
Smart Agricultural Technology 3 (2023) 100100

Available online 28 July 2022
2772-3755/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Use of RGB images from unmanned aerial vehicle to estimate lettuce 
growth in root-knot nematode infested soil 
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A B S T R A C T   

Lettuce (Lactuca sativa) is an important horticultural commodity all over the world, and its growth can be 
affected by root-knot nematodes (Meloidogyne spp.). To keep track of plant behaviors, growers are using new 
technologies. In this paper, aerial images were obtained using a low-cost unmanned aerial vehicle (UAV) to 
gather crop information in a short time giving acceptable accuracy for decision-making in the field. Evaluations 
were done to check the flight height interference in the image’s quality for lettuce mapping, and select the best 
one to estimate the effect of root-knot nematode incidence on lettuce growth. In a field infested with M. incognita, 
lettuce seedlings were planted in plots treated with bionematicide and control plots. Aerial images were obtained 
using low-cost UAV in four flight heights performed for five weeks, along with field measurements. Images were 
processed and used to calculate vegetation indices (VI) and vegetation cover (VC). After lettuce harvesting, 
nematode eggs were extracted from plants’ roots and quantified. Plots treated with bionematicide showed no 
difference from the control plots in eggs number and lettuce growth. Differences in VI values between the flight 
heights were not consistent, suggesting that VI values could be affected by the lack of luminosity calibration in 
each flight condition. VC values calculated from field data presented strong positive correlations with VI and VC 
values from UAV image data, indicating that RGB images obtained by UAV can be used in the detection of 
diseases that affect plant growth, as well as following up harvesting time.   

1. Introduction 

The development of tools to reduce the work and time spent moni-
toring crops in the field have ever aroused great interest of the farmers. 
The use of aerial images in the management of agricultural fields has 
been gaining more and more space in the field’s routine [1–4]. The 
images processing provide a lot of data on the crop field in less time 
consuming than traditional methods [5]. By extracting information from 
aerial images, it is possible to delineate management zones and build 
cultivation guidelines according to the needs of plants in each zone. In 
this way, the farmers are able to check the plants growth and nutritional 

status, identify the best time to harvest, detect pests and diseases, being 
prepared to perform the precision agriculture [2,4,6–8]. 

Aerial images can be obtained from low-cost unmanned aerial ve-
hicles (UAVs), increasing this technology access and, consequently, 
expanding its use [9]. Currently, large and small horticultural farmers 
use UAV images to obtain information of their crops in a short time and 
with acceptable accuracy to decision making in the field [10]. 

Lettuce (Lactuca sativa) is a widely consumed horticultural crop in 
the world and cultivated in all Brazilian regions. Plant-parasitic nema-
todes are soil-borne pathogens that feed mainly on the roots of suscep-
tible plants. These phytopathogens cause billionaire losses to farmers 
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around the world, with root-knot nematodes responsible for most of this 
damage. Lettuce plants are usually susceptible to root-knot nematodes 
(Meloidogyne spp.). Depending on the nematode population level in the 
soil, it can cause losses of U$ 23.19 for the cultivation of 2000 lettuce 
plants [11]. UAV images can be used to investigate nematode-infested 
areas, as reported for coffee [12–14] and soybeans [15] crops, but not 
yet used in lettuce crop. 

The aerial images quality will depend on several factor, such as the 
camera resolution, flight height, weather conditions, among others [16]. 
In horticultural crops, which are usually smaller plants, the resolution is 
an important factor to detect them. The smaller is the flight height, the 
higher will be the resolution and, consequently, the higher will be the 
level of detail obtained in the images [17,18]. Thus, it is necessary to 
identify flight heights to meet the needs of each culture. Looking to 
simplify the process of monitoring and detecting the occurrence of 
root-knot nematodes in lettuce crop as well as the reduction of the losses, 
in this research the objectives were to evaluate the flight height inter-
ference in the images quality for lettuce mapping, and select the best one 
to estimate the effect of Meloidogyne spp. incidence on lettuce growth 
and development using RGB images obtained from UAVs. 

2. Material and methods 

2.1. Study area 

The experiment was carried out at the Center for Technology 
Development and Transfer – CDTT from the Federal University of Lavras 
– UFLA, in the municipality of Ijaci, MG, Brazil (Latitude: 21◦9′48.73"S, 
Longitude: 44◦55′2.26"W) (Fig. 1). 

In a field naturally infested with Meloidogyne incognita, lettuce 
cultivar Solaris seedlings were planted in 2-meter x 1-meter plots. 
Twenty-four seedlings were planted per plot. The experiment consisted 
of some plots with the application of Bacillus subtilis BV09 (Biobaci®) 
and others without applications (control). Four repetitions (plots) were 
performed for each treatment (T1 = without application, and T2 =
B. subtilis BV09 application). 

2.2. Aerial images acquisition 

The aerial images were obtained with a DJI Phantom 4 Advanced 
aircraft (Fig. 2) with the following characteristics: weight of 1388 g; 
diagonal size (propellers excluded) of 350 mm; maximum speed of 72 
km/h; maximum angle of inclination of 42◦, and maximum flight time of 
30 min. The GPS/GLONASS positioning system was equipped, by 
default, with a 1-in. CMOS sensor to capture video (up to 4,096 × 2,160 
p at 60 fps) and photos up to 20 megapixels. 

The planning was performed using the free software Pix4DCapture 
installed on an iOS system. The flight plan was defined according to the 
following characteristics: speed of 3 m/s and all side with 80% overlap. 
The same mission was applied to four different flight heights: 10 m (GSD 
= 0.44 cm/pixel), 15 m (GSD = 0.66 cm/pixel), 20 m (GSD = 0.88 cm/ 
pixel), and 25 m (GSD = 1.09 cm/pixel). The flights were performed 
weekly for five weeks, beginning two weeks after lettuce planting until 
three days before harvesting. 

2.3. Image processing 

The images taken from each week were processed using Agisoft 
PhotoScan software (Agisoft LLC, St. Petersburg, Russia). This software, 
based on a SfM algorithm, is superior to others in terms of precision. 
Also, the software provides three-dimensional points and produces a 
reliable data set to create dense point clouds. The input photographs can 
then be mosaicked and orthorectified to create the DEM by converting 
the point clouds into vector mesh or raster digital elevation models 
(DEMs) [19]. 

To generate the orthomosaic, the images were alignment using the 
photo-triangulation process and generation of a sparse point cloud, 
which defined the coordinate system of the terrain (Step 1). In sequence, 
the sparse point cloud generated in the previous step was densified 
providing more detailed representation of the mapped area and was also 
referenced the WGS 84 Zone 23S local coordinate system (Step 2). In 
step 3, a model was built that accurately represented the three- 
dimensional mapped terrain. Thus, it was possible to represent the 
digital surface model (DSM), and, after filtering the point cloud of the 

Fig. 1. Location of the experimental area.  
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soil, it was possible to visualize the digital terrain model (DTM). In step 
4, the texture was applied to the model obtained in the previous step to 
improve the visual appearance and distinction between objects. Step 5 
consisted of the creation of the DEM. The generated products were two- 
dimensional raster format representations of the DSM and DTM. Lastly, 
the orthomosaic was generated in step 6. 

Despite the low-cost UAVs produce georeferenced images (geotags), 

it is necessary to adjust the actual positioning with the aid of Ground 
Control Point (GCP) to improve the accuracy, especially when you are 
working with different flight days [20]. The Qgis software (QGIS 
Development Team, Open Source Geospatial Foundation) was used to 
identify and align the coordinates in all orthomosaic. 

Fig. 2. DJI Phantom 4 Advanced aircraft (I) and image capturing process (II).  
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2.4. Vegetation cover calculation 

The process used to calculate the vegetation cover was performed in 
QGIS starting by removing the soil, as described below and summarized 
in Fig. 3. 

After the align images (orthomosaic image), the soil reflectance was 
removed from plant reflectance, in Qgis software, as follows: a shapefile 
was created for soil and plant classes (step 1) and a vegetation index was 
calculated (step 2). In step 3, soil and vegetation were segmented 
through the images classification with training using the supervisor 
classification plug-in in QGIS dzetsaka: Classification tool (https://gith 
ub.com/nkarasiak/dzetsaka/). Then, the file with soil and vegetation 
segmented was poligonyzed, from raster to vector (step 4). In vector 
symbology, the options ’classify categorized’ and ’enable editing’ were 
selected to disable vegetation, select soil and delete all soil portion, 
remaining only vegetation portion (step 5). In geoprocessing tools, the 
option ’Buffer(s)’ was selected to change the distance from 10 to 0.0001 
meters (step 6). In step 7, the vegetation index raster file was cliped by 
the mask layer using the vectorized file with only vegetation portion, 
finally obtaining the file with only plant reflectance. 

After removing the soil, zonal statistics was used to count the number 
of pixels of each plot, i.e., the number of pixels of the vegetable portion 
(step 8). Finally, using the field calculator, the vegetation cover was 
calculated through the following equation (step 9): 

Vegetation cover =
((pixel count in plot × pixel size) × 100)

plot area
(1)  

2.5. Vegetation index calculation 

Vegetation indices based on the visible portion of the electromag-
netic radiation spectrum were calculated using QGIS. The green leaf 
index (GLI) and excess green vegetation index (ExG) can be used to 

separate vegetation and soil portions in the images [21]. The vegetation 
indices and their equation were described in Table 1. 

2.6. Field measurements 

The diameter of four lettuce plants per plot was measured in the field 
weekly for five weeks, on the same dates as the flights. Vegetation cover 
from the field data was obtained by calculating the mean area per plant 
of the measured plants and, then, multiplying by the total number of 
plants in the plot area. 

After harvesting, the roots were washed and the M. incognita eggs 
were extracted. The number of eggs is a parameter generally used to 
assess the nematode population in the soil, and is directly related to the 
damage caused by this pathogen. To remove the eggs from the root 
system, the roots of each plant were cut and shaken in a blender using 
NaOCl at a concentration of 0.5% for 40 s. Next, the eggs were collected 
in a sieve of 0.025 mm opening (500 mesh), rinsed in running water and 
stored in plastic tubes in the refrigerator [23]. Then the eggs suspension 
was cleaned following the technique described by Jenkins [24]. After 
this process the eggs were counted in a stereoscopic microscope using a 
Peters’ camera, and done 3 times per plot. 

Fig. 3. The summarized processes to remove the soil for vegetation cover calculation in QGIS.  

Table 1 
Vegetation indices based on the visible portion of the electromagnetic radiation 
spectrum and their equation.  

Vegetation index Equation Reference 

Green Leaf Index (GLI) GLI =

(2 × green − red − blue)
(2 × green + red + blue )

[21] 

Excess Green Vegetation Index 
(ExG) 

ExG = 2 × green − red − blue 
[22]  
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2.7. Data analysis 

Shapiro–Wilk test was used to determine the normality of the data 
and Levene’s test was performed to assess the homogeneity of variance. 
Then, the data were submitted to analysis of variance (ANOVA). The 
vegetation cover and vegetation indices means were compared by 
Tukey’s test for each day after planting, and the eggs number and root 
fresh mass means were compared by Student’s t test. Analysis of vari-
ance was performed to verify if there is an effect of the time on the 
lettuce growth, measured through the values of vegetation cover ob-
tained from UAV image data and from field data. In addition, to assess 
the influence of time on lettuce growth, regression models were fitted. 
Pearson correlation analysis was conducted to detect the relationship 
between the variables, and the linear regression was conducted to 
describe the relationship between them. The statistical analyses were 
carried out by using R software [25]. 

3. Results 

3.1. Comparing flight heights 

The visible spectrum images captured in four different heights (10, 
15, 20, and 25 m) show losses in image resolution as the flight height 
increases which reduces the details captured in the image, especially at 

25 m height (Fig. 4, I). The resolution losses as the flight height 
increased were also observed when the vegetation indices (ExG and GLI) 
were calculated (Fig. 4, II and III). 

Regardless of the loss of resolution as the flight height increases, 
significant differences were not found for the vegetation cover calcu-
lated from the aerial images obtained from 10, 15, 20, and 25 m height 
(Table 2). The vegetation cover calculated from the aerial images and 
from field data showed similar results, except at 30 DAP when the field 
data showed high variation, alerting to possible failures in field data 
collection (Table 2). 

Fig. 4. Visible spectrum images (I), from lettuce plants with 15 days after planting, captured in four different heights (10 m (a), 15 m (b), 20 m (c), and 25 m (d)), 
and images from the vegetation indices: Excess Green Vegetation Index – ExG (II) and Green Leaf Index – GLI (III). Scale: 1:10. 

Table 2 
Vegetation cover calculated from different flight heights and from field data of 
lettuce plants on different days after planting.  

Vegetation cover 
Flight Heights: 15 DAP 30 DAP 44 DAP 

10 m 22.569 ± 3.685 a 89.568 ± 6.055 a 95.653 ± 4.964 a 
15 m 24.436 ± 3.821 a 89.581 ± 5.674 a 96.187 ± 4.448 a 
20 m 25.271 ± 4.430 a 90.400 ± 5.144 a 95.922 ± 4.562 a 
25 m 26.476 ± 4.085 a 91.173 ± 5.186 a 96.395 ± 4.315 a 
Field data 23.066 ± 6.437 a 74.856 ± 16.862 b 90.634 ± 11.323 a 

*Means followed by the same letter in the columns do not differ by Tukey test 
(p<0.05). DAP – days after planting. 
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The vegetation index values were compared in the different flight 
heights, for each evaluation day (days after planting) (Table 3). For GLI 
there was a significant difference (p < 0.05) between the flight heights in 
most of the days, except at 23 days after planting (DAP). At 15 DAP, the 
best height was 15 m, but at 23 DAP there were no differences between 
GLI values for all flight heights. At 30 DAP, 15, 20 and 25 m heights were 
better than 10 m, but at 37 DAP 10 m was the best flight height and the 
GLI values were decreasing when the height was increasing. In this way, 
the differences found in GLI values of the flight heights were not 
consistent over time. 

For the ExG, there was no significant difference between the flight 
heights (p > 0.05) over time. Except in 37 DAP, where 10, 15 and 20 m 
flight heights were better than 25 m (Table 3). 

3.2. Lettuce growth over time 

The vegetation cover was used to evaluate the lettuce growth over 
time. There was no significant difference (p > 0.05) between the treat-
ments without application (T1) and with the application of Bacillus 
subtilis (T2) for vegetation cover from UAV images data and from field 
data. 

Significant differences were observed in the vegetation cover from 
UAV images data over time, being fitted a quadratic regression model (p 
< 0.01, R2 = 0.9617, RMSE = 5.481) (Fig. 5). Using data of lettuce 
diameter collected manually (field data), was possible to estimate a 
vegetation cover by calculating the area of each plant and multiplying 
by the number of plants in each plots. For this vegetation cover obtained 
from the data collected manually in the field, it was also fitted a 
quadratic regression model (p < 0.01, R2 = 0.835, RMSE = 11.758) 
(Fig. 5). The use of UAV images data to calculate the vegetation cover 
improved the accuracy in 46.61% when compared to the field 
measurements. 

Vegetation cover values which were calculated from UAV image data 
and from field data presented strong and positive Pearson correlation (r 
= 0.936, p < 0.01). This result indicates that the aerial images obtained 
from UAV can be used to evaluate the lettuce growth over time, being 
faster and easier than going to the field and measuring plant by plant. 

The GLI presented strong positive Pearson correlation with the 
vegetation cover values calculated from UAV image data (r = 0.944, p <

0.01), being fitted a linear regression model with reasonable precision 
(R2 = 0.891) and accuracy (RMSE = 0.026) (Fig. 6, I). This result using 
UAV image data showed to be more precise than using field data, which 
showed positive correlation (r = 0.856, p < 0.01) and fitted a linear 
regression model with lower precision (R2 = 0.732) (Fig. 6, I). 

In contrast, when ExG was used in both types of data collection (UAV 
image data and field data), the Pearson correlation between vegetation 
cover values and the vegetation index was strong and positive with 
values higher than 0.9 (UAV image data: r = 0.982, p < 0.01; field data: 
r = 0.936, p < 0.01). In additional, the regression models had similar 
performance with R2 = 0.965 and R2 = 0.877 for UAV image and field 
data, respectively (Fig. 6, II). 

3.3. Root-knot nematode in lettuce roots 

Root-knot nematode population was evaluated by the quantification 
of the number of eggs in lettuce roots (Table 4). Although lettuce plants 
with the application of B. subtilis BV09 (T2) presented less number of 
eggs in their roots, significant differences (p > 0.05) were not found 
between the treatments with and without application of B. subtilis BV09 
(Table 4). The absence of a significant difference in the number of eggs 
between the treatment with the application of B. subtilis BV09 (T2) and 
the control treatment (T1) may be related to the high variation in the 
number of eggs in lettuce roots of T1 (Table 4). It may have happened 
due to the lack of standardization of the initial inoculum, as the exper-
iment was carried out in an environment with natural infestation. 

There was no significant difference (p > 0.05) between the treat-
ments for fresh root biomass (Table 4), and the appearance of the roots 
and shoots were similar among plants with and without B. subtilis BV09 
application (Fig. 7, I and II). 

4. Discussion 

Using a low-cost UAV, DJI Phantom 4 Advanced aircraft, it was 
possible to satisfactorily calculate the vegetation cover of a lettuce 
plantation and differentiate lettuce plant growth between the assess-
ment days. RGB images have been used in many research to segment 
plants from the overall image [26–28], providing data to calculate the 
vegetation cover. In this research, it was possible to calculate lettuce 
vegetation cover in the field through RGB images, with consistent results 
with the field measurements. 

The vegetation indices GLI and ExG values, which presented strong 
positive correlation with the vegetation cover calculated from UAV and 
field data, can be used to identify on the maps where plants growth is 
affected. This technology can be applied in the evaluation of lettuce 
growth and in the detection of diseases that affect plant growth, such as 
root-knot nematode, but mainly for diseases that affect the aerial part of 
the plants such as the tomato spotted wilt virus on lettuce. 

In horticultural crops, there are reports of flight height around 15 m 
for potato [18] and 20 m for lettuce [29], close to the used herein. Thus, 
the flight height may vary according to the level of needed detail to 
obtain the information for each crop. Most flight heights between 10 to 
25 m are sufficient for evaluations of vegetation indices for lettuce crop. 

Observing the vegetation indices values, the differences between the 
flight heights were not consistent, being not possible to find the best 
flight height for these parameters. These results lead to the conclusion 
that maybe the differences in the vegetation indices value between the 
flight heights were not caused by the flight height. Probably, these dif-
ferences in vegetation indices values were caused by another factor, 
such as the lack of luminosity calibration in every flight. According to 
Woebbecke et al. [22], the excess green vegetation index (ExG) works 
well for both non-shaded and shaded sunlit conditions, which can 
explain the similarity in the ExG values for the flight heights. It cor-
roborates the hypothesis that the inconsistent variation in the green leaf 
index (GLI) values can be due to the variation in the weather conditions 
in each flight. 

Table 3 
Vegetation indices (GLI and ExG) of lettuce plants calculated from 10, 15, 20, 
and 25 m flight height on different days after planting (DAP).  

GLI 
Flight 
Heights: 

15 DAP 23 DAP 30 DAP 37 DAP 44 DAP 

10 m 0.048 ±
0.011 b 

0.175 ±
0.030 a 

0.240 ±
0.027 b 

0.289 ±
0.022 a 

0.202 ±
0.023 ab 

15 m 0.061 ±
0.014 a 

0.173 ±
0.028 a 

0.259 ±
0.029 a 

0.273 ±
0.018 b 

0.211 ±
0.022 a 

20 m 0.042 ±
0.013 b 

0.159 ±
0.030 a 

0.251 ±
0.029 ab 

0.244 ±
0.022 c 

0.182 ±
0.022 b 

25 m 0.044 ±
0.009 b 

0.166 ±
0.029 a 

0.252 ±
0.031 ab 

0.221 ±
0.024 d 

0.184 ±
0.023 b  

ExG 
Flight 
Heights: 

15 DAP 23 DAP 30 DAP 37 DAP 44 DAP 

10 m 27.339 ±
5.755 a 

81.753 ±
11.046 a 

136.640 ±
14.732 a 

152.647 ±
11.776 a 

128.837 ±
12.457 a 

15 m 28.802 ±
6.044 a 

81.832 ±
12.248 a 

137.582 ±
14.727 a 

149.790 ±
11.060 a 

130.664 ±
11.158 a 

20 m 25.269 ±
6.966 a 

78.783 ±
12.058 a 

135.442 ±
13.919 a 

147.545 ±
12.583 ab 

124.660 ±
11.901 a 

25 m 26.070 ±
5.337 a 

86.161 ±
13.218 a 

133.238 ±
13.814 a 

142.244 ±
13.016 b 

124.689 ±
11.537 a 

*Means followed by the same letter in the columns do not differ by Tukey test 
(p<0.05). DAP – days after planting; GLI – Green Leaf Index; ExG – Excess Green 
Vegetation Index. 
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Many researchers are using RGB images to calculate vegetation index 
and estimate nitrogen and chlorophyll content [6,26,30,31]. Some of the 
researchers who used RGB images to determine nitrogen content and 
chlorophyll concentration used camera support with standardized light 
source to capture images in greenhouse tomato [30] and lettuce [32] 
crops. In the field, however, it is not possible to perform the luminosity 
standardization in this way to capture RGB images for comparing 
different flights. Thus, images capture in the field requires calibration of 
the luminosity through the use of a panel, even before and after a flight, 
and a multispectral camera with an incidence light sensor [33]. Multi-
spectral cameras have been used to calculate vegetation index and assess 

Fig. 5. Regression of lettuce growth measured by the vegetation cover (%) over time (DAP = days after planting), calculated from field data (red circle) and from 
UAV image data (blue triangle). 

Fig. 6. Regression between the vegetation index values (I = GLI and II = ExG) and the lettuce growth measured by the vegetation cover (%) calculated from field 
data (red circle) and from UAV image data (blue triangle). 

Table 4 
Root-knot nematode population in lettuce roots with and without the applica-
tion of B. subtilis BV09.  

Treatment N◦ of eggs/g of root Fresh root biomass (g) 

T1 55.671 ± 46.265 a 28.333 ± 7.835 a 
T2 21.175 ± 13.247 b 32.583 ± 6.744 a 

*Means followed by the same letter in the columns do not differ by Student’s t- 
test (p < 0.05). T1 – without the application of B. subtilis BV09 (control); T2 - with 
the application of B. subtilis BV09. 
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the health of lettuce plants [9,34], as well as hyperspectral cameras have 
been used to assess lettuce water uptake by measuring leaf water content 
[35]. 

In this context, RGB digital cameras have the advantage of being 
cheaper and presenting a high resolution. However, the use of RGB 
images has limitations because of the high field luminosity effect and the 
impossibility of calibrating it, impeding the comparison of field RGB 
images. The color indices from RGB images can be used mainly to 
segment plants from the overall image and, as evaluated in this research, 
the vegetation indices GLI and ExG can be used to detect failures in plant 
growth and to identify the occurrence of diseases that affect the lettuce 
plant growth. 

Lettuce cultivar Solaris proved to be susceptible to M. incognita, as 
found by Sgorlon et al. [36], presenting M. incognita infection with gall 
formation and eggs production (Fig. 7 and Table 4). On the other hand, 
this cultivar showed some tolerance to M. incognita, being not observed 
damage to lettuce plant growth. 

5. Conclusions 

Vegetation indices and vegetation cover calculation using RGB im-
ages captured by a low-cost UAV proved to be efficient in measuring 
lettuce growth over time with higher accuracy than field measurements. 

This technology can be applied for the detection of diseases that affect 
lettuce growth, as well as help following up harvesting time. RGB images 
should not be used to compare vegetation index values between 
different flights, since the light incidence and cloudiness can affect the 
vegetation index performance. In this case, multispectral or hyper-
spectral images are more suitable. Future research can assess the use of 
proximal sensors for plant-parasitic nematode detection in lettuce crop. 
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