAHI, R.; BORAH, S. A detailed analysis of cicids2017 dataset for designing intrusion
detection systems. International Journal of Engineering & Technology, v. 7, n. 3.24, p.
479–482, 2018.

PAPAMARTZIVANOS, D.; MÁRMOL, F. G.; KAMBOURAKIS, G. Introducing deep learning
self-adaptive misuse network intrusion detection systems. IEEE Access, IEEE, v. 7, p.
13546–13560, 2019.

PARK, J. et al. Network log-based ssh brute-force attack detection model. CMC-
COMPUTERS MATERIALS & CONTINUA, TECH SCIENCE PRESS 871 CORONADO
CENTER DR, SUTE 200, HENDERSON, NV 89052 USA, v. 68, n. 1, p. 887–901, 2021.

PARK, N.; KANG, N. Mutual authentication scheme in secure internet of things technology
for comfortable lifestyle. Sensors, Multidisciplinary Digital Publishing Institute, v. 16, n. 1,
p. 20, 2016.

PARK, N. et al. Wipi mobile platform with secure service for mobile rfid network
environment. In: SPRINGER. Asia-Pacific Web Conference. [S.l.], 2006. p. 741–748.

PARVAT, A. et al. Network intrusion detection system using ensemble of binary deep learning
classifiers. In: SPRINGER. International Conference on Smart Trends for Information
Technology and Computer Communications. [S.l.], 2017. p. 3–10.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

PELING, I. B. A. et al. Implementation of data mining to predict period of students study
using naive bayes algorithm. Int. J. Eng. Emerg. Technol, v. 2, n. 1, p. 53, 2017.

PENG, T.; LECKIE, C.; RAMAMOHANARAO, K. Survey of network-based defense
mechanisms countering the dos and ddos problems. ACM Computing Surveys (CSUR),
ACM New York, NY, USA, v. 39, n. 1, p. 3–es, 2007.

151

PETERSON, L. E. K-nearest neighbor. Scholarpedia, v. 4, n. 2, p. 1883, 2009.

PETROV, D.; HOSPEDALES, T. M. Measuring the transferability of adversarial examples.
arXiv preprint arXiv:1907.06291, 2019.

PHARATE, A. et al. Classification of intrusion detection system. International Journal of
Computer Applications, Citeseer, v. 118, n. 7, 2015.

PIJPKER, J.; VRANKEN, H. The role of internet service providers in botnet mitigation. In:
IEEE. 2016 European Intelligence and Security Informatics Conference (EISIC). [S.l.],
2016. p. 24–31.

POSTEL, J. RFC0768: User Datagram Protocol. [S.l.]: RFC Editor, 1980.

POSTEL, J. et al. Transmission control protocol. STD 7, RFC 793, September, 1981.

POTLURI, S.; DIEDRICH, C. Accelerated deep neural networks for enhanced intrusion
detection system. In: IEEE. 2016 IEEE 21st international conference on emerging
technologies and factory automation (ETFA). [S.l.], 2016. p. 1–8.

PREETHI, D.; KHARE, N. Sparse auto encoder driven support vector regression based
deep learning model for predicting network intrusions. Peer-to-Peer Networking and
Applications, Springer, v. 14, n. 4, p. 2419–2429, 2021.

PROTIĆ, D. D. Review of kdd cup’99, nsl-kdd and kyoto 2006+ datasets. Vojnotehnički
glasnik, v. 66, n. 3, p. 580–596, 2018.

QUINLAN, J. R. Induction of decision trees. Machine learning, Springer, v. 1, n. 1, p. 81–106,
1986.

QUINLAN, R. C4-5 programs for machine learning. [S.l.]: Elsevier, 2014. v. 1.

RADOGLOU-GRAMMATIKIS, P. I.; SARIGIANNIDIS, P. G. Securing the smart grid: A
comprehensive compilation of intrusion detection and prevention systems. IEEE Access,
IEEE, v. 7, p. 46595–46620, 2019.

RAMESH, G.; MENEN, A. Automated dynamic approach for detecting ransomware using
finite-state machine. Decision Support Systems, Elsevier, v. 138, p. 113400, 2020.

RIYAZ, B.; GANAPATHY, S. A deep learning approach for effective intrusion detection in
wireless networks using cnn. Soft Computing, Springer, v. 24, p. 17265–17278, 2020.

RODRÍGUEZ, G. E. et al. Cross-site scripting (xss) attacks and mitigation: A survey.
Computer Networks, Elsevier, v. 166, p. 106960, 2020.

ROY, S. S. et al. A deep learning based artificial neural network approach for intrusion
detection. In: SPRINGER. International Conference on Mathematics and Computing.
[S.l.], 2017. p. 44–53.

RUDER, S. An overview of gradient descent optimization algorithms. arxiv 2016. arXiv
preprint arXiv:1609.04747, 2016.

RUSSAKOVSKY, O. et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, Springer, v. 115, n. 3, p. 211–252, 2015.

152

SAHU, S.; MEHTRE, B. M. Network intrusion detection system using j48 decision tree. In:
IEEE. 2015 International Conference on Advances in Computing, Communications
and Informatics (ICACCI). [S.l.], 2015. p. 2023–2026.

SALAKHUTDINOV, R.; HINTON, G. Deep boltzmann machines. In: PMLR. Artificial
intelligence and statistics. [S.l.], 2009. p. 448–455.

SALAMA, M. A. et al. Hybrid intelligent intrusion detection scheme. In: Soft computing in
industrial applications. [S.l.]: Springer, 2011. p. 293–303.

SALLOUM, S. A. et al. Machine learning and deep learning techniques for cybersecurity: A
review. In: AICV. [S.l.: s.n.], 2020. p. 50–57.

SANDLER, M. et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2018. p.
4510–4520.

SARAVANAN, R.; SUJATHA, P. A state of art techniques on machine learning algorithms: a
perspective of supervised learning approaches in data classification. In: IEEE. 2018 Second
International Conference on Intelligent Computing and Control Systems (ICICCS).
[S.l.], 2018. p. 945–949.

SARIKAYA, R.; HINTON, G. E.; DEORAS, A. Application of deep belief networks for natural
language understanding. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, IEEE, v. 22, n. 4, p. 778–784, 2014.

SARITAS, M. M.; YASAR, A. Performance analysis of ann and naive bayes classification
algorithm for data classification. International Journal of Intelligent Systems and
Applications in Engineering, v. 7, n. 2, p. 88–91, 2019.

SARKER, I. H. Deep cybersecurity: a comprehensive overview from neural network and
deep learning perspective. SN Computer Science, Springer, v. 2, n. 3, p. 1–16, 2021.

SCHAPIRE, R. E. The boosting approach to machine learning: An overview. Nonlinear
estimation and classification, Springer, p. 149–171, 2003.

SERVIN, A.; KUDENKO, D. Multi-agent reinforcement learning for intrusion detection. In:
Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning.
[S.l.]: Springer, 2005. p. 211–223.

SETHI, K. et al. Deep reinforcement learning based intrusion detection system for
cloud infrastructure. In: 2020 International Conference on COMmunication Systems
NETworkS (COMSNETS). [S.l.: s.n.], 2020. p. 1–6.

SHAHRIAR, M. H. et al. G-ids: Generative adversarial networks assisted intrusion detection
system. In: 2020 IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC). [S.l.: s.n.], 2020. p. 376–385.

SHARAFALDIN, I.; LASHKARI, A. H.; GHORBANI, A. A. Toward generating a new intrusion
detection dataset and intrusion traffic characterization. ICISSp, v. 1, p. 108–116, 2018.

SHARAFALDIN, I. et al. Developing realistic distributed denial of service (ddos) attack
dataset and taxonomy. In: IEEE. 2019 International Carnahan Conference on Security
Technology (ICCST). [S.l.], 2019. p. 1–8.

153

SHINDE, R. et al. An intelligent heart disease prediction system using k-means clustering
and naïve bayes algorithm. International Journal of Computer Science and Information
Technologies, Citeseer, v. 6, n. 1, p. 637–639, 2015.

SHIRAVI, A. et al. Toward developing a systematic approach to generate benchmark datasets
for intrusion detection. computers & security, Elsevier, v. 31, n. 3, p. 357–374, 2012.

SHONE, N. et al. A deep learning approach to network intrusion detection. IEEE
transactions on emerging topics in computational intelligence, IEEE, v. 2, n. 1, p. 41–50,
2018.

SHU, J. et al. Collaborative intrusion detection for vanets: a deep learning-based distributed
sdn approach. IEEE Transactions on Intelligent Transportation Systems, IEEE, v. 22,
n. 7, p. 4519–4530, 2020.

SINAGA, K. P.; YANG, M.-S. Unsupervised k-means clustering algorithm. IEEE Access, v. 8,
p. 80716–80727, 2020.

SMAHA, S. E. et al. Haystack: An intrusion detection system. In: ORLANDO, FL, USA.
Fourth Aerospace Computer Security Applications Conference. [S.l.], 1988. v. 44.

STAŃCZYK, U.; JAIN, L. C. Feature selection for data and pattern recognition: an
introduction. In: Feature Selection for Data and Pattern Recognition. [S.l.]: Springer,
2015. p. 1–7.

STIAWAN, D. et al. Investigating brute force attack patterns in iot network. Journal of
Electrical and Computer Engineering, Hindawi, v. 2019, 2019.

SU, K.; LI, J.; FU, H. Smart city and the applications. In: IEEE. 2011 international
conference on electronics, communications and control (ICECC). [S.l.], 2011. p.
1028–1031.

SUN, P. et al. Dl-ids: Extracting features using cnn-lstm hybrid network for intrusion
detection system. Security and Communication Networks, Hindawi, v. 2020, 2020.

SZEGEDY, C. et al. Rethinking the inception architecture for computer vision. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. [S.l.:
s.n.], 2016. p. 2818–2826.

TAHERI, L.; KADIR, A. F. A.; LASHKARI, A. H. Extensible android malware detection and
family classification using network-flows and api-calls. In: IEEE. 2019 International
Carnahan Conference on Security Technology (ICCST). [S.l.], 2019. p. 1–8.

TAN, M.; LE, Q. Efficientnet: Rethinking model scaling for convolutional neural networks.
In: PMLR. International conference on machine learning. [S.l.], 2019. p. 6105–6114.

TAN, M.; LE, Q. Efficientnetv2: Smaller models and faster training. In: PMLR. International
Conference on Machine Learning. [S.l.], 2021. p. 10096–10106.

TAN, Z. et al. A system for denial-of-service attack detection based on multivariate
correlation analysis. IEEE transactions on parallel and distributed systems, IEEE, v. 25,
n. 2, p. 447–456, 2013.

154

TANDON, G.; CHAN, P. K. Learning useful system call attributes for anomaly detection. In:
FLAIRS Conference. [S.l.: s.n.], 2005. p. 405–411.

TANG, T. A. et al. Intrusion detection in sdn-based networks: Deep recurrent neural network
approach. In: Deep Learning Applications for Cyber Security. [S.l.]: Springer, 2019. p.
175–195.

TANG, T. A. et al. Deep learning approach for network intrusion detection in software
defined networking. In: IEEE. 2016 international conference on wireless networks and
mobile communications (WINCOM). [S.l.], 2016. p. 258–263.

TAVALLAEE, M. et al. A detailed analysis of the kdd cup 99 data set. In: IEEE. 2009 IEEE
symposium on computational intelligence for security and defense applications. [S.l.],
2009. p. 1–6.

TEODORO, A. A. et al. An analysis of image features extracted by cnns to design classification
models for covid-19 and non-covid-19. Journal of signal processing systems, Springer, p.
1–13, 2021.

TEODORO, A. A. M. et al. An fpga-based performance evaluation of artificial neural network
architecture algorithm for iot. Wireless Personal Communications, v. 1, p. 1, 2021.

THAMILARASU, G.; CHAWLA, S. Towards deep-learning-driven intrusion detection for the
internet of things. Sensors, Multidisciplinary Digital Publishing Institute, v. 19, n. 9, p. 1977,
2019.

TIAN, Q. et al. An intrusion detection approach based on improved deep belief network.
Applied Intelligence, Springer, v. 50, n. 10, p. 3162–3178, 2020.

VAN, N. T.; THINH, T. N. et al. An anomaly-based network intrusion detection system
using deep learning. In: IEEE. 2017 international conference on system science and
engineering (ICSSE). [S.l.], 2017. p. 210–214.

VARANASI, V. R.; RAZIA, S. Cnn implementation for ids. In: 2021 3rd International
Conference on Advances in Computing, Communication Control and Networking
(ICAC3N). [S.l.: s.n.], 2021. p. 970–975.

VASHIST, A. et al. Securing a wireless network-on-chip against jamming-based denial-of-
service and eavesdropping attacks. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, IEEE, v. 27, n. 12, p. 2781–2791, 2019.

VEMBANDASAMY, K.; SASIPRIYA, R.; DEEPA, E. Heart diseases detection using naive bayes
algorithm. International Journal of Innovative Science, Engineering & Technology, v. 2,
n. 9, p. 441–444, 2015.

VENKATESH, B.; ANURADHA, J. A review of feature selection and its methods. Cybernetics
and information technologies, v. 19, n. 1, p. 3–26, 2019.

VERMA, A.; RANGA, V. Machine learning based intrusion detection systems for iot
applications. Wireless Personal Communications, Springer, v. 111, n. 4, p. 2287–2310,
2020.

155

VIEGAS, E. et al. Towards an energy-efficient anomaly-based intrusion detection engine for
embedded systems. IEEE Transactions on Computers, IEEE, v. 66, n. 1, p. 163–177, 2016.

VIGNA, G.; KEMMERER, R. A. Netstat: A network-based intrusion detection system. Journal
of computer security, IOS Press, v. 7, n. 1, p. 37–71, 1999.

VOKOROKOS, L.; BALÁŽ, A. Host-based intrusion detection system. In: IEEE. 2010 IEEE
14th International Conference on Intelligent Engineering Systems. [S.l.], 2010. p. 43–47.

WALL, D. Cybercrime: The transformation of crime in the information age. [S.l.]: Polity,
2007. v. 4.

WAN, S. et al. A knowledge based machine tool maintenance planning system using
case-based reasoning techniques. Robotics and Computer-Integrated Manufacturing,
Elsevier, v. 58, p. 80–96, 2019.

WANG, J.; SU, X. An improved k-means clustering algorithm. In: IEEE 3rd International
Conference on Communication Software and Networks. [S.l.: s.n.], 2011. p. 44–46.

WANG, K. et al. Haq: Hardware-aware automated quantization with mixed precision.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2019. p. 8612–8620.

WANG, R. et al. Deep learning for anomaly detection. In: Proceedings of the 13th
International Conference on Web Search and Data Mining. [S.l.: s.n.], 2020. p. 894–896.

WANG, X. et al. A novel hybrid mobile malware detection system integrating anomaly
detection with misuse detection. In: Proceedings of the 6th International Workshop on
Mobile Cloud Computing and Services. [S.l.: s.n.], 2015. p. 15–22.

WEISS, K.; KHOSHGOFTAAR, T. M.; WANG, D. A survey of transfer learning. Journal of Big
data, SpringerOpen, v. 3, n. 1, p. 1–40, 2016.

WINKLER, J. A unix prototype for intrusion and anomaly detection in secure networks.
In: Proceedings of the 13th National Computer Security Conference. [S.l.: s.n.], 1990. p.
115–124.

WU, K.; CHEN, Z.; LI, W. A novel intrusion detection model for a massive network using
convolutional neural networks. IEEE Access, IEEE, v. 6, p. 50850–50859, 2018.

WU, T. et al. Intrusion detection system combined enhanced random forest with smote
algorithm. EURASIP Journal on Advances in Signal Processing, SpringerOpen, v. 2022,
n. 1, p. 1–20, 2022.

WUNDERLICH, S. et al. Comparison of system call representations for intrusion detection.
In: SPRINGER. International Joint Conference: 12th International Conference on
Computational Intelligence in Security for Information Systems (CISIS 2019) and
10th International Conference on EUropean Transnational Education (ICEUTE 2019).
[S.l.], 2019. p. 14–24.

XIN, Y. et al. Machine learning and deep learning methods for cybersecurity. Ieee access,
IEEE, v. 6, p. 35365–35381, 2018.

156

YANG, L.; MOUBAYED, A.; SHAMI, A. Mth-ids: a multitiered hybrid intrusion detection
system for internet of vehicles. IEEE Internet of Things Journal, IEEE, v. 9, n. 1, p. 616–632,
2021.

YANG, L.; SHAMI, A. On hyperparameter optimization of machine learning algorithms:
Theory and practice. Neurocomputing, Elsevier, v. 415, p. 295–316, 2020.

YANG, Y. et al. Improving the classification effectiveness of intrusion detection by using
improved conditional variational autoencoder and deep neural network. Sensors,
Multidisciplinary Digital Publishing Institute, v. 19, n. 11, p. 2528, 2019.

YANG, Z.; LI, D. Application of logistic regression with filter in data classification. In: 2019
Chinese Control Conference (CCC). [S.l.: s.n.], 2019. p. 3755–3759.

YANG, Z. et al. Learning with multiclass auc: Theory and algorithms. IEEE Transactions on
Pattern Analysis and Machine Intelligence, p. 1–1, 2021.

YAO, R. et al. Intrusion detection system in the smart distribution network: A feature
engineering based ae-lightgbm approach. Energy Reports, Elsevier, v. 7, p. 353–361, 2021.

YIN, C. et al. A deep learning approach for intrusion detection using recurrent neural
networks. Ieee Access, IEEE, v. 5, p. 21954–21961, 2017.

ZHANG, A. et al. Dive Into Deep Learning: Release 0.16.1. The authors, 2020. Disponível
em: <https://books.google.com.br/books?id=TNMTzgEACAAJ>.

ZHANG, C.; PATRAS, P.; HADDADI, H. Deep learning in mobile and wireless networking: A
survey. IEEE Communications Surveys Tutorials, v. 21, n. 3, p. 2224–2287, 2019.

ZHANG, H. et al. An effective convolutional neural network based on smote and gaussian
mixture model for intrusion detection in imbalanced dataset. Computer Networks, v. 177,
p. 107315, 2020. ISSN 1389-1286. Disponível em: <https://www.sciencedirect.com/science/
article/pii/S1389128620300712>.

ZHANG, H. et al. An effective convolutional neural network based on smote and gaussian
mixture model for intrusion detection in imbalanced dataset. Computer Networks,
Elsevier, v. 177, p. 107315, 2020.

ZHANG, J. et al. Intrusion detection system using deep learning for in-vehicle security. Ad
Hoc Networks, Elsevier, v. 95, p. 101974, 2019.

ZHANG, J. et al. Deep learning based attack detection for cyber-physical system
cybersecurity: A survey. IEEE/CAA Journal of Automatica Sinica, IEEE, v. 9, n. 3, p.
377–391, 2021.

ZHANG, Y. et al. Network intrusion detection: Based on deep hierarchical network and
original flow data. IEEE Access, IEEE, v. 7, p. 37004–37016, 2019.

ZHANG, Z. et al. A model based on convolutional neural network for online transaction
fraud detection. Security and Communication Networks, Hindawi, v. 2018, 2018.

https://books.google.com.br/books?id=TNMTzgEACAAJ
https://www.sciencedirect.com/science/article/pii/S1389128620300712
https://www.sciencedirect.com/science/article/pii/S1389128620300712

157

ZHAO, G.; ZHANG, C.; ZHENG, L. Intrusion detection using deep belief network
and probabilistic neural network. In: IEEE. 2017 IEEE international conference on
computational science and engineering (CSE) and IEEE international conference on
embedded and ubiquitous computing (EUC). [S.l.], 2017. v. 1, p. 639–642.

ZHOU, L. et al. Cyber-attack classification in smart grid via deep neural network.
In: Proceedings of the 2nd International Conference on Computer Science and
Application Engineering. [S.l.: s.n.], 2018. p. 1–5.

ZHOU, Y. et al. Soft-root-sign activation function. ArXiv, abs/2003.00547, 2020.

ZOU, X. et al. Logistic regression model optimization and case analysis. In: IEEE 7th
International Conference on Computer Science and Network Technology (ICCSNT).
[S.l.: s.n.], 2019. p. 135–139.

158

APPENDIX A – Dataset Feature Description

The features of the datasets used in this research are network flows captured in both
forward and reverse directions. In Table A.1, a detailed description of the features is presented
for better understanding. The table contains information about the total packets in both
direction, active and idle time, size of packets, statistical features such as the mean, standard
deviation and more. These information determine the characteristics of the network flow
and defines the class to which it belongs.

Table A.1 – Comprehensive description of the feature names in the datasets used for the IDS model
development taken from www.unb.ca

S/No Feature Name Description

1 Flow ID Flow Identifier

2 Source IP Source IP Address

3 Source Port The port where the traffic orignates

4 Destination IP Detsination IP

5 Destination Port Detsination Port

6 Protocol Protocol

7 Timestamp Timestamp

8 Fl Dur Flow duration

9 Tot Fw Pk Total packets in the forward direction

10 Tot Bw Pk Total packets in the backward direction

11 Tot L Fw Pkt Total size of packet in forward direction

12 Fw Pkt L Max Maximum size of packet in forward direction

13 Fw Pkt L Min Minimum size of packet in forward direction

14 Fw Pkt L Avg Average size of packet in forward direction

15 Fw Pkt L Std Standard deviation size of packet in forward direction

16 Bw Pkt L Max Maximum size of packet in backward direction

17 Bw Pkt L Min Minimum size of packet in backward direction

18 Bw Pkt L Avg Mean size of packet in backward direction

19 Bw Pkt L Std Standard deviation size of packet in backward direction

20 Fl Byt S flow byte rate that is number of packets transferred per second

21 Fl Pkt S flow packets rate that is number of packets transferred per second

https://www.unb.ca/cic/datasets/ids-2018.html

159

Table A.1 continued from previous page

S/No Feature Name Description

22 Fl Iat Avg Average time between two flows

23 Fl Iat Std Standard deviation time two flows

24 Fl Iat Max Maximum time between two flows

25 Fl Iat Min Minimum time between two flows

26 Fw Iat Tot Total time between two packets sent in the forward direction

27 Fw Iat Avg Mean time between two packets sent in the forward direction

28 Fw Iat Std Standard deviation time between two packets sent in the forward
direction

29 Fw Iat Max Maximum time between two packets sent in the forward direction

30 Fw Iat Min Minimum time between two packets sent in the forward direction

31 Bw Iat Tot Total time between two packets sent in the backward direction

32 Bw Iat Avg Mean time between two packets sent in the backward direction

33 Bw Iat Std Standard deviation time between two packets sent in the backward
direction

34 Bw Iat Max Maximum time between two packets sent in the backward direction

35 Bw Iat Min Minimum time between two packets sent in the backward direction

36 Fw Psh Flag of times the PSH flag was set in packets travelling in the forward
direction (0 for UDP)

37 Bw Psh Flag of times the PSH flag was set in packets travelling in the backward
direction (0 for UDP)

38 Fw Urg Flag of times the URG flag was set in packets travelling in the forward
direction (0 for UDP)

39 Bw Urg Flag of times the URG flag was set in packets travelling in the backward
direction (0 for UDP)

40 Fw Hdr Len Total bytes used for headers in the forward direction

41 Bw Hdr Len Total bytes used for headers in the forward direction

42 Fw Pkt S Number of forward packets per second

43 Bw Pkt S Number of backward packets per second

44 Pkt Len Min Minimum length of a flow

160

Table A.1 continued from previous page

S/No Feature Name Description

45 Pkt Len Max Maximum length of a flow

46 Pkt Len Avg Mean length of a flow

47 Pkt Len Std Standard deviation length of a flow

48 Pkt Len Va Minimum inter-arrival time of packet

49 Fin Cnt Number of packets with FIN

50 Syn Cnt Number of packets with SYN

51 Rst Cnt Number of packets with RST

52 Pst Cnt Number of packets with PUSH

53 Ack Cnt Number of packets with ACK

54 Urg Cnt Number of packets with URG

55 Cwe Cnt Number of packets with CWE

56 Ece Cnt Number of packets with ECE

57 Down Up Ratio Download and upload ratio

58 Pkt Size Avg Average size of packet

59 Fw Seg Avg Average size observed in the forward direction

60 Bw Seg Avg Average size observed in the backward direction

61 Fw Byt Blk Avg Average number of bytes bulk rate in the forward direction

62 Fw Pkt Blk Avg Average number of packets bulk rate in the forward direction

63 Fw Blk Rate Avg Average number of bulk rate in the forward direction

64 Bw Byt Blk Avg Average number of bytes bulk rate in the backward direction

65 Bw Pkt Blk Avg Average number of packets bulk rate in the backward direction

66 Bw Blk Rate Avg Average number of bulk rate in the backward direction

67 Subfl Fw Pk The average number of packets in a sub flow in the forward direction

68 Subfl Fw Byt The average number of bytes in a sub flow in the forward direction

69 Subfl Bw Pkt The average number of packets in a sub flow in the backward direction

70 Subfl Bw Byt The average number of bytes in a sub flow in the backward direction

71 Fw Win Byt Number of bytes sent in initial window in the forward direction

72 Bw Win Byt # of bytes sent in initial window in the backward direction

161

Table A.1 continued from previous page

S/No Feature Name Description

73 Fw Act Pkt # of packets with at least 1 byte of TCP data payload in the forward
direction

74 Fw Seg Min Minimum segment size observed in the forward direction

75 Atv Avg Mean time a flow was active before becoming idle

76 Atv Std Standard deviation time a flow was active before becoming idle

77 Atv Max Maximum time a flow was active before becoming idle

78 Atv Min Minimum time a flow was active before becoming idle

79 Idl Avg Mean time a flow was idle before becoming active

80 Idl Std Standard deviation time a flow was idle before becoming active

81 Idl Max Maximum time a flow was idle before becoming active

82 Idl Min Minimum time a flow was idle before becoming active

162

APPENDIX B – Pre-trained Model Classification Reports

The five pre-trained models used in this research achieved high performance of in
classifying the classes in both datasets used as shown in Table A.2. During the data pre-
processing, we experimented with two feature transformation techniques MinMaxScaler

and QuartileTransformer. We found that the results obtained with QT outperformed those
obtained with MMS. This accounts for the highly performing models. Also, during the model
training, the reconstruction error or loss function was greatly minimized with the help of the
categorical cross-entropy loss function. In all areas, we obtain a highly efficient lightweight
IDS model.

163

Table A.2 – Performance of the TL models in classifying each class in the dataset

Performance of Each Algorithm on the IDS2018 Image Data in classifying each class
Base CNN VGG16 VGG19

Classes Acc PR RC FS Acc PR RC FS Acc PR RC FS
Benign

0.99

0.97 0.98 0.98

0.99

0.96 0.99 0.97

0.99

0.96 0.99 0.97
Bot 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Brute Force 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DoS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Infiltration 0.96 0.93 0.84 0.96 0.91 0.94 0.98 0.90 0.94
Web Attack 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

INV3 MNV3S ENV2B0
Classes Acc PR RC FS Acc PR RC FS Acc PR RC FS
Benign

1.00

1.00 1.00 1.00

0.98

0.95 0.98 0.96

0.99

0.97 0.98 0.98
Bot 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Brute Force 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DoS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Infiltration 1.00 1.00 1.00 0.95 0.88 0.91 0.96 0.93 0.94
Web Attack 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Performance of Each Algorithm on the IDS2017 Image Data in classifying each class
Base CNN IV3 VGG16

Classes ACC PR RC FS Acc PR RC FS Acc PR RC FS
Benign

1.00

0.99 0.99 0.99

1.00

1.00 1.00 1.00

1.00

1.00 1.00 1.00
Bot 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Brute Force 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
DoS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Infiltration 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PortScan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Web Attacks 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VGG19 MNV3B0 ENV2B0
Classes Acc PR RC FS Acc PR RC FS Acc PR RC FS
Benign

1.00

1.00 1.00 1.00

0.99

0.99 0.99 0.99

0.99

0.99 0.99 0.99
Bot 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Brute Force 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
DoS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Infiltration 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PortScan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Web Attacks 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

Source: Author (2022)

	1 INTRODUCTION
	1.1 Objective
	1.1.1 Specific Objectives

	1.2 Justification
	1.3 Organization of Work

	2 THEORETICAL BACKGROUND AND RELATED WORKS
	2.1 The Concept and Classification of Intrusion Detection Systems (IDS)
	2.1.1 Categorization Based on the Attack Types
	2.1.2 IDS Based on the Analyzed Data

	2.2 Computer Network and Different Types of Network Attack
	2.2.1 Denial of Service (DoS)
	2.2.2 Distributed Denial of Service (DDoS)
	2.2.3 Infiltration
	2.2.4 Web attack
	2.2.5 Brute force
	2.2.6 Probing/Port scan

	2.3 Frameworks for Implementing IDS
	2.3.1 Statistics-based techniques
	2.3.2 Knowledge-based techniques
	2.3.3 IDS based on Machine Learning techniques
	2.3.3.1 Shallow ML Algorithms
	2.3.3.2 IDS Based on Deep Learning Techniques

	2.4 Publicly Available IDS Datasets
	2.4.1 DARPA 1998 dataset
	2.4.2 KDD CUP 99 Datasets
	2.4.3 National Security Lab Knowledge Discovery and Data (NSL-KDD) Dataset
	2.4.4 DEFCON dataset
	2.4.5 ADFA Dataset
	2.4.6 ISCXIDS2012
	2.4.7 UNSW- NB15
	2.4.8 ISCX-URL2016
	2.4.9 CICIDS2017
	2.4.10 CSE-CICIDS2018
	2.4.11 CAIDAs datasets
	2.4.12 CIC-DDoS2019
	2.4.13 CIC-InvesAndMal2019
	2.4.14 CICDarknet2020 dataset

	2.5 Activation Functions
	2.5.1 Sigmoid
	2.5.2 Hyperbolic Tangent Function (Tanh)
	2.5.3 Softmax
	2.5.4 Rectified Linear Unit (ReLU)
	2.5.5 Soft Root Square (SRS)

	2.6 Optimizer
	2.6.1 Stochastic Gradient Descent (SGD)
	2.6.2 RMSProp
	2.6.3 Adams

	2.7 Loss Function
	2.7.1 Cross Entropy
	2.7.2 Binary Cross-Entropy
	2.7.3 Categorical Cross-Entropy

	2.8 Feature Selection and Handling Data Imbalances
	2.9 Related Works

	3 MATERIALS AND METHOD
	3.1 Materials (Tools Used)
	3.1.1 Software
	3.1.2 Hardware

	3.2 Performance Evaluation Metrics
	3.3 Method for Dataset Preparation and Preprocessing
	3.3.1 Database Selection
	3.3.2 Data Preprocessing
	3.3.2.1 Data Cleaning and Visualization
	3.3.2.2 Feature Selection
	3.3.2.3 Feature Scaling and Label Encoding
	3.3.2.4 Handling Data Imbalance

	3.3.3 Creation of Training and Testing Data

	3.4 Proposed IDS Model Implementation
	3.4.1 Image Generation and Formatting
	3.4.2 ELETL-IDS: Ensemble Transfer Learning Model
	3.4.3 Best Model through Hyper-Parameter Optimization (HPO)
	3.4.4 Deep Learning Model Quantization

	4 RESULTS AND DISCUSSION
	4.1 Models Developed on Tabular Data
	4.1.1 Classical Machine Learning Model Performance
	4.1.2 1D-CNN Model Evaluation

	4.2 Models Based on Image Data
	4.2.1 IDS Evaluation Using Transfer Learning
	4.2.2 Ensemble Model based on Transfer Learning

	4.3 Evaluation of Models Optimized using Quantization

	5 CONCLUSION AND FUTURE WORK
	5.1 Challenges and Recommendations

	 REFERENCES
	 APENDIX A – Dataset Feature Description
	 APENDIX B – Pre-trained Model Classification Reports

