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Abstract
The study of the expected time until an event of interest is a recurring topic in different fields, such
as medical, economics and engineering. The Kaplan-Meier method and the Cox proportional hazards
model are the most used methodologies to deal with such kind of data. Nevertheless, in recent years,
the generalised additive models for location, scale and shape (GAMLSS) models – which can be seen as
distributional regression and/or beyond the mean regression models – have been standing out as a result
of its highly flexibility and ability to fit complex data. GAMLSS are a class of semi-parametric regres-
sion models, in the sense that they assume a distribution for the response variable, and any and all of its
parameters can be modelled as linear and/or non-linear functions of a set of explanatory variables. In this
paper, we present the Box-Cox family of distributions under the distributional regression framework as
a solid alternative to model censored data.

Keywords: GAMLSS; Kidney disease; Renal insufficiency.

1. Introduction
Survival analysis is a set of methods used to understand and model the behaviour of the time until
a certain event of interest (e.g., death or component failure). Due to its characteristic, the event of
interest may not occur, and then the observations are considered censored, thus making it impossible
to measure our main response (Gijbels, 2010).
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As stated by Emmert-Streib & Dehmer (2019), there are two main methodologies to analyse such
kind of data, namely the Kaplan-Meier method (Kaplan & Meier, 1958) and the Cox proportional
hazards model (Cox, 1972). The main difference between both is that the first one is not able to
consider multiple features to explain the target variable, wheareas the Cox model can.

Another interesting alternative may be the distributional regression models, which, as stated by
Heller et al. (2022), was first proposed by Rigby & Stasinopoulos (2005) as the generalised additive
models for location, scale and shape (GAMLSS), a class of regression models that extends the well-
known generalised linear models (Nelder & Wedderburn, 1972) and generalised additive models
(Hastie & Tibshirani, 1990). In fact, different works have already considered this framework to
model censored data, such as Castro et al. (2010), Alizadeh et al. (2019), Ramires et al., 2018, Ramires
et al. (2019), Ramires et al. (2021a) and Ramires et al. (2021b).

The key factor in this flexible approach is that any and all parameters (not only the location,
which is often the mean) of the assumed response variable distribution (that does not necessar-
ily belong to the exponential family) can be modelled as linear and/or non-linear functions of the
explanatory variables (Rigby & Stasinopoulos, 2005), i.e., GAMLSS belongs to the beyond mean
regression models (Kneib, 2013), since different regression structures (considering different set of
covariates) are fitted to explain different (and possibly complex) characteristics of the response (e.g.,
skewed and platokurtic/leptokurtic data).

Since any distribution may be used in the GAMLSS framework, in this paper, we will present
the Box-Cox family of distributions (Rigby et al., 2019) as a strong candidate to model censored
data.

2. GAMLSS framework
Generically, let T follow a distribution D(θ), where θ is a parameter vector, then a GAMLSS can
be defined as

gk(θk) = Xkβk +
Jk∑

j=1
sjk(xjk), (1)

where gk(·), k = 1, . . . , p, denotes a link function related to the kth parameter, Xk is a known model

matrix, βk is a parameter vector, sjk(·) are smooth functions of xjk. Note that if
Jk∑

j=1
sjk(xjk) = 0,

as in Nakamura et al. (2019), model (1) is reduced to its parametric version. It is noteworthy that
the assumed distribution for T does not necessarily belong to the exponential family. For a large
list of distributions already implemented in the gamlss package (Stasinopoulos & Rigby, 2007) in
R software (R Core Team, 2022), check Rigby et al. (2019).

In this paper we will focus on the Box-Cox family of distributions under the GAMLSS frame-
work. Let us consider the following transformed random variable Z, given by

Z =


1
σν

[(
T
µ

)ν
– 1

]
, if ν ̸= 0

1
σ log

(
T
µ

)
, if ν = 0

,

for T > 0, where µ > 0, σ > 0 and –∞ < ν < ∞. If Z follows a truncated standard normal distri-
bution, then T will follow a Box-Cox Cole and Green distribution (Cole & Green, 1992), denoted
by BCCG(µ,σ,ν). If Z follows a truncated standard power exponential distribution with power
parameter τ > 0, then T follows a Box-Cox power exponential distribution (Rigby & Stasinopoulos,
2004), denoted by BCPE(µ,σ,ν, τ). If Z is assumed to follow a truncated standard t distribution
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with τ > 0 degrees of freedom, then T follows a Box-Cox t distribution (Rigby & Stasinopoulos,
2006), denoted by BCT(µ,σ,ν, τ).

The key aspect is that the Box-Cox family of distributions is very flexible and reliable (Rigby
et al., 2019) and its parameters have straightforward interpretation, which is a critical characteristic
in the process of choosing a GAMLSS model (Ramires et al., 2021a). In the three distributions –
BCCG, BCPE and BCT – µ is the median, σ is the approximate coefficient of variation and ν is
a skewness parameter. Further, in the last two distributions, τ is a kurtosis parameter, in which
BCPE is able to model both leptokurtosis and platykurtosis and BCT models leptokurtosis (Rigby
et al., 2019).

Regarding the estimation process for a GAMLSS in its parametric version, let us consider that
t1, . . . , tn is a sample of n independent observations, ci denotes the censoring time, yi = min(ti, ci)
and δi = I(ti ≤ ci), where δi = 1 if ti is a time-to-event and δi = 0 if it is right censored. Hence, we
shall maximise the total log-likelihood function under non-informative censoring, which is given
by

l(θ) =
∑
i∈F

log f (ti|θi) +
∑
i∈C

log S(ti|θi),

where S(ti|θi) is the survival function related to the distribution D, F and C denote the sets of
individuals for each ti. Note that we are considering the GAMLSS as its parametric version. The
numerical maximisation is performed using the Rigby and Stasinopoulos (RS) algorithm (Rigby &
Stasinopoulos, 2005).

In order to proper select different features (explanatory variables) in each of the regression struc-
tures in (1), considering the Box-Cox family of distributions, we apply the Strategy A, a stepwise-
based procedure described in details by Stasinopoulos et al. (2017), Nakamura et al. (2017) and
Ramires et al. (2021b).

Finally, we use the normalised quantile residuals (Dunn & Smyth, 1996) in order to access the
adequacy of the fitted model. The main advantage here is that, regardless of the assumed distribution
for the response variable, the residuals will necessarily follow a standard normal distribution if the
fitted model is appropriate.

3. The data
The data analysed in this paper were collected from the Maringá Kidney Institute, for 177 patients
(80 women and 97 men) classified with chronic renal failure enrolled in a hemodialysis program
from 1978 up to 2010, and it was provided by Ramires et al. (2018). As specified in the authors’
paper, the response variable is observed time (in days), of which the total of failure times (death) is
119 and 58 observations were considered as censored (if the patient did not continued in the program
for any reason or if the patient did not die until the end of the study). The explanatory variables that
were considered to explain the response are displayed in Table 1.

Ramires et al. (ibid.) already analysed these data under the GAMLSS framework, based on the
exponential, Weibull and log-normal distributions. In their paper, considering both Akaike infor-
mation criterion (AIC) (Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz, 1978),
they found out that the Weibull distribution was the most appropriate. Hence, in this paper, we will
compare their results with the Box-Cox family of distributions.

4. Results and Discussion
Table 2 displays values of the global deviance – minus twice the fitted log-likelihood –, AIC and
BIC for each fitted model selected through the Strategy A. As can be seen, the best fitted model
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Table 1. Covariates of the chronic renal failure data

Variable Label Type Range

Age at the beginning of treatment age Quantitative 17 – 88 years
Sex sex Factor male, female
Marital status mar Factor living together, married, separated, divorced

single, widowed, others
Skin colour indicator col Factor yellow, white, black, pardo
Antibodies to hepatitis B hepB Factor true, false
Antibodies to hepatitis C hepC Factor true, false
Diabetic indicator diab Factor true, false
Kidney transplant indicator transp Factor true, false

is the GAMLSS based on the BCPE distribution (presenting AIC and BIC equal to 1,913.69 and
1,961.33, respectively). Furthermore, Table 3 shows which covariates are present (or not) in each
final fitted model for each distribution considered in this paper.

Table 2. Statistics from the best fitted models for each used distribution

Distribution Deviance AIC BIC

BCPE 1,883.69 1,913.69 1,961.33
Weibull 1,909.99 1,931.99 1,966.93
BCCG 1,904.60 1,932.60 1,977.07
BCT 1,911.96 1,939.96 1,984.42

Table 3. Covariate presence (or absence) in each of the distributions’ parameters

Model Parameter age sex mar col hepB hepC diab transp

BCPE µ × × ×
σ × × × ×
ν ×
τ × × ×

Weibull µ × × × × ×
σ × × × ×

BCCG µ × × × ×
σ × × × ×
ν × × ×

BCT µ × × × × ×
σ × × ×
ν ×
τ × ×
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The final fitted (parametric) GAMLSS model based on the BCPE distribution is given by

µ̂ = exp
{

7.060 – 0.041 age + 0.797 [if hepB=true] + 2.138 [if transp=true]
}

σ̂ = exp
{

1.828 + 0.367 [if sex=male] – 0.088 [if hepB=true] + 2.400 [if hepC=true]

+ 21.222 [if transp=true]
}

(2)
ν̂ = 0.724 + 1.064 [if hepC=true]
τ̂ = exp

{
0.232 + 0.108 [if sex=male] + 0.136 [if diab=true] – 3.980 [if transp=true]

}
.

All parameters are significant at the 5% significance level, apart from the ones related to the variables
sex and diabetic indicator in the kurtosis parameter τ. However, Lee et al. (2016) highlight the
danger of using naive p-values after the model selection stage and thus we will keep both variables
in the final model.

Based on equation (2), we can note that only three variables (from the original eight presented
in Table 1) were consired to model the median µ. For each additional year at the beginning of the
treatment, the median of the patient’s lifetime expectancy decreases 0.041 days. Under the same
circunstances, patients who have antibodies to hepatitis B have more than double the median of
lifetime expectancy (121,89%) than the ones who have not. Further, if a patient has undergone
kidney transplantation, its lifetime expectancy increases more than seven times. In the one hand,
the presence of such variables in the regression model for µ is expected as can be seen in a wide
literature, e.g., Tangri et al. (2016) and Fabrizi et al. (2017). On the other hand, the absence of the
other features may not be expected, which may be being caused by the different fitted regression
structures in the GAMLSS framework.

Patients who have antibodies to hepatitis B present a smaller variability, measured here as the
cofficient of variation σ. Moreover, the lifetime expectancy variability is 1.44 times greater in male
patients and 11.02 times greater in patients who have antibodies to hepatitis C. This variability is way
large in patients who have undergone kidney transplant, as can be seen by the coefficient associated
to this feature (21.222). Such behaviour might be explained by the great number of factors associated
with post-kidney transplant success rate (Sprangers et al., 2018).

The only variable considered in the Strategy A selection method that affects the skewness pa-
rameter ν is the antibodies to hepatitis C. When a patient does not present such indicator, the
distribution of the failure times is slightly positively skewed – since ν̂ = 0.724 < 1 –, while when
this indicator is observed, such distribution is negatively skewed – since ν̂ = 1.788 > 1 (Rigby &
Stasinopoulos, 2004; Rigby et al., 2019).

The fitted model for τ indicates that the distribution of the failure times will always be leptokurtic
– since τ̂ < 2 (Rigby & Stasinopoulos, 2004; Rigby et al., 2019) – regardless the level of any of the
explanatory variables. Nevertheless, such distribution present heavier tails when the patient has
undergone kidney transplantation.

Finally, we check the model adequacy using the normalised quantile residuals (Dunn & Smyth,
1996) through the worm plot (Buuren & Fredriks, 2001). Basically, if a linear, quadratic or cubic
shape is observed, then the fitted model is not able to proper fit the variance, skewness or kurtosis of
the data, respectively (Stasinopoulos et al., 2017). Since there is no particular shape in Figure 1, we
can say that the final fitted GAMLSS model based on the BCPE distribution provided a reasonable
fit to the data.

5. Conclusions
In this paper, we have presented the Box-Cox family of distributions as an interesting alternative
to fit censored data under the generalised additive models for location, scale and shape (GAMLSS)
framework. Among these distributions, the Box-Cox power exponential (BCPE) returned the best
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Figure 1. Worm plot of the final fitted model based on the BCPE distribution.

(smallest) AIC and BIC values when compared to the Box-Cox t (BCT) and Box-Cox Cole and
Greeen (BCGG) distributions. Moreover, the BCPE distribution also outperformed the Weibull
distribution, previously fitted to these data. All models were selected through the so-called Strategy
A, a stepwise-based method which is used to select the best set of covariates in each of the parameters
of the response variable distributions. Although eight explanatory variables were initially available
to explain the response (failure times – death), after Strategy A was performed, only six variables
were selected (not necessarily in all parameters) in the final fitted GAMLSS model based on the
BCPE distribution, namely: age at the beginning of treatment, antibodies to hepatitis B, antibod-
ies to hepatitis C, kidney transplant indicator, sex and diabetic indicator. Overall, such procedure
considering this family of distributions can be applied in similar data, i.e., when we are interested
in modelling time until a certain event of interest.
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