
Citation: Pierangeli, L.M.P.;

Silva, S.H.G.; Teixeira, A.F.d.S.;

Mancini, M.; Andrade, R.;

de Menezes, M.D.; Marques, J.J.;

Weindorf, D.C.; Curi, N. Combining

Proximal and Remote Sensors in

Spatial Prediction of Five

Micronutrients and Soil Texture in a

Case Study at Farmland Scale in

Southeastern Brazil. Agronomy 2022,

12, 2699. https://doi.org/10.3390/

agronomy12112699

Academic Editor:

Pablo Martín-Ramos

Received: 21 September 2022

Accepted: 26 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Combining Proximal and Remote Sensors in Spatial Prediction
of Five Micronutrients and Soil Texture in a Case Study at
Farmland Scale in Southeastern Brazil
Luiza Maria Pereira Pierangeli 1 , Sérgio Henrique Godinho Silva 1, Anita Fernanda dos Santos Teixeira 1 ,
Marcelo Mancini 1 , Renata Andrade 1, Michele Duarte de Menezes 1, João José Marques 1,
David C. Weindorf 2,* and Nilton Curi 1

1 Department of Soil Science, Federal University of Lavras, Lavras 37200-900, Minas Gerais, Brazil
2 Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, MI 48859, USA
* Correspondence: weind1dc@cmich.edu; Tel.: +1-989-774-6467

Abstract: Despite the increasing adoption of proximal sensors worldwide, rare works have coupled
proximal with remotely sensed data to spatially predict soil properties. This study evaluated the
contribution of proximal and remotely sensed data to predict soil texture and available contents of
micronutrients using portable X-ray fluorescence (pXRF) spectrometry, magnetic susceptibility (MS),
and terrain attributes (TA) via random forest algorithm. Samples were collected in Brazil from soils
with high, moderate, and low weathering degrees (Oxisols, Ultisols, Inceptisols, respectively), and
analyzed by pXRF and MS and for texture and available micronutrients. Seventeen TA were generated
from a digital elevation model of 12.5 m spatial resolution. Predictions were made via: (i) TA; (ii) TA
+ pXRF; (iii) TA + MS; (iv) TA + MS + pXRF; (v) MS + pXRF; and (vi) pXRF; and validated via root
mean square error (RMSE) and coefficient of determination (R2). The best predictions were achieved
by: pXRF dataset alone for available Cu (R2 = 0.80) and clay (R2 = 0.67) content; MS + pXRF dataset
for available Fe (R2 = 0.68) and sand (R2 = 0.69) content; TA + pXRF + MS dataset for available Mn
(R2 = 0.87) content. PXRF data were key to the best predictions. Soil property maps created from
these predictions supported the adoption of sustainable soil management practices.

Keywords: digital soil mapping; pXRF; terrain attributes; tropical soils; Oxisols; Ultisols; Inceptisols;
random forest

1. Introduction

Detailed and accurate information on micronutrient availability plays an important
role in crop production since deficiency or toxicity thresholds are much more limited than
for macronutrients. Micronutrient deficiencies are an emerging limiting factor commonly
reported in croplands of Brazil [1,2]. This issue is also influenced by lime application for soil
pH adjustment, a common and indispensable practice in many tropical region soils, which
can decrease the availability of plant micronutrients. In tropical regions, there is a scarcity
of massive data acquisition, detailed modeling, and spatial prediction of micronutrients.

Soil texture is a major factor affecting micronutrient availability to plants, especially
under tropical conditions [3]. Moreover, soil texture is also an important driver of soil fertil-
ity and water dynamics [4]. In South American countries, soil testing is more commonly
used to identify micronutrient disorders in crops [1]. Thus, assessing and mapping the
current micronutrient status, as well as any other soil attributes affecting their availability
can be a valuable source of information for better soil fertility management.

A map showing soil attribute variability is one of the most important data layers
for precision farming [5] as spatial prediction is a key point for site-specific nutrient
management [6,7]. However, when compared with traditional management, precision farm-
ing requires high sampling density to properly assist in site-specific management [5], which
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is frequently constrained by the costs of traditional laboratory-based soil physicochemical
analyses. Such analyses are also time-consuming, laborious, and non-environmentally
friendly, as they utilize chemical reagents and generate chemical wastes requiring proper
disposal. Thus, using alternative methods that enable the characterization of soil samples
quickly, economically, and without the generation of chemical effluents is preferable. This
desirable combination can be obtained via remote and, in the last 20 years, proximal sensing
analyses [8].

Recently, proximal sensors such as portable X-ray fluorescence (pXRF) spectrometry
and magnetic susceptibility (MS), as well as digital elevation models (DEMs) obtained
from satellite data and their products (remote sensing data) have become promising alter-
natives for soil characterization [9,10]. In seconds, pXRF can identify and quantify total
elemental contents in the soil, as each element produces element-specific fluorescent en-
ergy allowing for elemental identification; the intensity of said energy provides elemental
quantification [11,12]. Recently, tremendous advances in pXRF application in tropical soils
have been reported for the characterization and prediction of their attributes [13–18].

By comparison, MS is an important soil attribute related to the concentration of mag-
netic iron oxides, reflecting different iron oxide mineral forms and dynamics [19]. In tropical
regions, MS affords solid capabilities in assessing soil parent material [20,21] which influ-
ences soil physicochemical attributes [22]. Both MS and pXRF methods are non-invasive,
non-destructive, and can be used under field or laboratory conditions. Although most soil
studies have been conducted using pXRF and MS data separately, their combination for soil
attribute prediction justifies further investigation, especially across highly heterogeneous
areas [23].

From the soil attributes spatial prediction perspective, most studies have applied a digital
soil mapping framework, supported by soil = f (SCORPAN + ε) predictive model (S—inherent
soil, C—climate, O—organisms, R—relief, P—parent material, A—age, N—geographical
location of the area or point of interest along with ε—error component assessment) based
upon Jenny [24] and expanded later by McBratney et al. [25]. Thus, soil–environment
relationships can be established via quantitative models (e.g., machine learning techniques),
using digital proxies of soil-forming factors as environmental predictor covariates.

PXRF and MS (proxies of S and P) have been used together with other variables
for soil attribute spatial prediction [9,15]. Relief information can be accessed easily via
DEM and DEM-derived topographic features, the so-called terrain attributes such as slope,
topographic wetness index, etc. [15]. These variables are most commonly applied in
spatial predictive models for digital soil mapping since they drive water and nutrients
dynamics, soil erosion, and pedogenesis [25–29]. Data fusion can aid in obtaining informa-
tion on soil attributes across the landscape [30] and improve the precision of site-specific
management [31]. Machine learning algorithms capable of depicting relations between
predictors and the target variable enhance this procedure [32–35].

The potential application of this approach based on the fusion of proximal and re-
motely sensed data to enhance soil attribute characterization both locally and spatially
as well as the lack of studies evaluating the combination of such sensor data motivated
this study. As such, the objectives of this study were to: (1) characterize soils in a highly
heterogeneous research farm in Brazil with diverse land uses via pXRF, MS, and terrain
attributes; (2) predict soil available B, Cu, Fe, Mn, and Zn, and clay, silt, and sand contents
via pXRF, MS, and TA data separately and combined; and (3) produce spatial predictions
of available micronutrient content and texture for the soils of the study area. B, Cu, Fe, Mn,
and Zn were investigated herein since most micronutrient deficiencies in Brazilian crops
are related to these five elements. The other micronutrients (Cl, Mo, and Ni) are either
applied as fertilizers commonly used in Brazil (e.g., KCl), become more available with
liming (common management practice in Brazil) or the natural contents in Brazilian soils
are adequate for most crops in addition to the very small amount required by plants [2,4].
We hypothesize that robust and accurate prediction models and maps will be delivered
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for soil micronutrient availability and soil texture by at least one of the aforementioned
approaches, despite diverse soil classes and several land uses across the study area.

2. Materials and Methods
2.1. Study Area

The study was conducted at the Palmital Research farm (Figure 1), Federal Univer-
sity of Lavras, located in the municipality of Ijaci, Minas Gerais, Brazil, between UTM
longitudes 506,793 and 508,882 mE and latitudes 7,659,470 and 7,660,685 mN, zone 23 K,
datum SIRGAS 2000. The main soil classes are Oxisols, Ultisols, and Inceptisols, rep-
resenting the major Brazilian soils and a classical decreasing sequence of pedogenetic
development. The land uses include native vegetation (Subperennial tropical forest) and
different types of field experiments and crops: eucalyptus, mahogany, slash pine, soybean,
maize, common bean, and forage grass (Eucalyptus sp., Swietenia macrophylla, Pinus sp.,
Glycine max, Zea mays, Phazeolus vulgaris, and Brachiaria decumbens, respectively), under
diverse management systems. This area covers 117 ha at an altitude of 814 to 866 m amsl.
Lithology includes Precambrian gneiss, limestone, phyllite, and alluvial sediments from
the Quaternary period [36]. The climate is humid semitropical featuring dry winters and
rainy summers (Köppen classification: Cwa) with a mean annual temperature of 21 ◦C and
mean annual precipitation of 1500 mm [37].

2.2. Soil Sampling and Laboratory Analyses

Samples from the A and B soil horizons were collected at 39 sites following a regular-
grid design with 173 m of distance between them, totaling 78 samples (Figure 1), making
up a density of one sample/3 ha (detailed mapping). Samples from A and B horizons
were collected from 0–20 cm and 40–60 cm of depth, respectively. As coarse material, grain
size, and moisture can influence analyses, soil samples were air-dried, ground (milled
to break small aggregates), and passed through a 2 mm sieve to remove particles bigger
than sand size (2 mm), which is a common procedure for soil analyses [38–40]. Samples
that underwent this procedure are usually referred to as air-dried fine earth (ADFE). Next,
ADFE samples were subjected to laboratory analyses for the determination of available B,
Cu, Fe, Mn, Zn, and clay, silt, and sand contents.

Available Cu, Fe, Mn, and Zn were extracted with Mehlich-1 solution [38] and their
quantification was performed via atomic absorption spectrophotometry using an AA 800
(Perkin Elmer, Waltham, MA, USA) [39]. Available B was extracted by the hot water
method [40] and determined by the Azomethine H colorimetric method [41]. Clay, silt, and
sand contents were determined via pipette method [42].

A Bartington MS2B (Bartington Instruments Limited, Witney, England) susceptibilime-
ter was used for MS determination [43]. Measurements were performed at low frequency
(0.47 kHz) in triplicate.

Total elemental analysis was performed using a Vanta series pXRF (Olympus, Waltham,
MA, USA) spectrometer. The instrument scans samples via two beams in sequence.
One whole scan was completed in 60 s utilizing Geochem mode [44]. The equipment
features an Rh X-ray tube operating at 8–50 kV as the excitation source. Before scanning,
the equipment was calibrated with a stainless steel factory calibration alloy coin.

From all elements detected by pXRF, 19 were selected to build models in this study.
They were: Al, As, Ca, Cr, Cu, Fe, K, Mn, Ni, P, Pb, Rb, S, Si, Sr, Ti, V, Y, and Zn. The
accuracy of the equipment was evaluated via scanning of standard reference materials
2710a and 2711a certified by the National Institute of Standards and Technology (NIST).
The performed accuracy assessment consisted in comparing pXRF-provided contents
with standard contents in certified samples. The calculated ratio between pXRF-provided
contents and standard contents was called recovery values. The recovery values obtained by
the equipment per element were calculated as follows: recovery value = elemental content
determined by pXRF/certified elemental content of the reference material. Calculated
recovery values of elements used in the modeling process were listed below to highlight
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the accuracy of the equipment (2710a/2711a): Al (0.61/0.61), As (1.06/1.43), Ca (0.65/0.88),
Cr (–/1.19), Cu (1.02/1.01), Fe (0.92/0.96), K (0.83/0.85), Mn (0.93/0.96), Ni (–/1.15), P
(0.63/0.52), Pb (1.02/1.08), Rb (–/–), S (–/–), Si (0.57/0.61), Sr (0.96/0.96), Ti (0.90/0.94), V
(–/0.93), Y (–/–), and Zn (1.00/1.06). Dashes (–) indicates that the element either has no
certified content in the reference material or was not detected by pXRF.
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2.3. Terrain Attributes

A DEM with 12.5 m resolution was obtained from ALOS PALSAR Global Radar
Imagery (https://search.asf.alaska.edu/#/ (accessed on 17 July 2021)). The TA derived
from the DEM were calculated via SAGA GIS software (6.4.0) [45] and were selected
based on several works that used TA for soil attribute prediction (please see [26,46–50] for
more details on these TA), as follows: aspect (asp), catchment area (CA), catchment slope
(CS), channel network base level (CNBL), closed depression (CD), convergence index (CI),
cross-sectional curvature (CSC), flow accumulation (Flow), longitudinal curvature (LC), LS
factor (lsf), modified catchment area (MCA), relative slope position (RSP), SAGA wetness
index (SWI), slope (slp), topographic wetness index (TWI), valley depth (VD), and vertical
distance to channel network (VDCN). Table 1 shows the variation of the terrain attributes
selected for this study.

2.4. Modeling and Validation of the Predictions

A correspondence worksheet containing information on contents of soil micronutrients,
soil texture, soil horizon, land use, pXRF, MS, and TA data for each sample was created to
generate the full dataset. Land use may affect the contents of micronutrients in soil, e.g.,
by the addition of amendments and fertilizers in planted crops. Accordingly, land use
was used as an explanatory variable to train all models due to its possible effect on the
prediction of soil properties [51]. The “land use” variable includes all land use categories
shown in Figure 1. Additionally, the “soil horizon” variable (indicating the horizon of
each sample) was added to the datasets as a predictor variable for models created using
samples from both A and B horizons for predictions, as previous studies pointed out that
models per soil horizon provide different prediction accuracy [13,23]. The TA data were
extracted from each sampling place by overlaying data with the sampling positions using a
geographic information system (GIS).

Next, for the modeling process, all soil samples (78) were randomly separated into
modeling and validation datasets, consisting of 70% (55 samples) and 30% (23 samples) of the
total data, respectively, using cross-validation method imbedded in the caret package [52].
In addition, samples were subdivided and modeled into two ways: (i) specific models for A
and B horizons separately, with number of samples = 39 for each (training = 27 samples,
validation = 12 samples); and (ii) general model, including all 78 samples (the models’
so-called A + B horizons), with number of samples = 78, i.e., 55 and 23 samples for training
and validation, respectively.

In order to adjust the models for predictions and to evaluate the importance of the
predictors for the models, the pXRF, MS, and TA data were divided into six datasets
considering predictor variables for soil micronutrients and texture prediction: (i) TA; (ii) TA
+ pXRF; (iii) TA + MS; (iv) TA + pXRF + MS; (v) MS + pXRF; and (vi) pXRF. So, 144 models
were created and validated (6 predictor datasets × 3 horizon datasets × 8 target variables).

Random forest (RF) algorithm [33] was used to create the prediction models in R
software (v.3.6.1) [52], using the caret package [53]. The following parameters were
adopted based on the suggestions of Liaw and Wiener [54]: number of trees of the model
(ntrees) = 1000, number of variables in each node (nodesize) = 5, and number of variables
used in each tree (mtry) = 3. Moreover, the importance of each variable for model perfor-
mance was calculated. This was completed by removing each variable from models and
measuring the increase in prediction errors without each variable. The rationale behind
this method is that a higher increase in mean square error (%IncMSE) occurs when an
important predictor variable is removed from the model, since the removal of that variable
caused more errors in the predictions. Thus, the greater the error increase (%IncMSE) by
removing a variable from the model, the more important that variable is for the model. This
is a powerful and significant measurement of the relative importance of each independent
variable [54], promoting important data insights by ranking the order of importance of
predictor variables.

https://search.asf.alaska.edu/#/
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Table 1. Descriptive statistics of terrain attributes at a farmland scale in Brazil.

Parameter asp CA CD CI CNBL CS CSC Flow LC lsf MCA RSP slp SWI TWI VD VDCN

Min a 5.7 × 10−2 144.0 0.0 −43.3 809.8 0.0 −7.9 × 10−3 144.0 1 × 10−4 0.0 282.5 2.2 × 10−3 0.0 2.8 4.3 4 × 10−2 0.1
Max b 6.3 3729.4 2.0 14.8 835.5 0.2 3.5 × 10−3 12,665.6 5 × 10−3 3.7 6982.1 1.0 25.3 7.7 11.8 34.5 35.3
Mean 3.3 788.7 0.5 −1.1 820.8 0.1 6 × 10−5 1686.3 6 × 10−5 1.3 1446.8 0.6 11.3 4.2 6.8 11.3 16.5
SD c 2.2 811.6 0.6 8.4 7.3 0.1 2 × 10−3 2595.8 2 × 10−3 1.0 1499.3 0.3 6.5 0.8 1.9 8.5 8.7
CV d 67.4 102.9 128.8 −773.1 0.9 49.2 −3290.9 153.9 3628.2 75.1 103.6 47.8 58.0 20.0 28.2 74.9 52.7

a Minimum, b maximum, c standard deviation, d coefficient of variation. asp—aspect, CA—catchment area, CD—closed depression, CI—convergence index, CNBL—channel network base level,
CS—catchment slope, CSC—cross-sectional curvature, Flow—flow accumulation, LC—longitudinal curvature, lsf—LS factor, MCA—modified catchment area, RSP—relative slope
position, slp—slope, SWI—SAGA wetness index, TWI—topographic wetness index, VD—valley depth, VDCN—vertical distance to channel network.
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The performance of each model was assessed via calculation of the coefficient of
determination (R2) and root mean square error (RMSE) between observed and predicted
results of available micronutrients and sand, silt, and clay fraction contents. The greater
the R2 and the lower the RMSE values, the better the performance of the model.

The best prediction models for available B, Cu, Fe, Mn, Zn, and clay, silt, and sand
fraction contents were used for spatial prediction throughout the study area. Since pXRF
and MS data are point-based information (39 sampled locations), the multilevel B-splines
interpolation method was applied [55] to make these variables continuously represented
across the area. For this process, the data were imported into SAGA GIS, and the function
“Multilevel B-splines” was applied. The values of the spatialized data were processed and
extracted as a table containing their latitude/longitude information using ArcMap (10.1).
Values of the predictor variables for the entire farm area were applied to the RF model
created in R Studio (version 2022.07.01), generating the spatial prediction of the target soil
attributes across the study area. Figure 2 presents a flowchart summarizing all the steps of
this study.
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3. Results and Discussion
3.1. Characterization of Soil Attributes

For better visualization of the diversity of soils on the farm, soil samples were plotted
within the soil textural triangle (Figure 3). Moreover, descriptive statistics of the soil
attributes evaluated are shown in Table 2. Most samples presented a clayey texture. The
mean clay, silt, and sand fraction contents (%) were 48, 18, and 34, respectively (Table 2).
Clay fraction contents ranged from 27 to 74%, silt ranged from 1 to 36%, while sand ranged
from 9 to 55%. Silt content was much lower than clay and sand contents, as expected
because it is the most unstable fraction in most tropical soils [4]. Silva et al. [56] analyzed
1565 soil samples collected across Brazil and found a wide range of soil textures, especially
represented by low contents of silt and greater contents of either clay or sand fractions,
similarly to the results of this study. The coefficient of variation (CV) for particle size
fractions was ≥20% in most cases (especially the silt fraction), as expected due to the large
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variation of soil classes and parent materials [57–59]. The large clay percentage in the soils
is mostly related to low quartz content in the parent materials [60] and high degree of
soil weathering.

The descriptive statistics of the micronutrient contents show high variability justified
by the different soil classes, parent materials, and land uses (Table 2). Considering the
range of micronutrient contents and their classes of agronomical interpretation in terms
of availability for crops (from very low to very high contents), the contents of available B
and Fe are mostly classified as low and very high, respectively [62]. Available Cu, Mn, and
Zn contents varied from very low to high, reflecting the low natural fertility of soils under
native vegetation on one side and soils that received ameliorant applications on another
side (Figure 1c). The latter situation is also responsible for the greatest mean micronutrient
contents in the A horizon for available B, Cu, and Zn. Other studies evaluating cultivated
soils produced similar results [63–65]. Greater contents of available Fe and Mn may be
related to the position of the soils in the landscape, as lowland areas tend to accumulate
water, causing reduction and destabilization of Fe and Mn oxide minerals and, hence, an
increase in available Fe and Mn in these areas [10].
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Soil characterization data obtained by pXRF are shown in Table 3. The main elements
present in these soils were Al, followed by Si and Fe, in accordance with the results found
by Lima et al. [66] and Teixeira et al. [67] in Brazilian soils. While Si tends to accumulate in
these soils mainly as part of the crystalline structure of quartz and muscovite in the sand
and silt fractions, and of kaolinite in the clay fraction, Fe and Al tend to concentrate in the
clay fraction in the form of Fe and Al oxide minerals, beyond kaolinite in the case of Al [68].
Mobile elements that have low natural contents in most Brazilian soils [60] such as Ca, also
presented large variability. Calcium content is increased with a liming application, which is
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commonly performed in most Brazilian soils [2]. Accordingly, greater Ca contents were
observed in A horizon samples. The other elements quantified by pXRF presented varied
contents as a consequence of different soil horizons, soil classes, parent materials, and land
uses of the study area.

Magnetic susceptibility values were greater in B horizons in association with the
greater content of Fe oxide minerals in these horizons. Magnetite in the sand and silt
fractions and maghemite in the clay fraction were commonly observed [69].

3.2. Prediction Model Performance for Available Micronutrients and Texture

The accuracy of prediction models is presented in Figure 4 (R2) and Figure 5 (RMSE).
For soil texture, the best prediction models were achieved with datasets including pXRF
data alone or in association with other proximal or remote sensor data, i.e., MS + pXRF
for sand content (R2 = 0.69); TA + pXRF for silt content (R2 = 0.40); and pXRF alone
for clay content (R2 = 0.67). The best results were achieved in B horizons for sand and
clay, while for silt, optimal results were afforded by the A + B horizons dataset. The
TA may have improved the performance of silt content prediction models since soils
presenting more silt content tend to occur in steep relief conditions [57,58,70], which cannot
be captured by pXRF elemental data (R2 = 0.22 for A + B horizons dataset). Depending
on soil mineralogy, MS data have been strongly correlated with sand and clay contents,
especially when they present magnetic minerals [15,23,71]. Additionally, pXRF data alone
have already been successfully used to predict soil texture in different parts of the world
confirming the potential application of this proximal sensor for such prediction [23,56,72,73].
Silva et al. [56] predicted clay, silt, and sand contents from pXRF data in Brazil using
~1600 soil samples. The best predictions were delivered by support vector machine and RF,
reaching R2 values of 0.83 for clay (both algorithms), 0.70 and 0.75 for silt, and 0.87 and
0.84 for sand, respectively.

Similar to soil texture, optimal results were delivered when pXRF data were included
in prediction models for available Cu (pXRF alone), Fe (MS + pXRF) using B horizon data,
and Mn (TA + pXRF + MS) using A horizon data. For available B and Zn, superior results
were achieved with TA data alone in the A + B horizons dataset. The importance of TA
data for the prediction of available micronutrient content was previously reported [10],
mostly by topography correlations with water dynamics and redoximorphic processes. In
that study, the best models to predict available Cu, Fe, and Mn and Zn content included
pXRF data and reached R2 values of 0.74, 0.86, 0.71, respectively. Comparatively, studies
developed in Sub-Saharan Africa were able to predict available B, Fe, and Mn content with
moderate accuracy using GIS information [50]. For available B, Fe, and Mn content, the
authors found R2 values of 0.41, 0.68, and 0.53, respectively. Shahbazi et al. [74] predicted
available B contents at different soil depths in Northwest Iran using GIS information, yet
with a low R2 value.

The different datasets grouped per soil horizons (A, B, or A + B) delivered variable
results also depending on the prediction variables selected. For instance, using only
pXRF data, A horizons provided the greatest R2 value for Mn and the lowest R2 value
for available Fe. An opposite trend was found when using B horizon data. Additionally,
the best predictions for available B and Zn as well as silt content were achieved by A + B
horizons data. Thus, it was not possible to indicate if specific models per horizon or a
general model combining both horizons’ data would provide better results under universal
conditions. Although other works attempting to predict soil attributes have suggested the
creation of more specific models to increase some prediction results [13], the present study
indicates prediction model performance regarding different datasets may depend upon the
soil attribute being evaluated. In addition, soil attributes may behave differently due to
site-specific variability [75].
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Table 2. Descriptive statistics of available micronutrient contents and texture of soil horizons at a
farmland scale in Brazil.

Attribute Soil Horizon
n a Min b Max c Mean SD d CV e

(mg kg−1) %

B
A 39 0.03 0.22 0.11 0.05 45.45
B 39 0.02 0.22 0.08 0.05 62.50

A + B 78 0.02 0.22 0.10 0.05 50.00

Cu
A 39 0.18 4.08 0.84 0.73 86.90
B 39 0.10 2.57 0.71 0.52 73.24

A + B 78 0.10 4.08 0.78 0.64 82.05

Fe
A 39 17.99 230.24 63.89 52.89 82.78
B 39 14.09 343.02 49.47 57.91 117.06

A + B 78 14.09 343.02 56.68 55.57 98.04

Mn
A 39 8.35 180.55 32.95 33.02 100.21
B 39 1.08 72.46 10.01 12.71 126.97

A + B 78 1.08 180.55 21.48 27.40 127.56

Zn
A 39 0.49 86.63 7.87 13.47 171.16
B 39 0.10 4.79 1.05 1.09 103.81

A + B 78 0.10 86.63 4.46 10.09 226.23
(%)

Clay
A 39 27 67 46 9 20
B 39 30 74 50 9 19

A + B 78 27 74 48 10 20

Silt
A 39 1 36 19 8 41
B 39 9 32 17 6 33

A + B 78 1 36 18 7 38

Sand
A 39 10 55 35 9 26
B 39 9 55 33 10 32

A + B 78 9 55 34 10 29
a Number of samples, b minimum, c maximum, d standard deviation, e coefficient of variation.

Table 3. Descriptive statistics of portable X-ray fluorescence (pXRF) spectrometer (mg kg−1) and
magnetic susceptibility (MS) (×10−6 m3 kg−1) data per soil horizon at a farmland scale in Brazil.

Element
A Horizon B Horizon

Min a Max b Mean SD c CV d Min Max Mean SD CV

Al 44,781 105,232 72,441 16,494 23 49.65 98.17 70,835 11,898 17
As 6 38 13 5 41 8 24 14 4 26
Ca <LODe 3742 1082 896 83 <LOD 2018 117 390 334
Cr 56 150 81 18 22 52 150 85 24 28
Cu 16 59 28 8 29 17 44 27 7 25
Fe 24,863 68,014 43,567 9604 22 27,261 75,936 47,983 10,812 23
K <LOD 15,245 4772 4765 100 <LOD 15,194 4189 4399 105

Mn 68 1.45 238 263 110 64 947 176 187 106
Ni 16 42 28 7 24 14 55 30 11 36
P <LOD 1602 664 342 51 74 777 351 162 46

Pb 9 37 19 6 32 6 32 19 6 34
Rb 7 112 38 31 80 5 122 38 32 85
S <LOD 635 242 120 49 <LOD 233 85 67 78
Si 41,149 14,4397 70,634 21,794 31 39,146 116,214 65,331 20,403 31
Sr 10 74 30 17 56 8 81 27 19 69
Ti 6052 10,970 8385 1.37 16 5144 10,829 8369 1578 19
V 36 98 68 14 20 41 94 69 15 22
Y 9 22 14 3 21 7 24 15 3 23

Zn 28 284 62 48 77 22 81 43 16 37
MS 2 57 13 11 83 2 75 15 14 95

a Min—minimum value; b Max—maximum value; c SD—standard deviation; d CV—coefficient of variation;
e LOD—limit of detection.
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Notably, datasets including pXRF data (TA + pXRF, TA + MS + pXRF, MS + pXRF, and
pXRF alone) provided the best predictions using B horizon data, while datasets including
TA data without pXRF (TA alone and TA + MS) achieved the best predictions for A + B
horizons data. Considering all the soil attributes studied, no well-defined pattern could
be identified regarding the inclusion of either proximal or remotely sensed variables in
the datasets regarding the achievement of the best prediction models. The best prediction
models per soil attribute were reached using: TA dataset and A + B horizons data for
available B and Zn content; pXRF data alone and B horizon data for available Cu and clay
content; MS + pXRF data and B horizon data for available Fe and sand content; TA + pXRF
+ MS data and A horizon data for available Mn content; and TA + pXRF data and A + B
horizons data for silt content.
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fraction prediction models via random forest algorithm for A, B, and A + B horizons at a farmland scale
in Brazil. TA—terrain attributes, pXRF—portable X-ray fluorescence; MS—magnetic susceptibility.

Although TA data have been extensively used as predictor variables for soil at-
tributes [47,50,76–79], they do not always substantially improve the model performance.
Per Nolan et al. [80], TAs alone cannot account for many factors that affect soil fertility,
especially when considering ameliorant application. Additionally, TAs are more important
when dealing with areas more homogeneous in terms of soil classes and parent materi-
als. However, terrain information has the advantage of being freely available and easily
obtained. Their combination with other auxiliary data (e.g., proximal sensor data) can
potentially improve model performance and precision soil management [15,81].

Given the aforementioned results, one can establish an ascending order of accuracy.
Therefore, the groups are: (a) R2 ranging from 0.37 to 0.50 for available B (0.37), Zn (0.50)
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and silt (0.40) content; (b) R2 ranging from 0.60 to 0.70 for available Fe (0.68), clay (0.67), and
sand (0.69) content; and (c) R2 ranging from 0.80 to 0.87 for Cu (0.80) and Mn (0.87) content.
In digital soil mapping, accuracies of R2 > 70% are considered good results (although very
difficult to be achieved); accuracies of R2 < 50% are more common [82,83]. Herein, at least
one adequate predictive model was obtained for most soil attributes. Thus, the best models
per soil attribute were used to generate spatial prediction maps.
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in Brazil. TA—terrain attributes, pXRF—portable X-ray fluorescence; MS—magnetic susceptibility.

3.3. Variable Importance

The combination of the six datasets [i: TA; ii: TA + pXRF; iii: TA + MS; iv: TA + MS
+ pXRF; v: MS + pXRF; vi: pXRF] and the data for A, B, or A + B horizons resulted in a
total of 144 models for the prediction of the soil micronutrient availability and particle size
fractions. The best models to predict available B, Cu, Fe, Mn, Zn, and clay, silt, and sand
contents had their variable importance calculated by the percentage of increment of Mean
Square Error (%IncMSE) and were chosen with deference to highest R2 and smallest RMSE.
Figure 6 shows the five most essential variables per model.

For clay, silt, and sand, the most stable elements in the soil profile such as Al, Si,
and Ti [21] presented their greatest importance in models using B horizon data. The
best variables were provided by pXRF data, except for B and Zn as their best models
used only TA data. This may occur due to the relationship between micronutrients and
their exchangeable/available and elemental forms in soils [23]. For available Cu and Mn,
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among the five most essential variables were Zn, Mn, and Cu. For Fe, the most important
variables were Rb, K, MS, Zn, and Mn. The use of MS information may have improved Fe
prediction reflecting magnetite (coarse fractions) and maghemite (clay fractions) minerals
with magnetism. For B, the most essential variable was the closed depression (CD), the
different horizons the samples were collected (Hor), valley depth (VD), relative slope
position (RSP), and flow accumulation (Flow). For the available Zn, the most important
variables were the different horizons the samples were collected (Hor), and land use,
indicating the land uses of the study area, followed by catchment slope (CS), modified
catchment area (MCA), and SAGA wetness index (SWI).
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Figure 6. Plots of the five most essential variables for the best RF prediction models to predict soil
available micronutrient and texture at a farmland scale in Brazil. pXRF, portable X-ray fluorescence;
VD, valley depth; CD, closed depressions; CNBL, channel network base level; RSP, relative slope
position; flow, flow accumulation; CS, catchment slope; MCA, modified catchment area; SWI, SAGA
wetness index; MS, magnetic susceptibility; Hor, soil horizon; Land use, land uses of the area.

Among the most important variables for models built with pXRF in the current study,
Mn and Zn were highly relevant for predictions of micronutrients. For texture prediction,
the most important variables were As, K, Mn, S, Si, and Ti, likely related to the chemical
composition of the soils studied. Mn oxide is an abundant clay mineral in tropical soils
due to intense weathering–leaching processes [84]. Similarly, the high reactivity of Zn with
soil minerals favors its adsorption in soils with greater clay contents (Figure 3) [73,85,86].
These facts may explain, at least partially, the importance of these elements for the models
predicting micronutrient availability to plants.

3.4. Spatial Prediction of Soil Properties

The spatial prediction of soil properties based on optimal prediction models deter-
mined in the previous section is shown in Figure 7. The spatial predictions were made only
for the attributes that attained adequate validation (available Cu, Fe, and Mn, as well as
sand and clay content). The maps were generated for the soil horizon with greater accuracy
(A horizon for Mn, and B horizon for Cu, Fe, clay, and sand content).
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Figure 7. Maps of available B, Cu, Fe, Mn, and Zn, and clay, silt, and sand fraction content for A and
B horizons obtained from optimal prediction models through random forest algorithm at a farmland
scale in Brazil.

As expected, maps of sand and clay content present opposite trends. Since most
Brazilian soils present low silt and higher clay or sand contents [4,56], sites containing
greater clay simultaneously contain lower sand content. Most soils of the area are Oxisols,
which are homogeneous in terms of soil texture throughout the soil profile. In the northwest
part of the farm, Inceptisols feature greater sand content.

Micronutrient distribution could not be directly related to land use or soil class. This
was likely caused by the different management practices applied in varied portions of the
area, irrespective of soil class and land use distribution. For instance, areas containing
the same soil class and land use may be subjected to different management practices,
contributing to available micronutrient content variability on the farm. Despite that, maps
delivered by this modeling approach enhanced the visualization of soil attribute variability
with lower cost and informed the most appropriate management practice (e.g., application
of soil ameliorants at variable rates) for each portion of the farm [13,87].

4. Conclusions

Soils were successfully characterized using proximal sensors. Satisfactory prediction
results were obtained, allowing for accurate soil attribute mapping. Data from pXRF were
present (alone or combined) in all the best prediction models, showing the importance of
this sensor in prediction performance. The best sensor combinations for texture predictions
were: MS + pXRF for sand content, TA + pXRF for silt content, and pXRF alone for clay
content. Similarly, for micronutrients available to plants, the best sensor combinations
were: pXRF alone for Cu, MS + pXRF for Fe, and TA + pXRF + MS for Mn. There was not
a well-defined combination pattern for delivering the best prediction model for available
micronutrients and texture regarding the combination of sensors and soil A and B horizons
separately or merged into a single dataset. Satisfactory predictions were obtained for
available Cu, Fe, and Mn (R2 of 0.80, 0.68, and 0.87, respectively), as well as for clay and
sand contents (R2 of 0.67 and 0.69, respectively), with the use of an RF algorithm for at least
one dataset. Maps showing the spatial variability of the best-predicted soil attributes can
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enhance soil management decisions, requiring fewer samples for conventional laboratory
analyses. For highly variable areas, combining proximal and remotely sensed data is
recommended for digital mapping and modeling of soil properties in greater detail.
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