
Brazilian Journal of Biometrics, 41, 30–43 (2023)
doi:10.28951/bjb.v41i1.590

ARTICLE

Sensorial analysis of categorized data of special coffee
to identify similar crop seasons pairs using Kappa
ID Jackelya Araujo da Silva,⋆,1 ID Marcelo Angelo Cirillo,2 ID Flávio Meira Borém,3 ID Diego Egídio

Ribeiro,4 and ID Lourenço Manuel5
1Department of Statistics, Federal University of Piaui, Teresina-PI, Brazil.
2Department of Statistics, Federal University of Lavras, Lavras-MG, Brazil.
3Department of Agricultural Engineering, Federal University of Lavras, Lavras-MG, Brazil.
4PhD in Agricultural Engineering, Department of Agricultural Engineering, Federal University of Lavras, Lavras-MG,
Brazil.
5Center of Excellence in Agri-Food Systems and Nutrition, Eduardo Mondlane University, Maputo, Mozambique.
⋆Corresponding author. Email: jackelya@ufpi.edu.br

(Received: November 13,2021; Revised: March 21,2022; Accepted: May 09,2022; Published: March 1,2023)

Abstract
This paper presents the proposal of a statistical method to analyse dependent agreement data with cate-
gorical ordinal responses for a longitudinal study in sensorial analysis of special coffee. The assessment of
sensory attributes of special coffees were carried out by certified raters using a continuous scale of grades.
The approach aimed to applying data categorization methods commonly used in machine learning which
generated not only a concise summary of continuous attributes to describe the data but also allowed to
maximize the agreement grades in a longitudinal study. A previous analysis was carried out to identify
the similarity of grades in all sample unities. The categorization allowed the construction of marginal
models for all distinct pairs time observed in the longitudinal study for modeling the concordance cor-
relations kappa. It also enabled to conclude that samples of harvests related to yellow grain fruits have
similar sensorial characteristics. Higher altitudes are significantly favorable to obtain samples with similar
sensorial characteristics identifying the set of covariates which contributed either in positive or negative
way while estimating kappa.

Keywords: Sensory attribute; Coffee blends; GEE; Kappa Coefficient; Ordered Categorical data.

1. Introduction
Generalized Estimating Equations (GEE) proposed by Liang and Zeger (1986) are class of mod-

els useful to analyse both categorical and continuous correlated response variables (Zeger & Liang,
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1986). Under the GEE approach it is not necessary to specify the joint distribution of the repeated
responses. However, the GEE methodology requires the specification of the first and second mo-
ments of the joint distribution(Zeger & Liang, 1986).For ordinal data in GEE the odds ratio are
used to measure the association between two observations within the same group of response.

Williamson et al. (1995) studying some eyes characteristics in a group of subjects they noticed
that observations of interested responses could be collected in each eye of each individual as well as at
the individual level. In their study, the authors aimed to evaluate the severity of diabetic retinopathy
was originally graded on a 10-point scale based on the identification of risk factors associated with
the disease. The classifications on the original scale were then used to define four ordinal categories
as follows: none, mild, moderate and proliferative.

Kappa coefficient (κ) is the common method used to assess the degree of agreement or re-
producibility between two set of data. Cohen (1960) applied Kappa coefficient to determine the
agreement of binary responses between raters while Fleiss (1971) also used Kappa for categorical
data to measure the degree of concordance between raters.

A classification statistic such as κ can be used to assess the goodness of fit in GEE regression
models for categorical responses. In this case kappa is a measure used to evaluate how the categorical
responses are well predicted through the GEE fitted model (Akanda et al., 2005).

Another application of kappa modelling was proposed by Williamson et al. (2000). The authors
developed a method to analyse dependent agreement data with categorical responses using covari-
ates. In their paper, Williamson et al. (2000) have presented two sets of estimating equations in
which the second set aimed to modelling the paired associations of classifications with the kappa
coefficient as a metric.

Gonin et al. (2000) have proposed to consider two set of estimating equations. The first set is used
to modelling the marginal distributions of categorical responses while the second set of estimating
equation is introduced to estimate κ by modelling binary variables in order to depict the agreement
between responses.

In order to test the equality of two dependent κ statistics when there are two raters and a binary
response, Donner et al. (2000) have considered that each sample of subjects was classified in two
distinct context and the goal was to compare the observed agreement level between raters and within
each group of raters.

Klar et al. (2000) proposed the inclusion of covariates under GEE approach to model pairs of
associations using the κ coefficient with binary responses obtained from a random number of raters
by individual rated. Therefore, the approach also allows identifying predictive covariates for kappa.

Following the same approach previously described, we do propose the application of kappa mod-
elling in GEE for ordinary categorical data.

Although the sensorial responses are continuous grades, in our approach we propose to study
them as categories.There are several categorization methods for continuous variables and most of
them have their genesis in machine learning (Kerber, 1992; Kurban & Cios, 2004; Tsai et al., 2008).
The discretization algorithms have shown an important role in data mining and to produce new
knowledge. They produce a concise summary of continuous attributes helping specialist to easily
understand the data. Furthermore, the algorithms allow the machine learning to be more quick and
precise.

The discretization method CAIM (Class – Attribute Interdependency Maximization) proposed
by Kurgan & Cios (2004), consists in transforming the values of a continuous variable in a finite
number of intervals in which each interval is associated to a discrete numeric value. The method
automatically selects a set of discrete intervals and at the same time the range of those intervals is
estimated based on the interdependency between classes and the values of the variable.

The well known K-means method, aims to divide in clusters a random sample with size N such
that the sum square within each cluster is minimized. Thus, the length and dimension of all clusters
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are built such that they are asymptotically similar among them.
Coffee production is the result of the relationship between local environmental conditions and

coffee cultivars that grow in this place(Scholz et al., 2018). Specialty coffees are recognized for their
differentiated quality, and they are valued the more rare and exotic their sensory profiles are. The
quality of the coffee drink is influenced by various factors, the most notable being those related
to the environment, the processing and the genetic constitution of the plants (species/cultivating)
(Giomo & Borém, 2011).

The studies of specialty coffees are associated with many variables of interest that explain the
quality of the drink. Avelino et al (2005), assessed the effects of slope exposure, altitude and yield
on several cup quality criteria of coffees from two altitude terroirs of Costa Rica, Orosi and Santa
Maria de Dota (between 1,020 and 1,250 m above sea level). The effects of altitude in association with
temperature have been described in several studies as the main factors affecting coffee quality(Borém
et al., 2019; Joet et al., 2010; Decazy et al., 2018). The variability in environmental conditions is
sufficient to modify the green and roasted coffee bean characteristics and sensory attributes (Scholz
et al., 2018).

Other aspects of interest in describing the quality of coffees are studies related to harvesting,
post-harvesting, grain processing and the biochemical composition of specialty coffees(Knopp et al.,
2006; Duarte et al., 2010; Borém & Shuler, 2014; Scholz et al., 2018; Tolessa et al., 2017).

Here we are concerned with modeling dependent categorical agreement for all distinct pairs of
time, considering the repeated responses for the pooled samples assessed by raters.

The proposal for the differentiated use of κ modeling in the construction of several marginal
models focuses on the analysis of the identification of pairs of crop seasons that have more similar
longitudinal sensory characteristics.

2. Materials and Methods
Consider a longitudinal study with n subjects, Ji agreement observers, and Ti assessments to be

based on a categorical rating scale with C categories: r1, r2, . . . , rC. In addition let Yijtc be a binary
outcome as described by Heagerty & Zeger (1996), that is, denoting Oij = {Ot

ijt, . . . ,O
t
ijt}

t a vector
of ordinal measures for the jth observers(judges) at the ith subjects, Oijt, i = 1, 2, . . . , n, j = 1, 2, . . . , J
observers and t = 1, 2, . . . , T observation times. The ordinal measure Oijt = c, c = r1, r2, . . . , rC, with
C categories of responses correspond to a vector of accumulated indicator variables Yijtc = I(Oijt>c),
c ∈ {r1, r2, . . . , rc–1} such that

Yijtc =
{

1, if Oijt > c
0, otherwise (1)

In the above, yijt = (yijt1, yijt2, . . . , yijtC)t represents the ratings of the jth observer on the ith
subject at time t. Thus, yit = (yt

i1t, yt
i2t, . . . , yt

iJt)
t represents the rating on the ith subject for all the J

judges and assessments.
Generalized estimating equation methodology is useful for analysing correlated response data

and there is no need to specify a joint distribution for the responses (Liang & Zeger, 1986; Zeger
& Liang, 1986). In the following method, the response of interest is a categorical outcome with C
categories and the response vector Y i with JiTi(C – 1) × 1 elements, defined in (1) consist of the
binary random variables Yijtc. Let Xit = {xt

i1t, . . . , x
t
iJt} represent the Ji × p matrix of covariates for

the ith subjects for all the J judges on the tth time.
The marginal distribution of Y it is Bernoulli with πitc = P(Oijt = c) = P(Y ijtc = 1|xt

ijt,β) such
that

ln
(

πitc
1 – πitc

)
= xt

ijtβ (2)
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and where β is p×1 vector of parameters. Thus, the first set of estimating equations for the marginal
distribution of the response given by

ν1(β) =
n∑

i=1
Dt

iV
–1
i (Y i – πi(β)) = 0 (3)

where Di = Di(β) = dπi(β)/dβ and V i = Var(Y i) is a working covariance matrix of Y i (Liang &
Zeger, 1986; Zeger & Liang, 1986).

Under the inference for Kappa in longitudinal and clustered data reported by Ma et al. (2008)
which introduces a new class of estimates for kappa indexes and their generalizations, we consider
an analysis to detect changes in responses based on observation times. The κ index will be used to
measure similarity between evaluations from raters based on a categorical classification scale to all
distinct pairs of time.

Therefore, if two independent raters agree they generate responses that do not identify changes
at the same evaluated subjects in distinct time. Then, the proportions reported in the diagonal of
Table 1 are interpreted as common responses of subjects on observation times.

Table 1. Proportion of agreement based on combination of pairs of times from a categorical variable with C =
(r1, r2, . . . , rC) categories; π̂.ist denote the cell proportion, and ϕ̂.Cs(ϕ̂.Ct) the marginal cell corresponding proportion

Time t(Yi2t)

Time s(Yi1s) r1 . . . rC Marginal

r1 π̂11ist . . . π̂1Cist ϕ̂11s

· · · . . .
. . . . . . · · ·

rC π̂C1ist . . . π̂CCist ϕ̂1Cs

Marginal ϕ̂21t . . . ϕ̂2Ct 1

Within the above context, the Kappa coefficient has been used to determine the agreement of
binary and categorical outcomes between pairs of responses of the ith subject in time. The kappa
coefficient is an agreement measure limited in (–1, 1). Its interpretation is as follows: When Kappa
is 0 indicates no agreement beyond chance. Values of kappa near 1 suggest non-randomness of
responses. Negative κ values indicate that the observed agreement was less than that expected by
chance and therefore there is disagreement between responses. However, in this situation the κ
value is not interpreted as a disagreement intensity measure.

Kappa is based on the number of agreed responses, that is, the number of cases in which the
results are the same between times of all raters and it measures the degree of agreement beyond
what would be expected only by random effect.

The general expression for the kappa statistic is:

κist =
Poist – Peist

1 – Peist
, 1 ≤ s < t ≤ T (4)

where Peist is the probability that the pair of categorical variables are the same when the indepen-
dence assumption holds and Poist is the joint probability that the pair of responses are the same for
the combinations of times s and t.

In the classic approach, κist is estimated by substituting the sample proportions in place of the
respective parameters in (4), so that Peist =

∑C
c=1 P(Yisc = 1)P(Yitc = 1) and Poist =

∑C
c=1 P(Yisc =

1, Yitc = 1), where P(Yisc = 1) and P(Yitc = 1) are the marginal probabilities of subject i fall in the sth
e tth time and P(Yisc = 1, Yitc = 1) is the probability that both responses for subject i fall in the cth
category.
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The inference for Kappas for longitudinal Study proposed by Ma et al. (2008) which focus on
inference about pairwise comparisons of multiple observers’ ratings, which in a cross-sectional study
with J judges, they can assess overall observer agreement by averaging over all between rater kappas:

kave = (J
2)

–1 ∑
(m,l)∈A κml, where κml is the kappa between judges m and l and A = {(m, l) : 1 ≤ m <

l ≤ J}. We can estimate κave by substituting estimates κ̂ml of κml. Following the similar approach,
in the study of preference identification of time combination pairs (s, t), s < t by judges, we propose
estimating the concordance correlations to all distinct pairs of time considering the concordance
between judges in each time.

Thus, for the agreed responses we will assume Poist, s ≤ t, such that the difference Poist – Peist is
the excess of the agreement over that expected by chance. Therefore, the marginal fitted models
coefficients represent changes of kappas related to covariates.

Note that P(Yijsc = 1) is the mean of all samples from the jth rater at the jth time classified on
c category of grades. The κ in the case of the joint distribution is then sometimes referred to as
the common correlation model since κ can also be derived as the correlation between responses the
special case of this joint distribution which arises when there are two raters per subject and when
there is marginal homogeneity: P(Yijs) = P(Yihs) (Donner & Klar, 1996).

From the marginal model proposed by Heagerty & Zeger (1996) in the study of associations
between responses in an odds ration regression model, we will use the following link function

g(κist) = ln
(

1 + κist
1 – κist

)
= z′istγ (5)

to modelling κ in terms of covariates, where z′ist is a vector of covariates.
From the suggestion of Liang et al. (1992) and Williamson et al. (2000), the multiplication of

indicators variables describes the concordance between responses at the sth and tth times of all raters,
i.e, Uist =

∑C
c YiscYitc, with E(Uist) = Poist.

For the Ji responses of subject i, there are Ji(Ji–1)/2 distinct pairs of responses for each combination
of two pairs of time, see Table 1. Fixing distinct pairs of times s and t, with (s < t), κ is then estimated
by solving the following set of estimating equations:

ν2(β,γ) =
n∑

i=1

[
∂Poist
∂α∗

]t
W–1

ist (U ist – Poist(β,γ)) = 0 (6)

where γ are parameters estimates of the marginal model κst for each of Ti(Ti – 1)/2 distinct pairs of
time combinations and α∗ is a vector of association parameters estimates between responses of the
jth rater at the ith subject for pair of times. Thus, W ist is the working covariance matrix of U ist.

The modified Kappa modeling in GEE proposed in this paper was applied to a dataset from a
sensory analysis in a longitudinal experiment with repeated multiple responses.

A data set was obtained with the project approved in the public notice CNPq/MAPA 064/2007
(Borém, 2007). The experiment was conducted using specialty coffees from four varieties (Yellow
Bourbon, Yellow Catuai, Acaia and Mundo Novo) harvested in four agricultural seasons (2010/11,
2011/12, 2012/13 and 2013/14) in commercial farming of properties located in municipality of
Carmo de Minas, Minas Gerais Brazil.

The experimental design was based in the study of genetics environment interaction including
processing type. There were 288 tastings for each of the harvests, from three altitudes (lower than
1000m, between 1000m – 1200m and higher than 1200m) in two different processing ways (dry and
wet) and formed by two slope groups(sun and shade).
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3. Results and discussion
3.1 Application

The sample sensorial assessments were carried out in each harvest time by four well trained raters
qualified as certified judges of special coffee by SCA based on the methodology proposed by Lingle
(2011). The raters provided grades for the following attributes: fragance, body, aftertaste, sweetness,
acidity, flavor, clean cup, balance, smoothness and overall impression. The final results of sensorial
assessment were obtained using SCA grades scale.

Sensory analyses were carried out by four independent raters. However, the results of their
sensory perceptions are correlated in each rated sample. For notation simplification we denote the
assessed harvesting years by 1, 2, 3 and 4.

The distribution of final grades of sensorial assessments is presented in Figures 1 and 2.
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Figure 1. Distribution of grades for each rater across the four crop seasons

Figure 1 reports the grades of each rater in each of the harvesting years. It is noticed that there
is a high variability in the grades across the harvesting years. For instance, in the harvesting year
4 (2013/14) the cloud of points indicates more concentration of sensorial grades in lower scales when
compared to other harvesting years.

Figure 2 shows the distribution of sensorial grades across the harvesting years for each category
of covariates used in the study. The low variability on the sensorial grades is noticed in harvesting
year 4 due to the high concentration of the cloud points in this season. Moreover, the highest sen-
sorial grades are observed in higher altitudes where the greatest variability is verified in harvesting
year 2 (2011/12). Analyzing the distribution of grades taking into account the genotype, figure 2
shows a similarity in the cloud of points across the harvesting years for the two genotypes analyzed
(Yellow Borbon and Acaia).

Described the behavior of sensorial grades as previously reported in Figures 1 and 2, the K-
means method was applied considering univariate case in order to categorize the sensorial grades.
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Figure 2. Distribution of sensorial grades according of covariates:A - Altitude, B - Slope, C - Processing type and D -
Genotype.

For a sample size N, the algorithm divides the sample in k groups minimizing the sum square within
each group such that they are asymptotically similar between them.

The construction of clusters asymptotically with the same size will contribute significantly in
the identification of comparisons between harvesting years and the characterization of similarities
between those harvesting years using GEE methodology. Analyzing the data and applying the
Elbow method it was possible to reach an optimal number of clusters equals four (k = 4) as reported
in Figure 3.
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Figure 3. Optimal numbers of clusters

According to Lingle (2011), the SCA approach that coffee quality is quantified by a scale of
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grades varying from zero to 100 points. Coffee graded between 85 – 89 and 80 – 84 are respectively
classified as special (excellent) and special (very good); coffee with grades between 75 – 79, receive
regular classification, although rated as good quality coffee; Finally, coffee rated in 70 to 75 interval
are classified as average (weak).

The data categorization through K means method in each combination of pairs of harvest-
ing years will generate different groups of grades which contribute to identify the covariates that
maximize κ estimated through the fitted model. Therefore, the data categorization will help to
summarize the grades behavior considering the agreement proportion between raters.

Figure 4 reports the midpoints of classes or the grades categories reached while applying K-
means method. The number of categories obtained in each combination of pairs of raters or har-
vesting years varies.
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Figure 4. Midpoints of categories for the combination of pairs of raters and pairs of crop seasons

Table 2 describes the common agreement proportions for each combination pair of raters across
the four harvesting years as depicted in Figure 4. The results are fair given that sensorial analysis
aims reaching individual specific perceptions related to sensorial attributes that contributes to final
grades of tasted samples.

However, it is expected a slight variation in the classification of grades between the raters. Note
that when the number of clusters is high, the agreement proportions were diluted in grades cate-
gories and therefore it would be difficult to achieve higher agreement proportions.

Table 2. Proportion of agreement between all pairs distinct of raters to each harvest

Harvest
Pairs
of raters

1 2 3 4

1 - 2 0.5555 0.4583 0.4583 0.3750
2 - 3 0.4305 0.4305 0.3333 0.4444
3 - 4 0.4166 0.4166 0.4028 0.4861
1 - 3 0.4722 0.4722 0.5972 0.4583
2 - 4 0.4583 0.3750 0.5000 0.4444
1 - 4 0.5277 0.5139 0.5972 0.4167
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Table 2 shows that the categorization enabled to notice that rater 1 has 60% of sensorial grades
agreeing with raters 3 and 4 for harvesting year 3 (2012/13). However, when rater 1 is compared
to rater 2, the agreement proportion drops slightly to 56% when the deemed harvesting year is
1 (2010/11).

Furthermore, the data categorization enabled estimating the following agreement correlations
for all pairs of harvesting years k̂st = (k̂12, k̂13, k̂14, k̂23, k̂24, k̂34) = (0.1305, 0.1311, 0.0819, 0.0248,
0.0866, –0.0061).

It is noticed that a negative agreement correlation was observed for harvesting pairs 3 and 4
indicating that samples from those harvests have differences in sensorial characteristics for all pairs
of raters. Nonetheless, the k̂ estimates are very low in general and they were reached without taking
in account the effect of covariates depicted in Figure 2.

Thus, the grades were evaluated to verify if the sensory attributes the sensory attributes of special
coffee have changed significantly along the time or if the sensory analysis of samples from pairs of
crop seasons are more similar between them due to some variables such as altitude, processing ways
and slope groups.

Thus, six distinct pairs of crop seasons were generated (Ti(Ti –1)/2 = 6). Solving the equation (6)
considering that adjustment for covariates associated with kappa can be accomplished using the
model

g(κist) = ln
(

1 + κist
1 – κist

)
= γ1Altitude + γ2Slope + γ3Processing + γ4Genotype. (7)

where represent the marginal model for tasting notes, i = 1, 2, . . . , 288, evaluated at times t =
1, 2, 3, 4, with the covariates altitude, slope, processing, and genotype.

Under the null hypothesis H0 : γ1 = γ2 = γ3 = γ4 = 0 at 5% significance level, we carried
out model selection procedure in order to identify covariates affecting significantly the models.
Therefore, our analyzes are based on those covariates. For instance, for the pair of harvesting years
1 and 2 (2010/11 and 2011/12) the models identified all covariates as significant except the processing
type where kappa estimate was k̂ = 0.342.

However, when the analysis takes into account only higher altitudes and shade slope kappa
estimates for genotypes Yellow Bourbon and Catuai were 0.802 and 0.501, respectively.

This information indicates that both harvesting years have similarities in sensorial characteristics
mainly in altitudes greater than 1, 200m. Moreover, model estimates for harvesting years 1 and 3 has
also shown that there is a greater agreement between those harvesting years for yellow grains and
κ estimates for genotype Yellow Catuai and Yellow Bourbon were 0.603 and 0.453, respectively.

For the harvesting years 1 and 4 (2010/11 and 2013/14) the processing type covariate has a
negative influence in the agreement between such harvesting years. The kappa coefficient was
estimated in k̂14 = 0.0046, indicating that the agreement between the harvesting years was that
expected randomly.

Therefore the selected model is only explained by altitude, processing type and genotypes Acaiá
and Yellow Bourbon. The wet processing type combined with high altitudes shows that the deemed
genotypes Acaiá and Yellow Bourbon disagree for both harvesting years and the Kappa estimates
were –0.00518 and –0.0496, respectively. Moreover, the wet processing type was significant so that
for genotype Yellow Bourbon cultivated in altitudes above 1, 200m considering shade slope reached
κ estimates equals 0.623 and 0.214, for pairs of harvesting years 2 – 4 and 3 – 4, respectively.

Analyzing all six pairs of harvesting years it is noticed that the harvesting pair 2 – 3 has only
altitude as the covariate contributing in the model for identification of kappas. The Kappa estimative
in this model was k̂23 = –0.0375 indicating disagreement. In other words, harvesting years 2 and 3
have differences in sensorial characteristics.
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We observe that altitude has an important role to determine concordance correlations estimates
of pairs of crop seasons based on groups of raters. Under the natural processing way, samples of
genotypes such as Yellow Bourbon and Catuai have the highest estimates of κst.

The results highlighted for the yellow coffee fruit varieties (Yellow Bourbon) presented in this
manuscript corroborate with Giomo & Borém (2011) when stating that even if any cultivar of Coffea
arabica L. has the potential to produce high quality coffees, more valued sensory profiles, with a high
reputation in the specialty coffee market, have been found more frequently in ancient cultivars such
as ’Yellow Bourbon’

Our analysis proposal identified that the covariable altitude combined with the genotypes rep-
resenting the yellow fruits (Yellow Bourbon and Catuaí) had the best κ agreement values for the
pairs of crops.

The κ values for sensory agreement of the samples for the pairs of crops when combined with
the type of processing also present higher concordances/agreements when compared to other geno-
types.

According to Borém et al. (2020), in the study on the sensory characteristics of coffee cor-
responding to the cultivation environment with altitudes above 1, 050m, it was observed that the
genotypes representing red fruits did not present such correspondence. However, for varieties of
red coffee fruits, this correspondence only occurred when submitted to a wet processing method.
In our analysis, it was noticed that the highest κ values were due to yellow bourbon genotypes and
that for red coffee fruit varieties, κ values show a slight improvement if combined with the wet
processing method.

Our proposed methodology is focused in obtaining marginal models to study longitudinal cor-
relations considering an experiment in sensory analysis where there are many pooled samples of
repeated measures groups.

The method has allowed measuring the agreement between responses and therefore identify
preferences on rated samples.

Furthermore, using marginal models for all distinct pairs in time has provided a practical in-
terpretation of descriptive analyses for covariates concordance correlations. Through the sensory
analysis study it was also possible to identify if the time effects induce sensory changes on special
coffee from data categorization when raters are equally well trained (balanced).

The logistic models approach are presented to identify the goodness of fit in GEE using Kappa
(Akanda et al., 2005) where if the fitted model predicts the categorical response, k = 1 or in studies
of covariate selections in logistic models (Klar et al., 2000). Moreover, is applied to determine of the
intraclass correlation coefficients measures the tendency for correlated measurements to be more
alike, whereas ignores the ordering of categories with ordinal responses when it models agreement
with κ (Williamson et al., 2000).

The Kappa modelling method applying marginal models in GEE has allowed comparing the
evolution of time effects interpretations in sensory analysis of special coffee. It also supported the
identification of covariates with positive or negative contribution to estimate de concordance cor-
relations as well as to discriminate what pairs of crop seasons are more similar when classified in
categories of grades.

In essence, the method proposed in this manuscript was discussed as a possibility for using Kappa
modeling by Williamson et al. (2000). In discussions on modeling kappa for measuring dependent
categorical agreement data suggested that the method can be considered a stratified analysis, in
which κ is estimated for each covariate cross-classification, modeling the marginal distribution and
the association distribution, and can be interpreted accordingly.

The effect of fitting of logistic regression models has implications about kappa given that κ is a
function of marginal probabilities. The marginal distribution must be correctly modeled to ensure
unbiased estimation of κ and all covariates entered into the association modelling should also be
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examined in the marginal model. However, the differences P̂oist – P̂eist allow identifying if pairs of
agreed responses occur by random effect or if there is difference between what is observed on the
sample and what is expected to occur to classify that sample in pairs of time s and t, s < t.

Conclusions
The data categorization of sensorial assessments using K-means methods based on univariate

case enabled to group the grades in different classes with dimensions asymptotically equals and
contributed to homogeneous distribution of grades categories. In addition, the categorization using
pairs of harvesting years does not depend of same classes limit.

The methodology of using Kappa modeling for all distinct pairs of crops allowed the construction
of marginal models that explain the interaction between environmental and genetic covariates. It
was verified that altitude contributed to the highest Kappa values.The altitude covariate combined
with the genotypes Yellow Bourbon and Catuai presented pairs of crops that sampling sensory
similar longitudinal characteristics.

The results show that the type of grain processing plays an important role in determining the
estimates of agreement correlations of the pairs of crops. For the pair of harvesting years 1 – 4
the processing type covariate has shown a significant contribution in the identification of disagree-
ment in sensorial assessment between the deemed harvesting years where the kappa estimates were
negative.

The categorization aimed to notice that the pairs of harvesting years 2010/11 – 2011/12 and
2011/12 – 2013/14 have shown kappa estimates greater than 0.5 for genotypes Yellow Acaia, Bour-
bon and Catuai in higher altitudes considering shade slope. These results reports that the deemed
harvesting years are similar in sensorial characteristics.

Finally, kappa estimates for pair of harvesting years 2011/12–2013/14 are approximately equal 1
when the wet processing type is unique covariate with significant effect in the models. Thus, those
harvesting years are similar in sensorial attributes for genotypes Acaia and Yellow Bourbon.

The differentiated use of the kappa modeling proposed in this work helped in making interpre-
tations about the sensory changes that occurred in the longitudinal samples. Our proposal, made
possible the analysis in terms of sensorial qualities of the drink. The methodology helped to detect
pairs of crops that showed sensory similarities between the samples and discriminated the variables
that make the samples different.
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Appendix
Presentation of data organization

Table 3. Illustrative table structure of data organization

Altitude Slope Processing Raters Crop Seasons Genotype Scores

1 1 0 1 1 1 78.0
1 ...

...
...

1 1 79.0
...

...

...

...

1 2 1 4 1
2 1 0 1 2
...

...
...

...
...

2 2 1 4 2
3 1 0 1 3
...

...
... ...

...
1 1 2 4
...

...
...

...
2 1 1
...

...
...

3 2 1 4 4 1 83.0

Altitude 1 :≤ 1000m; 2 : 1000m – 1200m; 3 :≥ 1200m
Slope 0 : shade; 1 : sum
Processing 0 : dry; 1 : wet
Raters 1, 2, 3, and 4

Crop seasons 1 : 2010/11; 2 : 2011/12; 3 : 2012/13; 4 : 2013/14

Genotype 1 : Acaia; 2 : Yellow Bourbon; 3 : Catuai; 4 : Mundo Novo
Scores Range: 73 – 100.
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