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ABSTRACT

Pressure is a fundamental thermodynamic variable that can be used to modify the properties
of materials because it reduces the interatomic distances and modifies the electronic orbitals
and the connection patterns of the sample. It is a versatile tool for creating exotic materials
not accessible in environmental conditions. Recently, high-pressure experimental techniques
developed have led to the synthesis of new functional materials with excellent performance: for
example, superconductors, superhard materials, and high energy density materials. Computer
simulations aided and accelerated some of these advances, an essential tool for the search for
crystalline structures and the characterization of physical properties. Thus, this work investi-
gated the structural, electronic, and mechanical properties of the Roterbärite family (PdCuBiX3
- X = S, Se or Te) under the influence of high pressure through Density Functional Theory
(DFT) calculations using the Quantum Espresso. The calculations have been performed using
Perdew–Zunger’s LDA (LDA-PZ) exchange-correlation (XC) functional. The crystal structure
has been computationally optimized under several pressures, and the bulk modulus was found
to be 71,65 GPa, 53,02 GPa, and 50,3 GPa for the PdCuBiS3, PdCuBiSe3 and PdCuBiTe3 re-
spectively. Electronic structure calculations demonstrated that PdCuBiS3 and PdCuBiSe3 are
semiconductors, and PdCuBiTe3 is metallic.

Keywords: DFT, electronic structure, bulk modulus, new materials, high-pressure.



RESUMO

A pressão é uma variável termodinâmica fundamental que pode ser utilizada para controlar
as propriedades dos materiais, pois, ela reduz as distâncias interatômicas, modifica os orbitais
eletrônicos e os padrões de ligações das amostras. É uma ferramenta versátil para a criação
de materiais exóticos não acessíveis em condições ambientais. Recentemente, técnicas ex-
perimentais de altas pressões levaram à síntese de novos materiais funcionais com excelentes
desempenhos. Como por exemplo: supercondutores, materiais superduros e materiais de alta
densidade de energia. Alguns desses avanços foram auxiliados e acelerados por simulações
computacionais, uma importante ferramenta para a busca de estruturas cristalinas e caracteri-
zação das propriedades físicas. Com isso, este estudo busca investigar as propriedades estrutu-
rais, eletrônicas e mecânicas dos minerais da família da Roterbärite (PdCuBiX3 - X = S, Se or
Te) sob influência de altas pressões através de cálculos via Teoria do Funcional da Densidade
(DFT) usando o Quantum Espresso. Os cálculos foram realizados usando o funcional de troca
e correlação (XC) LDA de Perdew-Zunger (LDA-PZ). A estrutura cristalina foi otimizada com-
putacionalmente sob várias pressões e os módulos de bulk encontrados foram de 71,65 GPa,
53,02 GPa e 50,3 GPa para o PdCuBiS3, PdCuBiSe3 e PdCuBiTe3, respectivamente. Os cál-
culos de estrutura de bandas demonstraram que PdCuBiS3 e PdCuBiSe3 são semicondutores, e
PdCuBiTe3 é metálico.

Palavras-chave: DFT, propriedades eletrônicas, modulo de bulk, novos materiais, altas pressões
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1 INTRODUCTION

1.1 Contextualization

High-pressure physics has developed rapidly in recent decades (RYCHKOV, 2020; TSE,

2019; MAO et al., 2016). It was studying high pressure awarded the 1946 Nobel Prize in Physics

to Percy Williams Bridgman due to his outstanding contributions of dramatic improvements

in high-pressure apparatuses and measurement techniques (NEWITT, 1962; BECKER, 1961;

BRIDGMAN, 1914; HAZEN; HAZEN, 1999). Besides, artificial diamonds were first produced

by applying high pressure to carbon (WANG et al., 2020). It was also applying high pressure

to the quartz that Coesite and Stishovite were first synthesized in 1953 and 1961, respectively.

Both having a natural occurrence in a meteorite impact crater (Meteor Crater (METEOR. . . ,

[2021?|)) in Arizona, US, were reported by Edward C. T. Chao, the Coesite in 1960 (CHAO;

SHOEMAKER; MADSEN, 1960) and the Stishovite in 1962 (FLEISCHER, 1962).

High pressure can generate phase transitions and new phases, creating new chemical re-

actions with structural transformations of molecules and electronic transitions (KATRUSIAK,

2008). These reactions include synthesizing several exotic compounds inaccessible at ambient

conditions, such as superhard materials, noble gases reactions, and superconductors (ZHANG

et al., 2017). Predicting the reactions and transformations generated by pressure is difficult. For

example, there are stable gas hydrates at high pressure (KUHS, 2004; SHIMIZU et al., 2002).

Although most substances become metallic under high pressure, new materials of the supercon-

ducting type can be obtained (BUDZIANOWSKI; KATRUSIAK, 2004; KATRUSIAK, 2008).

Another example is ice, with 19 crystal structures (polymorphism) obtained at different pres-

sures and temperatures (GASSER et al., 2021).

Pressure can contribute considerably to a better understanding of many condensed-

matter phenomena (DUTTA et al., 2019; ZHANG et al., 2021). In recent years, several minerals

have been subjected to high pressures seeking to characterize their properties for possible ap-

plications in creating electronic devices (HUANG et al., 2019; LI et al., 2020; RAHMAN;

HAQUE; HOSSAIN, 2019; DUTTA et al., 2018; ZHANG et al., 2021; LI et al., 2020; KANG

et al., 2015).

Furthermore, collaborators at the geology center of the Czech Republic studied and pub-

lished a paper about an unknown mineral (reported by (CABRAL; LIESSMANN; LEHMANN,

2015)) corresponding to PdCuBiSe3 (VYMAZALOVÁ et al., 2020; VYMAZALOVÁ et al.,
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2019). This new mineral is called Roterbärite, a rare compound variant of sulfosalt (BRITAN-

NICA, 2018) Malyshevite (PdCuBiS3) but includes Selenium in the chemical formula instead

of Sulfur.

This work aims to study and characterize the structural and electronic properties of

Roterbärite and Malyshevite under high pressure through simulation using first principles meth-

ods (ab initio). In addition, a new undiscovered variant mineral is still proposed, PdCuBiTe3.

So it is shown the optimized structural, bulk modulus, and electronic properties by applying

high pressures of the three minerals using Density Functional Theory (DFT) theory.

1.2 Objectives

1.2.1 General objective

• DFT calculations to investigate the structural, mechanical, and electronic properties of

new minerals (PdCuBiX3 - X = S, Se or Te), as well as their modifications by the high-

pressure application.

1.2.2 Specific objectives

• Simulation of new materials.

• Geometry optimization at several pressures

• Bulk modulus calculation

• Band structure and Density Of States (DOS) calculation

1.3 The organization this work

Chapter 2 presents the theoretical foundation and describes the main characteristics

of the theoretical and computational methods used. This chapter describes the Hamiltonian

of many interacting bodies, followed by approximations to make the problem numerically

tractable.
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In chapter 3, the methodology of this study is presented. Chapter 4 presents and dis-

cusses the results obtained from the execution of the methodology. The conclusions related to

the results and perspectives for future works are presented in chapter 5.
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2 THEORETICAL FOUNDATION

The structural, mechanical, and electronic characterization of atoms, molecules, and

condensed phases under high pressure can be studied by two methods:

1. Experimental techniques performed in a Diamond Anvil Cell (DAC), by X-ray diffrac-

tion and Raman spectroscopy (ANZELLINI et al., 2019):

(a) DAC possibilities to generate high pressures of order to multiple Gigapascals

GPa in materials, allowing in situ measurements of the electrical, elastic, and

thermodynamic parameters (including shear modulus, compression velocities,

thermal capacity, entropy, kinetic energy, Debye temperature, etc.) (BROWN;

MCQUEEN, 1986; MAO et al., 2001). For example, electrical resistance mea-

surements under high pressure can reveal a material as an insulator, semiconduc-

tor, metal, or even as a superconductor (HAN et al., 2005). It even provides high-

pressure transformation behaviors, allowing the discovery of electronic or struc-

tural phase transitions (PATTERSON et al., 2000; VELISAVLJEVIC; VOHRA,

2003).

2. The computational methods can be divided into two groups, the Density Functional

Theory (DFT) and the Force Field (FF) (RYCHKOV, 2020):

(a) The FF method is a semi-empirical computational method used to estimate the

forces between atoms within molecules without explicitly considering their elec-

tronic structure (RYCHKOV, 2020). This method is implemented, for example,

in the software PIXEL (GAVEZZOTTI, 2011) and CrystalExplorer17 (THOMAS

et al., 2018; MACKENZIE et al., 2017).

(b) The DFT method is a first-principles1 computational modeling method to de-

termine the properties of a multi-electronic system that make up the atoms of

a crystal by explicitly treating their electronic structure. In DFT, the primary

variable is the electron density of the system, and no longer the multi-electronic

wave function as in the case of the Theory of Hartree and Fock (HARTREE,

1928; FOCK, 1930; SLATER, 1951). Examples of packages that implement the

1 "Ab initio model" or a "first principles model" is a mathematical model about a sufficiently large set
of natural phenomena. The physics properties should emerge from the numerical solution of these
models (IFIMAC, [201-?|).
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DFT are Quantum Espresso (GIANNOZZI et al., 2017), CPMD (ANDREONI;

CURIONI, 2000), CASTEP (CLARK et al., 2005) and CRYSTAL (DOVESI et

al., 2018).

Furthermore, density functional theory has been widely used to study mineral phases’

properties (structure, energy, elasticity, etc.) relevant to Earth and Planetary Sciences (OGANOV;

BRODHOLT; PRICE, 2002). In addition, this chapter presents a brief introduction to the theory

of computer simulation of solids used in this work (DFT).

2.1 Multi-body Problem

In Quantum mechanics, the energy of a system E can be determined by solving the

Schrodinger equation (COHEN; MORI-SáNCHEZ; YANG, 2012):

H Ψ = EΨ, (2.1)

where Ψ is the wave function and H is the Hamiltonian operator. It is interesting to calculate

the energy’s expectation value, i. e. the probabilistic expected value of the result (measurement)

of an experiment (COHEN-TANNOUDJI et al., 2006). Moreover, the expectation value is

obtained by knowing the system’s wave function. This resolution is only possible by relating

Ψ to the boundary conditions of the interest system. In particular, the interaction for many

electrons and nucleus (multi-body) without the external potentials is given by the Hamiltonian

operator (PARR, 1980):

H = Te +Tn +W +ν +υ , (2.2)

where Te is an electric kinetic energy, W electrons interaction potential with electrons, υ elec-

trons interaction potential with nucleus; Tn is a nucleus kinetic energy, and ν nucleus interaction

potential. This Hamiltonian can be written in the non-relativistic approximation with the terms

expressed in the first quantization and Gaussian units (LOBATO, 2015):

H =
−ℏ2

2

[
∑

i

∇2
i

me
+∑

I

∇2
I

MI

]
︸ ︷︷ ︸+

1
2 ∑

i ̸= j

e2

|ri − r j|︸ ︷︷ ︸+
1
2 ∑

I ̸=J

ZiZ je2

|Ri −R j|︸ ︷︷ ︸−∑
i,I

Zie2

|ri −RI|︸ ︷︷ ︸,
Te+Tn W ν υ

(2.3)
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where, for the electrons, e is the charge, me is the mass, and ri is its coordinates. For the nucleus,

Ze, MI , RI , respectively the same properties are described (LOBATO, 2015).

The study of eq. Equation 2.3 using wave functions for the solve Schrodinger equation is

complicated because the increase of electron number this formulation becomes computationally

demanding, or even unthinkable2. For example, the wave function of benzene depends on 126

electronic coordinates, where this molecule is made up of six carbon, and six hydrogen atoms

(HAMMES-SCHIFFER, 2017). On the other hand, the DFT method (section 2.3) is an example

of a multi-body system that studies the electronic or nucleus structure, principally the ground

state using an electronic density. With this method is possible to get the same information as

wave functions but less computationally demanding (BASEDEN; TYE, 2014).

2.2 Borh-Oppenheimer approach

It’s complex to work with the previous Hamiltonian (Equation 2.3) because the study of

the electronic structure of solids becomes insoluble, even for numerical solutions. It is necessary

for some approximations.

The first approach is the Borh-Oppenheimer approach, or adiabatic approximation (BORN;

OPPENHEIMER, 1927), and consists of decoupling the electronic coordinates from the nuclear

ones, To deal separately the dynamics of the nucleus and the dynamics of electrons. Because

the mass of the nucleus is much greater than the mass of the electrons, the nucleus is considered

static, and the electrons are moving at an appreciable speed. For most molecular systems, this

assumption is accurate (CHELIKOWSKY, 2019).

Thus, the electrons are described by an electron Hamiltonian, He, given by (PARR,

1980):

He = Te +W +υ =
−ℏ
2me

∑
i

∇
2
i +

1
2 ∑

i ̸= j

e2

|ri − r j|
−∑

i,I

Zie2

|ri −RI|
. (2.4)

This equation (2.4) is more simplified, but its resolution remains difficult. For real systems to

be computationally treated, other approaches must be taken into account (KOHN, 1999). These

approaches include: Hartree-Fock and DFT (CHELIKOWSKY, 2019).

2 The Hartree-Fock method is an example of the study quantum many-body for the wave equation in a
stationary state (Froese Fischer, 1987).
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2.3 Density-functional theory (DFT)

Pioneers works by Thomas and Fermi (THOMAS, 1927; FERMI, 1927) on electronic

energy in terms of electron density distribution, n(r) (KOHN, 1999):

n(⃗r) = N
∫

|ψ ∗ (r⃗1, r⃗2, ..., r⃗N)ψ(r⃗1, r⃗2, ..., r⃗N)|×dr⃗2...dr⃗N , (2.5)

contributed for the starting point of modern DFT. ψ(r⃗1, r⃗2, ..., r⃗N) is a wave function for many

electrons and N is a number of the interacting electrons; In this theory, the external potential

(υ) is a functional (F [n(⃗r)]) of the ground-state density n(⃗r)). In other words, the observable

quantities of an N-electron quantum system are completely determined by the ground state

charge density (n(⃗r)) (COHEN; MORI-SáNCHEZ; YANG, 2012). This statement constitutes

the Hohenberg Kohn theorems (HOHENBERG; KOHN, 1964):

1. "The electron density determines the external potential (to within an additive constant)."

2. "For any positive definite trial density, n, such that
∫

n(⃗r)d⃗r = N then E[n]≥ E0"

With the first theorem, it immediately follows that the electron density uniquely deter-

mines the Hamiltonian operator (Equation 2.4). This is because the Hamiltonian is specified

by the external potential υ and the total number of electrons, N, which can be calculated from

the density simply by integrating across space. Thus, in principle, given the charge density, the

Hamiltonian operator could be determined, as well as the wave functions ψ(r⃗1, r⃗2, ..., r⃗N) and

the material properties (HARRISON, 2003). Now note that the second theorem establishes a

variational principle, where E0 is the ground state energy. This theorem is restricted to ground-

state studies. An extension allows the study of excited states, that can be guaranteed orthogonal

to the ground state. Still, to obtain this knowledge, the ground state wave function is needed

(HARRISON, 2003).

Notably, using density to solve the Hamiltonian significantly reduces the number of

variables and coordinates in the system.

2.4 The Kohn–Sham Equation

In the 1960s, Pierre Hohenberg, Walter Kohn, and Lu Sham established the theoretical

framework for justifying the replacement of the many-body wave function by one-electron or-
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bitals with the electron density being a key quantity (HOHENBERG; KOHN, 1964; KOHN;

SHAM, 1965). As seen in the previous section, Hohenberg and Kohn proposed that the total

electronic energy of a system was uniquely dependent on the electron’s density. Then, Sham

and Kohn provided a recipe for calculating this necessary density. For this work, in 1998, Walter

Kohn received the Nobel Prize in Chemistry (KOHN, 1999).

Now to introduce the approximation of Kohn-Sham, it’s necessary to review the problem

in solving the Hartree-Fock equation, given by (ECHENIQUE; ALONSO, 2007):

(
−ℏ2∇2

2m
+VN (⃗r)+VH (⃗r)+V i

x (⃗r)
)

φi(⃗r) = Eiφi(⃗r), (2.6)

where the principal problem is on the exchange term x (of the potential V i
x (⃗r)) that depends on

the orbital i. For example, considering five occupied orbitals the system will have five coupled

Hamiltonians. So Kohn and Sham suppose that the exchange potential did not depend on the

orbital (V i
x =Vx) reducing the problem from five Hamiltonians to one, by the introduction of the

Local Density Approximation (LDA) (CHELIKOWSKY, 2019). In this approximation, one will

write exchange energy of the system as (KOHN; SHAM, 1965):

Ex[n(⃗r)] =
∫

n(⃗r)Ex[n(⃗r)]d3r, (2.7)

for an electronic density of n, the term Ex[n(⃗r)] is the “exchange energy density”. Still, in this

theory, the exchange potential is determined from the functional derivative of Ex[n(⃗r)]:

Vx[n] =
δEx[n]

δn
. (2.8)

So far, one has assumed a general term without specifying Ex[n(⃗r)]. Well, physicists

work with approximations, considering the exchange energy per electron of free electron gas

(see section 4.2 of (CHELIKOWSKY, 2019)):

Ex =−3e2

4π
k f =−3e2

4π
(3π

2n)1/3, (2.9)

making an audacious assumption. I. e., the previous exchange energy density (free electron gas)

is a universal functional applicable to all electronic structure problems. It can be written as:

Ex[ρ] =−3e2

4π
(3π

2)1/3
∫
[n(⃗r)]4/3d3r, (2.10)
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or using eq. 2.8, is obtained:

Vx[n] =−e2

π
(3π

2n(⃗r))1/3. (2.11)

About 15 years before Kohn and Sham’s work, Slater obtained a similar equation dif-

fering by a factor of 2/3 from the previous equation. However, Slater minimized the system’s

energy using the average of the free electrons, while Kohn and Sham used the functional density

(ASHCROFT; MERMIN et al., 1976).

One can also consider the total density in terms of the density of electrons spin-up and

electrons spin-down. This approach is known Local Spin Density Approximation (LSDA), and

the functionals of this approximation treat “up” and “down” spin differently.

With that, given a functional exchange and correlation for the electronic structure of

matter, it can be solved the Kohn–Sham equation (with the "self-consistently" method (CHE-

LIKOWSKY, 2019)):

(
−ℏ2∇2

2m
+VN (⃗r)+VH (⃗r)+Vxc[n(⃗r)]

)
φi(⃗r) = Eiφi(⃗r). (2.12)

Once a self-consistent solution of the Kohn–Sham equation is obtained, the total energy can be

computed from:

EKS =
M

∑
i
−1/2

∫
ρ (⃗r)VH (⃗r)d3r+

∫
ρ (⃗r)(Exc[ρ (⃗r)]−Vxc[ρ (⃗r)])d3r. (2.13)

The DFT solution for the energies in the considered system is exact in principle. How-

ever, the nature of the many-body electronic interaction is mapped to an exchange and correla-

tion potential (Vxc[ρ (⃗r)]) that needs to be approximated, according to the Kohn-Sham approxi-

mation.

2.5 The Pseudopotential Approximation

It is known that in the bonds of chemical elements, only valence electrons participate

in them. For example, the carbon atom has electron configuration 1s22s22p2. The 1s state is

tightly bound and highly localized around the nucleus. Furthermore, the 1s state is not strongly

altered when carbon atoms form bonds. Instead, a combination of the 2s and 2p states is known

to form a chemical bond. Another example of the role of electronic valence states is the element
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sodium, which has an atomic configuration of 1s22s22p63s1. The 1s22s22p6 electronic states

are tightly bound and do not contribute to metallic bonds in solid elemental sodium. Only the

3s1 electron moves through the sodium crystal to carry current.

Strongly bounded, more internal electronic states are called "core states," and outermost,

weakly bounded electronic states are called "valence states." Valence states are recognized in

the periodic table, and elements are grouped into columns based on that.

Can this physical idea of valence and central states be incorporated into a workable

approximation to help us solve the Kohn-Sham equation?

Differently treating core and valence states is a good idea. Although the Kohn-Sham

equation is much simpler than the Hartree-Fock description, the problem still needs to be solved.

The properties of small molecules with light elements are decidedly more straightforward to

calculate than large molecules with heavy elements. Heavy elements have more complex wave

functions due to the many electrons. For example, the solution of the Kohn-Sham equation for

a Pb atom is approximately 2500 times more difficult to solve than for a C atom considering

only the number of electrons (CHELIKOWSKY, 2019).

One of the first researchers to solve this problem was Hellmann (HELLMANN, 1935),

who suggested treating the electronic states of an atom in two terms. The valence electrons, first

term, interact to form bonds, and the nucleus electrons, second term, remain inert. An image of

the matter according to Hellmann’s ideas is shown in Fig. 2.1

With this model, electrons bonded more strongly to the nucleus, called “core” electrons,

unite with the nucleus, forming a single nucleus, called a pseudonucleus. With this in mind, the

atom or pseudoatom is formed by the pseudonucleus and valence electrons (pseudovalence).

These perceive pseudopotential rather than real potential.

Thus, it is possible to describe the real potential of a system through a pseudopotential

that ideally provides the same results from a cutoff radius rc, which is described approximately

on a plane wave basis (ZIMAN, 1972).

Fig. 2.2 is shown a Coulomb potential and its wave function in blue compared to the

pseudopotential in red. The real wave function and the pseudo wave and potentials combine

after a certain cutoff radius.

This theory makes it possible to study molecular systems more efficiently.
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Figura 2.1 – Hellmann’s pseudopotential model.

Label: The valence electrons move in a fixed arrangement of chemically inert ion cores. The ion cores
are composed of the nucleus and core electrons.

Source: (CHELIKOWSKY, 2019).

Figura 2.2 – Comparison of pseudopotential with real potential.

Source: (WIKEMEDIA. . . , 2006).

2.6 Introduction to Crystals

In general, solids can be classified as crystalline and amorphous according to the spatial

distribution of atoms, molecules, or ions. An amorphous solid is composed of atoms, molecules,

or ions that do not show a long-range ordering. A crystalline solid or crystal is formed by a

periodic arrangement of identical units, atoms, groups of atoms, molecules, or ions, arranged
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in a repetitive, containing a small number of imperfections and impurities (AVERILL, 2021;

LOWER, 2017).

On the other hand, an ideal crystal is a perfect, infinite repetition of identical groups of

atoms. These groups are called the base of the crystal. A crystal lattice is a set of mathematical

points associated with the base of the crystal. These points are associate a primitive translation

vectors, a⃗1, a⃗2 and a⃗3 (KITTEL; MCEUEN; MCEUEN, 1996; ASHCROFT; MERMIN et al.,

1976).

Primitive translation vectors are often used to define the crystalline axes of a primitive

parallelepiped. This parallelepiped is called a primitive cell, the smallest unit cell possible

(Fig. 2.3). A unit cell, not necessarily primitive, can fill all space through appropriate transla-

tions (RÖSSLER, 2009; KITTEL; MCEUEN; MCEUEN, 1996).

Figura 2.3 – Three-dimensional lattice of a primitive cell.

Source: (KITTEL; MCEUEN; MCEUEN, 1996).

Note that the complete description of the unit cell consists of the representation of the

spatial part by the network parameters a, b, and c, in which you determine the cell’s dimensions

employing axes or edges. Thus, these parameters are related to the alpha, beta, and gamma

angles formed between the network parameters. The distribution of symmetry points in the

respective volume created by the network parameters also describes the unit cell based on sym-

metry operations: reflection, rotation, or inversion (SYMMETRY. . . , 2019; NELSON, 2013).

Unit cells are determined by 230 symmetry groups grouped into 14 possible structures

that make up the 7 existing crystal systems called Bravais lattices, see figure 2.4 (AROYO,

2016; WHAT. . . , [201-?|).
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Figura 2.4 – The Bravais Lattices.

Source: (THE SYMMETRY. . . , 2019).

2.7 Quantum Espresso

The Quantum-ESPRESSO (Quantum-opEn-Source Package for Research in Electronic

Structure, Simulation, and Optimization) package is a multipurpose and multi-platform software

for ab-initio calculations of condensed matter systems (GIANNOZZI et al., 2020; GIANNOZZI

et al., 2009). The calculus is based on density functional theory for describing electron-electron

interactions, and a plane wave basis sets for the expansion of the electronic wave function, and

a pseudopotential description of the electron-ion interaction (SCANDOLO et al., 2005).
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The codes use periodic boundary conditions for the direct treatment of infinite crystal

systems and an efficient convergence to extended aperiodic systems to the thermodynamic limit

(GIANNOZZI et al., 2009).

It calculates the ground-state energy and Kohn-Sham orbitals for insulators, metals, and

semiconductors, in any crystal structure, for many exchange-correlation functionals. It can

perform various structural optimizations, and variable-cell molecular dynamics (GIANNOZZI

et al., 2017).
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3 METHODS

The Three minerals, PdCuBiX3 (X represents the chalcogens, i.e., S, Se, or Te), have the

same structure (orthorhombic), which contain three independent metal positions (Cu, Pd, and

Bi) and three X positions, based on six atoms, show Fig. 3.1. The Cu site displays a strongly

deformed tetrahedral coordination [CuX4]. Palladium atoms show square-planar coordination,

typical of the 4d8 electron configuration of Pd2+. The [PdX4] squares are almost perfectly

planar. Four X atoms surround bismuth atoms (VYMAZALOVÁ et al., 2020; LAUFEK et al.,

2019).

Figura 3.1 – Crystal structure of PdCuBiX3.

Label: (a) Inclined view; (b) view along the a axis. The [CuX4] tetrahedral and [PdX4] squares are
highlighted (note that X in yellow represents the chalcogens, i.e., S, Se, or Te ); Bi atoms are light
orange.

Source: (VYMAZALOVÁ et al., 2020)

The DFT calculations of the solids (PdCuBiX3 - X = S, Se or Te) were performed by

Quantum-ESPRESSO (view section 2.7). And the exchange-correlation energy is evaluated

within the Perdew–Zunger’s LDA (LDA-PZ) (PERDEW; MCMULLEN; ZUNGER, 1981).

The valence electron-ion interactions were considered by using norm-conserving pseudopo-

tentials (TROULLIER; MARTINS, 1991). In the geometry relaxation, the residual force on the

atoms was converged less than 2,57 meV/Å, the residual bulk stress less than 0.01 GPa, the

energy cutoff to describe the electronic wave functions was 1,17 meV, and The Brillouin zone

integration was performed within the Monkhorst–Pack scheme (PACK; MONKHORST, 1977),

by using 6 × 4 × 2 Gamma center k-point grids in the geometry optimization calculations.
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Then, using the converged geometries under several pressures, the bulk modulus was

calculated by a non-linear fit of the thermodynamic Equation of State (EOS). The equations

used were the Murnaghan Equation of State:

E(V ) = E0 +K0V0

[
1

K′
0(K

′
0 −1)

(
V
V0

)1−K′
0

+
1

K′
0

V
V0

− 1
K′

0 −1

]
, (3.1)

and Birch–Murnaghan Isothermal Equation of State:

E(V ) = E0 +
9V0B0

16

{[(
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V

) 2
3

−1
]3

B′
0 +

[(
V0

V

) 2
3

−1
]2[

6−4
(

V0

V

) 2
3
]}

, (3.2)

where E(V ) is the internal energy, E0 is the initial energy at zero pressure and V0 is its volume,

V is the deformed volume, B0 or K0 is the bulk modulus, and B′
0 or K′

0 is the derivative of the

bulk modulus with respect to pressure (MURNAGHAN, 1944; BIRCH, 1947).

Besides, the bulk modulus and its derivative are defined as:

B0 = K0 =−V
(

∂P
∂V

)
T
, (3.3)

and

B′
0 = K′

0 =

(
∂B0

∂P

)
T
, (3.4)

where P is the pressure and T is the temperature.

Also, using the converged geometries under several pressures, was fitted the lattice pa-

rameters per pressure, and the relative percent deviation (relative error) is shown in the right y

axis, defined by:

%value =
X −X0

X0
×100, (3.5)

where X is the lattice constant under some pressure of interest, and X0 is the lattice constant

under zero pressure.

Ultimately, the electronic structure and the Density Of States (DOS) were calculated

for five pressure variations (-0,5 GPa, -0,25 GPa, 0 GPa, 0,25 GPa, and 0,5 GPa), with 8x6x4

k-point grids. In the calculation of the band structure, the points of symmetry of the Brillouin

zone (K-path: Γ−X − S−Y −Γ−Z −U −R−T −Z) (SETYAWAN; CURTAROLO, 2010).

Then, the pressure band gap variation was evaluated using the least square fit in the linear and
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quadratic functions, respectively:

E(P) = bP+E(0), (3.6)

and

E(P) = aP2 +bP+E(0), (3.7)

where energy E in eV, angular or linear coefficient b in eV/GPa (respectively), quadratic coef-

ficient a in eV/GPa², and pressure P in GPa.
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4 RESULTS AND DISCUSSIONS

The optimized lattice constants of minerals, PdCuBiX3 (X = S, Se, or Te), are shown in

Tab. 4.1 in the right column. On the left, have the experimental data taken from (LAUFEK et

al., 2019) for PdCuBiS3 and (VYMAZALOVÁ et al., 2020) for PdCuBiSe3. Anyway, there is

no DFT theoretical data of the three minerals in the literature to compare; and PdCuBiTe3 needs

the experimental data for comparison. The DFT simulations converged well with data close to

the experimental data.

Tabela 4.1 – Comparison theoretical with experiment data.

Experimental Data ab initio DataLattice Parameters
PdCuBiS3 PdCuBiSe3 PdCuBiS3 PdCuBiS3 PdCuBiTe3

Norm of a 4.8847(8) Å 5,00520(10) Å 4,774 Å 4,886 Å 5,169 Å
Norm of b 7.5885(11) Å 7,9921(2) Å 7,565 Å 7,846 Å 8,122
Norm of c 12.8646(10) Å 13,5969(2) Å 12,562 Å 13,217 Å 13,675 Å
Volume 476.86(11) Å3 543,90(2) Å3 453,630 Å3 506,786 Å3 574,187 Å3

Font: Author (2022).

The non-linear adjustment was fitted by the Birch-Murnaghan and Murnaghan equation

of states (eq. 3.2 and eq. 3.1) on the same graph made with the data of the system’s total

energy and crystal volume obtained by several simulations of different pressures (Fig. 4.1).

Each black dot on the graph represents a calculation made by the DFT. The red curve represents

the fit using the Birch-Murnaghan equation (BM) and, the blue curve plotted represents the

Murnaghan equation (MU) fit.

Figura 4.1 – Non-linear fitting Birch-Murnaghan and Murnaghan (EOS)

Label: (a) PdCuBiS3; (b) PdCuBiSe3; (c) PdCuBiTe3.
Source: Author(2012).

Table 4.2 is represented the adjusted parameters of the Birch-Murnaghan Equation: B0,

B′
0, V0, and E0 are the bulk modulus, the derivative of bulk modulus, initial volume, and initial

energy, respectively. On the other hand, table 4.3 is represented the adjusted parameters of the
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Murnaghan Equation: K0, K′
0, V0, and E0 are the bulk modulus, the derivative of bulk modulus,

initial volume and initial energy, respectively.

Tabela 4.2 – Fitted Parameters Birch-Murnaghan Equation

Parameters PdCuBiS3 PdCuBiSe3 PdCuBiTe3

B0 (GPa) 71,65(3) 53,02(3) 50,3(2)
B′

0 5,19(7) 3,74(8) 9,2(9)
V0 (Å³) 454,042(3) 507,164(6) 574,38(3)
E0 (eV/N) −606,402242(4) −596,314135(1) −579,143812(3)

Source: Author(2012).

Tabela 4.3 – Fitted Parameters Murnaghan Equation

Parameters PdCuBiS3 PdCuBiSe3 PdCuBiTe3

K0 (GPa) 71,64(3) 53,01(3) 50,3(2)
K′

0 5,15(7) 3,72(7) 9,2(1,1)
V0 (Å³) 454,043(3) 507,165(5) 574,38(3)
E0 (eV/N) −606,402242153(5) −596,314135(5) −579,143811(3)

Source: Author(2012).

The bulk modulus (K or B) provides how much a substance is resistant to compression.

The material’s bulk modulus is the ratio of the change in pressure to the fractional volume

compression. It’s true that as a solid is experimentally compressed, it becomes more challenging

to compress. That’s why the non-linear fit.

Thus, you can see in the previous tables that the sulfur compost is more resistant to

pressure. That is, it has a higher bulk modulus.

Another interesting fact is to know how the lattice parameters fluctuate under different

pressures. Indeed Fig. 4.2 shows the parameters under several high pressures. Fig. 4.2(a) shows

the norm of the lattice vector a⃗ in red, green, and blue circles for PdCuBiS3 (sulfur from now

on), PdCuBiSe3 (selenium from now on) and PdCuBiTe3 (tellurium from now on), respectively.

Fig. 4.2(b) shows the norm of the lattice vector b⃗ in red, green, and blue squares for sulfur,

selenium, and tellurium, respectively. And last but not least, Fig. 4.2(c) shows the norm of the

lattice vector c⃗ in red, green, and blue triangles for sulfur, selenium, and tellurium, respectively.

Also, the bar to the right axle of the graphs shows the relative percentage values in red,

blue, and green lines for sulfur, tellurium, and selenium, respectively. they were calculated in

relation to a0 which corresponds to the value of the norm of a⃗, or just a, under zero pressure.

It can be seen in Fig. 4.2(a) that the lattice vector a⃗ for sulfur is more compressible.

Fig. 4.2(b) the network vector b⃗ of Selenium undergoes a further reduction. The same happens
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Figura 4.2 – Lattices parameters under high-pressure

Label: (a) norm of a (circles) and relative deviation (lines) for S, Se, and Te; (b) norm of b (squares) and
relative deviation (lines) for S, Se, and Te; (c) norm of c (triangles) and relative deviation (lines) for S,
Se, and Te.

Source: Author(2012).

in Fig. 4.2(c) as a lattice vector c⃗ of selenium. It can be noted that for sulfur, there are no

perceptible variations in this pressure range. It is noteworthy that the relative percentage value

is negative for compression and positive for the expansion of the solid.

The main difference between conductors, semiconductors, and insulators lies in their

electronic structure or band structure. And the main factor for differentiating between the three

types of electronic conduction is the evaluation of the band gap dimension. So, in the figures:

Fig. 4.3, Fig. 4.4, Fig. 4.5, show the band structure and DOS in the region close to the band gap

of the interest materials at -0,5 GPa, 0 GPa, and 0,5 GPa, respectively. The DOS describes the

number of states that are to be occupied by the electrons at each energy. The Fermi energy was

set to 0 eV, dashed red line in the cited figures.

At -0,5 GPa, the sulfur compound and selenium compound, represented by the Fig. 4.3(a)

and Fig. 4.3(b), is a semiconductor with an indirect band gap of the 0,5712 eV and 0,4023 eV ,

respectively. Still, at -0,5 GPa, the tellurium compound, represented by Fig. 4.3(c), is a conduc-

tor (without a band gap).

At the pressure of 0 GPa, the sulfur compound and selenium compound, represented by

Fig. 4.4(a) and Fig. 4.4(b), is a semiconductor with an indirect band gap of the 0,5732 eV and

0,4100 eV , respectively. Still, at 0 GPa, the tellurium compound, represented by Fig. 4.4(c), is

a metal.

Now similarly, at the pressure of 0,50 GPa, the sulfur compound and selenium com-

pound, represented by the Fig. 4.5(a) and Fig. 4.5(b), it is a semiconductor with an indirect

band gap of the 0,5794 eV and 0,4023 eV , respectively. Still, at 0,5 GPa, the tellurium com-

pound, represented by Fig. 4.5(c), is a metal.
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Figura 4.3 – Band Structure and DOS calculation at -0,50 GPa

Label: (a) PdCuBiS3; (b) PdCuBiSe3; (c) PdCuBiTe3.
Source: Author(2012).
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Figura 4.4 – Band Structure and DOS calculation at 0 GPa

Label: (a) PdCuBiS3; (b) PdCuBiSe3; (c) PdCuBiTe3.
Source: Author(2012).
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Figura 4.5 – Band Structure and DOS calculation at 0,50 GPa

Label: (a) PdCuBiS3; (b) PdCuBiSe3; (c) PdCuBiTe3.
Source: Author(2012).
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Similar results were expected from interested materials under such pressures, caus-

ing only a slight variation in the band gap in semiconductor materials, i.e., PdCuBiS3 and

PdCuBiSe3. To better understand the variation of the band gap by the pressure of these miner-

als, a curve fits according to eq. 3.6 (dashed blue line) and eq. 3.7 (dashed red line) was done,

see the Fig. 4.6 and Fig. 4.7.

Figura 4.6 – The band gap by pressure quadratic and linear fits of Sulfur

Source: Author(2012).

Figura 4.7 – The band gap by pressure quadratic and linear fits of Selenium

Source: Author(2012).

Fig. 4.6 shows that both equations, linear and quadratic, describe well the increase in

the band gap linear variation. In Fig 4.7, the best fit is the quadratic curve, indicating the

nonlinearity of the data.

The pressure coefficients derived from both fittings are given in Tab. 4.4 for comparison.
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Tabela 4.4 – Pressure coefficients for the fundamental band gap

Minerals a (eV/GPa2 ×10−3) b (eV/GPa×10−3) E(0) (eV ×10−3)

Sulfur (linear) - 7,9(6) 575,0(2)
Sulfur (quadratic) 2(1) 7,9(4) 574,6(2)
Selenium (linear) - 5(3) 408(1)
Selenium (quadratic) −20(3) 5(1) 410,7(5)

Source: Author(2012).
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5 CONCLUSIONS AND FUTURE PERSPECTIVES

Under zero pressure, the calculated values for the lattice parameters, a b and c, the unit

cell volume, and the atomic positions of PdCuBiS3 and PdCuBiSe3 are in good agreement with

experimental values for an initial study. The unit cell volume had a decrease of approximately

4,8 % and 6,8 %, respectively. The PdCuBiTe3 has no experimental data for comparison.

The materials were subjected to pressures ranging from 0 to 15 GPa to obtain their

mechanical properties. In addition, the materials were subjected to pressures of 100 GPa, in

order to study their structural alterations, which are still under analysis.

Electronic structure calculations under the calculated pressures in the window -0,5 to

0,5 GPa demonstrated that PdCuBiS3 and PdCuBiSe3 are semiconductors with an indirect band

gap, and PdCuBiTe3 is metallic.

A proposal for future work would be the synthesis of Te compost and the experimen-

tal study of the electronic, structural and mechanical properties of these materials (PdCuBiS3,

PdCuBiSe3 and PdCuBiTe3).
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