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 ABSTRACT: Bernstein polynomials are suitable for performing shape-constrained regressions, in 

particular, for unimodal convex regression. The Pickands function is convex and unimodal, being 

a fundamental element in the theory of extreme value copulas. The purpose of this article is to 

explain in details the use of Bernstein polynomials in the estimation of Pickands function and to 

establish a new test of significance for extreme value copulas. 
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1 Introduction 

Bernstein polynomials are suitable for performing shape-constrained regressions, 

particularly for unimodal convex regression. The Pickands function (PICKANDS, 1981), a 

fundamental element in the theory of extreme value copulas, is convex and unimodal. The 

purpose of this article is to explain in details the use of Bernstein polynomials (available: 

https://www2.math.upenn.edu/~kadison/bernstein.pdf, accessed 10-13-2021) in the 

estimation of the Pickands function and to establish a new test of significance for extreme 

value copulas. The theoretical aspects regarding copulas theory are maintained at 

elementary level. The reader can find other results in the texts by (NELSEN, 2013) and 

(JOE, 1997). For purpose of completeness some nice properties of Bernstein polynomials 

are presented. 

 

2 Bernstein polynomials  

Each term in the Newton's binomial expansion  

0

,( )
n

n k n k

k

n
x y x y

k




 
 
 

   taken 

in 1x y  , with  0 1x  , defines the so-called Bernstein polynomials: 
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It follows immediately that, for all  0,1x , 
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  and, as 
, ( ) 0,n kb x 

the set  
,{ ( ), 0,..., }n kb x k n  constitutes a partition of the unit. 

These polynomials have a long history and they have a number of properties similar 

to those of the binomial numbers:  

 

- The elements of ,{ ( ), 0,..., }n kb x k n  form a basis for the space of 

polynomials of degree less than or equal to n .  

 

- Bernstein's polynomials and the Beta probability distribution are related: 
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- Bernstein's polynomials can be defined recursively:       
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-  The derivatives of the Bernstein polynomials are given by:  
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For the second derivative we must observe that: 

1k        ,1n

d
b x

dx
      

1 2
1 1 1

n n
n x n n x x

 
      

  ,1

2

2 n

d
b x

dx
   

2
2 1 1

n
n n x


     

        
3

1 2 1
n

n n n x x


      

1k n      , 1n n

d
b x

dx
    2 11 1n nn n x x n x      

  , 1

2

2 n n

d
b x

dx
     31 2 1nn n n x x     

     

      22 1 nn n x     

1 1k n      ,

2

2
( )n k

d
b x

dx
    1, 1 1,n k n k

d d
n b x b x

dx dx
  

 
  

 
 

   2, 2 2, 11 ( )n k n kn n b x b x   
    

      2, 1 2,n k n kb x b x  
     

     2, 2 2, 1 2,1 2n k n k n kn n b x b b x    
      . 

All together, 



Braz. J. Biom., Lavras, v.40, n.2, p.152-165, 2022 - doi: 10.28951/bjb.v40i2.548 155 
 

,

2

2
( )n k

d
b x

dx
 

 

     

   

   

2, 2 2, 1 2,

2

2

2

3 2

3

1 for 0

2 1 2 1 for 1

1 2 for 2 2

2 1 2 for 1

for

n k n k n k

n

n n

n n

n

x k

n x x x k

n n b x b b x k n

n x x x k n

x k n

    



 

 



  

     


        


    




  

 

- One of the most important property of Bernstein's polynomials is to approximate 

functions uniformly. For a function  f x  with domain at  0,1 ,  defining

   ,
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    as the Bernstein polynomial of  f x , 

we have: 

2.1 Bernstein-Weierstrass approximation theorem 

Theorem 2.1.1: If  f  is a real-valued bounded function with domain in the interval  0,1 ,  

then for each point x where f is continuous, ( )( ) ( )nB f x f x  as n → ∞. If f is 

continuous on  0,1 , then the Bernstein polynomial ( )( )nB f x  tends uniformly to f as 

n   (available: https://www2.math.upenn.edu/~kadison/bernstein.pdf, accessed 10-

13-2021). 

 

The restriction of the domain to the interval [0,1]  can easily be extended to  [0, ],  

by redefining the Bernstein's polynomials as: 
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Actually, the property of interest here is the fact that Bernstein's polynomials 

uniformly approximate continuous functions because it is easy to characterize increasing or 

even unimodal polynomials when they are expressed by linear combinations of Bernstein's 

polynomials. 

Consider the polynomial given by a linear combination of Bernstein's polynomials 
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It follows from these two results: 
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Proposition 2.1.1: 

i. If 
0 1 ... na a a    then   0aP x  , that is, the polynomial ( )aP x  is 

monotonous non-decreasing. 

ii. If 1 0oa a  , 1 0n na a    and 2 12k k ka a a     0,..., 2k n  , then

(0) 0aP   , (1) 0aP    and ( ) 0aP x  , that is, the polynomial ( )aP x  is 

unimodal convex; (derivatives at points 0 and 1 are lateral derivatives).  

(CHANG et al.,  2007)  

 

As an application of this result, we obtain a polynomial regression with shape 

constraint as:  

Given a data set ( , ) 1,...,i ix y i m , a unimodal convex polynomial of degree n
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 , that best fits this data, in the sense of the minimum squares, is 

obtained as follows. 

The regression matrix is:  

,0 1 ,1 1 ,2 1 , 1 0

,0 2 ,1 2 ,2 2 , 2 1

,0 ,1 ,2 ,

( ) ( ) ( ) ... ( )

( ) ( ) ( ) ... ( )

...

( ) ( ) ( ) ... ( )

n n n n n

n n n n n

n m n m n m n n m n

b x b x b x b x a

b x b x b x b x a
X a

b x b x b x b x a

   
   
    
   
    

  

. 

That is, y X a   . 

The restrictions, according to (ii) of Lemma 1, can be described by the vector: 
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Observe, then, that Bernstein Polynomials allowed us to reduce a polynomial 

regression problem to a linear regression problem with constrains.  

𝑚𝑎𝑥‖𝑋𝑎 − 𝑦‖2 

𝑟𝑒𝑠𝑡𝑟𝑖𝑡𝑜 𝐴 ≥ 0 
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This optimization problem is a quadratic programming (BOYD, VANDENBERGHE, 

2004, p.152), and is a basic problem in the area of optimization, with a bunch of efficient 

algorithms to solve it.  

3 Extreme value copulas and the Pickands function  

Definition 3.1: The copula C(u, v) is said to be an extreme value copula if there is a copula 

FC  such that    1 1lim , ,F

nn n

n
C u v C u v


  for all    

2
, 0,1u v  .  

Pickands Theorem: The bivariate copula  is of extreme value if, and only if, for all 
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, 0,1 1,1u v   , it can be expressed in the form: 
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in which the so-called Pickands function  .A  is a convex function with domain in 

 0,1  and image in  1 2,1 , and satisfies    max ,1 1t t A t    and

 1 1A t   .  

The Pickands Theorem can also be stated as:  

The bivariate copula  is of extreme value if, the transformation 
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, results in a convex curve, bounded upper 

by 1z   and lower by  max ,1z t t  .  

3.1 Bernstein's polynomials in the estimation of the Pickands function 

The fact that the Pickands function is convex and unimodal is a natural justification 

for it to be estimated using Bernstein's polynomials (suggestion by Professor Dr. Yan of the 

University of Connecticut in Storrs). 

The estimation of the Pickands function is implemented using the CT   transformation 

shown below. Given a copula  ,C u v  consider the transformation: 
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If the copula is of extreme value this transformation degenerates and the image of CT  

is no longer    0,1 0,   and became the graph of the Pickands function. Indeed, 

            ,C u v  
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3.1.1 Estimation procedure 

If      1 1 2 2, , , ,..., ,N Nu v u v u v  is a sample of an extreme value copula 
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  , then        1 1 1 1, , ,..., , ,N N N NC Ct z T u v t z T u v     are 

points on the graph   ,t A t . If the function  A t   is unknown it can be estimated with 

the points      1 1 2 2, , , ,..., ,N Nt z t z t z  by a linear regression using the Bernstein 

polynomials with the degree n and constraints, obtaining a polynomial ˆ ( )nP t . According 

to Bernstein-Weierstrass approximation theorem,  ˆ ( )nP t   approaches  A t  and the mean 

of the sum of residues,  
2

1

1 ˆ ( )
N

N n i i

i

T P t z
N 

  , is expected to be small. Otherwise, if 

the copula is not an extreme value one this sum is expected to be greater. Appropriate degree 

n of the polynomial can be obtained by model selection methods. 

The Pickands function, besides being convex, satisfies    0 1 1A A   and 

 1 1A t     (Figure 1).  
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Figura 1 - Graph of a typical Pickands Function. 

 

Thus, the regression should be restricted to the unimodal and convex polynomials in 

 0,1 , according to  ii  of Proposition 1, with    0 1 1n nP P    and satisfying the 

inequalities 1 (0)nP    e (1) 1nP   .  
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Therefore, the problem of estimation of the Pickands function using Bernstein's 

polynomials is a linear regression problem consisting of minimizing the sum of squares

  
2

1

m

i i

i

nP t z


 , with the set of constraints expressed in matrix form as: 
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in which, the inequalities in the first and last lines are equalities (CHANG et al.,  2007).  

It is also considered the inequality that limits the size of the parameters: 

0

n

n
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 . 

This problem can be solved by using the "solve.QP" routine of the quadprog R 

package.  

 

3.1.2 Implementation of the Pickands function estimator 
For the simulation process, the steps are: 

Step 1) Take a sample      1 1 2 2, , , ,..., ,N Nx y x y x y  from the random pair 

 ,X Y .  

Step 2) For each pair  , ,i ix y  consider  ,i in m , in which in  is the rank of ix   and 

im   is the rank of iy , when sequences 1 2, ,..., Nx x x   and 1 2, ,..., Ny y y  are sorted in 

ascending order. 

Step 3) Obtain the sample in the unit square    0,1 0,1  through the transformation 

1 1, ,..., ,
1 1 1 1

N Nn mn m

N N N N

  
   

      
. The division by 1N   is used to avoid the point 

 1,1 . 

Step 4) Apply the transformation CT  in 1 1, ,..., ,
1 1 1 1

N Nn mn m

N N N N

  
   

      
. 

Step 5) The linear regression, using Bernstein polynomials and its respective 

restrictions, are obtained via function “solve.QP” of the quadprog R package. 
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4 A test of significance for extreme value copulas  

The new method of estimation of the Pickands function using Bernstein polynomials 

allows to create a test of significance that checks if a dataset might be appropriately 

represented by an extreme value dependence model. 

This test is based on the concept of A-plot, and follows the same procedures as in 

(CORMIER et al., 2014). A briefly description of an A-plot follows: 

Let {𝑥1, 𝑥2, … 𝑥𝑁} and  {𝑦1, 𝑦2, … 𝑦𝑁} be realizations of the random pair (𝑋, 𝑌). The 

marginal distribution functions of 𝑋 and 𝑌 are estimated by their respective empirical 

versions: 

𝐹𝑁(𝑡) =
1

𝑁
∑ 𝟏

𝑁

𝑖=1

(𝑋𝑖 ≤ 𝑡)          𝐺𝑁(𝑡) =
1

𝑁
∑ 𝟏

𝑁

𝑖=1

(𝑌𝑖 ≤ 𝑡). 

Let Û𝑖 = 𝐹𝑁(𝑋𝑖), �̂�𝑖 = 𝐺𝑁(𝑌𝑖), be random variables and observe that, according to the 

probability integral transformation, the variables Û𝑖 and �̂�𝑖 are close to the uniform(0,1) 

distribution. The idea now is to use the empirical copula ˆ
NC  as the joint distribution of 

(Û1, �̂�1), … , (Û𝑁 , �̂�𝑁). If (𝑢1, 𝑣1), … , (𝑢𝑁 , 𝑣𝑁) are realizations of the random pair (Û𝑖 , �̂�𝑖), 

then: 

�̂�𝑁(𝑢, 𝑣) =
1

𝑁 + 1
#{(𝑢𝑖 , 𝑣𝑖),   𝑢𝑖 ≤ 𝑢, 𝑣𝑖 ≤ 𝑣}. 

 

The division by 𝑁 + 1 avoids that �̂�𝑁 takes the value 1. 

The pairs (𝑡1, 𝑧1), … , (𝑡𝑁 , 𝑧𝑁) are build: 

𝑡𝑖 =
ln(𝑣𝑖)

ln(𝑢𝑖𝑣𝑖)
,    𝑧𝑖 =

ln(�̂�𝑁(𝑢𝑖 , 𝑣𝑖))

ln(𝑢𝑖𝑣𝑖)
.  

 

As described above, if 𝐶 is an extreme value copula, the points (𝑡𝑖 , 𝑧𝑖) should be near 

the graph of the Pickands function of the copula 𝐶. This procedure is denominated A-plot 

(Figure 2). 

 

Figura 2 - A-plot for an extreme value copula. 
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The null hypothesis 0H  states that the observed pairs (𝑢𝑖 , 𝑣𝑖) are realizations of an 

extreme value copula C . With the points (𝑡𝑖, 𝑧𝑖), the Bernstein polynomial ˆ ( )nP t  is fitted 

as an estimative of the Pickands function. 

The test statistic is the average of the sum of squares of deviations between the 

observed points and the fitted points: 

 
2

1

1 ˆ ( )
N

N n i i

i

T P t z
N 

  . 

The test consists in rejecting 𝐻0 for 𝑇𝑁 sufficiently large. The distribution of the 

statistic 𝑇𝑁 under the null hypothesis is not known and is approximated via parametric 

bootstrap method. The recipe is as follows: 

1 – Using the data (𝑢1, 𝑣1), … , (𝑢𝑁, 𝑣𝑁), obtain the Kendall’s tau which will be used 

as an estimative of its population version. 

2 – Choose a representative of the extreme value copulas family. In this work, the 

Gumbel copula was selected. 

3 – Define the copula’s parameter with the Kendall’s tau value obtained in step 1 and 

use it to generate a sample 1 1 2 2( , ), ( , ),..., ( , )N Nu v u v u v .  

4 – Using the Pickands function transformation, obtain the points (𝑡1, 𝑧1), … , (𝑡𝑁 , 𝑧𝑁). 

5 –  Fit a Bernstein polynomial ˆ ( )nP t  to the points of the previous step. 

6 – Calculate the test statistic:  

 
2

1

1 ˆ ( )
N

N i N i

i

T z P t
N 

  . 

7 – Steps 3, 4, 5 and 6 are repeated 𝑁𝑏 times. 

8 – With the bN  values of 𝑇𝑁 , build its empirical distribution. 

9 – Reject 0H  if the p-value is less than the adopted significance level 𝛼. Do not 

reject 0H  otherwise. 

In order to verify type I error rates, 1000 samples of size 200 from the Gumbel copula 

are generated (extreme value copula) using the values 𝜏 = 0,25,   𝜏 = 0,50,   𝜏 = 0,75 for 

Kendall’s tau. The test is carried out at a nominal level of 5%. 

To verify type II error rates, samples from non-extreme value copulas Clayton, Frank, 

Gaussian and 𝑡4 are generated, using the same configurations of repetitions, sample size 

and Kendall’s tau values from the type I error case. 

(Table 1) is used to compare the performance of the proposed test with type I and II 

error rates of several tests in extreme value copulas organized by (CORMIER et al., 2014, 

p. 649).  
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Table 1 - Rejection rates of the null hypothesis (in %) at a nominal level of 5% and sample 

size of 200 

Modelo KY DN BGN BDV KSY CGN

Gumbel 5.5 3.8 5.2 5.4 4.5 5.0 4.7

Clayton 92.5 98.4 96.7 98.0 87.4 94.6 97.7

0.25 Frank 6.5 58.3 57.0 38.4 29.1 66.1 18.7

Gaussiana 12.5 36.5 40.3 37.3 16.8 38.7 25.5

21.0 23.9 19.6 26.2 10.5 26.6 37.7
4

t

proposed test

Gumbel 6.0 3.9 5.0 5.1 2.9 4.0 5.4

Clayton 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.50 Frank 63.0 95.7 84.8 59.4 73.0 96.5 87.8

Gaussiana 38.0 61.8 61.7 62.6 23.7 51.0 59.4

39.5 50.1 45.3 56.0 15.8 52.7 58.6
4

Gumbel 5.0 3.2 5.3 4.9 2.5 2.3 6.2

t

Clayton 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.75 Frank 73.5 99.9 92.9 58.5 78.3 99.0 98.3

Gaussiana 13.5 66.5 71.1 75.2 8.4 46.7 56.5

25.5 50.6 55.8 67.8 4.6 69.2 45.8
4

t

 

5 Results and discussion  

The results obtained by the new test are comparable to those obtained by other tests. 

However, the proposed test did not obtain a good control of the type II error rate, except 

when the data comes from Clayton family. 

The runtime with Bernstein's polynomial method adjustment is substantially lower 

than the others at Cobs bundle in free software R. 

The use of Bernstein's polynomials is an efficient way of estimating the Pickands 

function. With this estimation process it is possible to obtain a new test of significance for 

extreme value copulas that presents performance compatible with other tests already 

established in the literature.  
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 RESUMO: Os polinômios de Bernstein são adequados para realizar regressões com restrição de 

forma, em particular, regressão convexa unimodal. A função de Pickands é convexa e unimodal, 

sendo um elemento fundamental na teoria das cópulas de valores extremos. O objetivo deste artigo 

é explicar em detalhes o uso de polinômios de Bernstein na estimação da função de Pickand e 

estabelecer um novo teste de significância para cópulas de valores extremos. 
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