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As a faster, reliable, and low cost technique, applicable to large samplings,
near infrared (NIR) spectroscopy technology has been widely applied for high-
throughput phenotyping in forest breeding programmes. The aim of this study
was to develop multivariate models for estimating the chemical and physical
properties of juvenile wood based on NIR signatures of milled wood. Moreover,
two approaches, namely, external validation by clone and by age, were tested
to validate the model for estimating extractive content. NIR spectra of wood
specimens taken from three clones of Eucalyptus urophylla (one to six years
old) grown in southern Brazil were used to calibrate and validate models for
predicting the wood basic density, total extractives, ash content, holocellulose
content, syringyl to guaiacyl ratio (S/G) and elementary components of the
wood. PLS-R models were validated by an independent set of wood specimens
and  presented  promising  statistics  for  the  estimating  wood  density  (R2p  =
0.768), extractives (R2p = 0.912), ash (R2p = 0.936) and carbon (R2p = 0.697)
contents from NIR signatures measured in the milled wood of young trees. Fur-
thermore, NIR models for estimating the extractive content of wood were vali-
dated using the clones or ages left out of the training sets. Most models pre-
sented satisfactory statistics (R2 > 90%) and could be applied to routine labora-
tory analyses or to select potential trees in Eucalyptus breeding programmes.

Keywords: Near Infrared, Wood Analysis, Predictive Models, Wood Powder, Eu-
calyptus, Multivariate Analysis

Introduction
Notably, Brazil  is one of the largest pro-

ducers  and  consumers  of  charcoal  in  the
world (FAO 2019) with the potential to in-
crease  its  production.  Charcoal  is  widely
used as an agent to reduce iron ore to pro-
duce “green steel”  in industrial  blast  fur-
naces.  The  strategy  to  increase  charcoal
production and quality is to use wood from
fast-growing  plantations  as  a  biomass
source.  In tropical  regions,  such as Brazil,
Eucalyptus trees  demonstrate  rapid
growth, produce wood of adequate quality
(density of 500 to 600 kg m-3) and present
a short cutting cycle (5-6 years); therefore,
it is a strategic raw material for private, sci-
entific and governmental sectors.

In addition to  growth characteristics,  re-
sistance to pests and water stress,  as well
as  several intrinsic characteristics of wood

must be considered to select genetic mate-
rials with potential to increase productivity
and wood quality. According to Protásio et
al.  (2017),  Eucalyptus clones  that  produce
wood  with  higher  lignin,  acetone soluble
extractive contents and lignin with a great-
er amount of guaiacyl structural units may
be  selected  to  enhance  charcoal  produc-
tion. Thus, the identification of genetic ma-
terials  based on such characteristics  opti-
mizes charcoal quality and meets industry
requirements (Protásio et al. 2015).

The conventional methodology to charac-
terize wood biomass is destructive and re-
quires felling trees to obtain wood speci-
mens, and then time-consuming laboratory
procedures  are  carried  out  to  determine
the physical and chemical properties of the
wood specimens. Moreover, this method is
generally  very  costly  due  to  the  need  to

transport wood pieces (discs, stems) from
forests to the laboratory. Forest breeders
demand  fast  solutions  to  classify  wood
quality in large samplings, preferably from
standing trees, to select the most promis-
ing materials and designate them to breed-
ing programmes.

Near  infrared  (NIR)  spectroscopy  has
been applied  to overcome this  challenge.
The technique has proven to be an efficient
tool in breeding programmes for material
selection involving a large number of trees
(Schimleck et al. 2004). NIR is a fast (1 min
or less) and accurate solution (a high corre-
lation  between  actual  and  estimated  val-
ues) and is applicable to a large number of
samples  (Pasquini  2003).  Several  studies
have  been  developed  to  evaluate  wood
properties  based  on  their  NIR  signature
(Tsuchikawa  &  Kobori  2015),  and  this  ap-
proach can be used for material  selection
in breeding programmes and genetic stud-
ies (Hein & Chaix 2014). Multivariate mod-
els  have been developed to estimate the
content of extractives and lignin (Zhou et
al. 2016, Estopa et al. 2017), carbohydrates
(Zhou et al. 2016, Estopa et al. 2017, Rosado
et al. 2019), ash (Zhou et al. 2016), the sy-
ringyl/guaiacyl  ratio  (S/G  – Hodge  et  al.
2018),  glucose,  xylose,  galactose,  arabi-
nose,  and  mannose  (Hodge  et  al.  2018),
and  the  wood  density  (Costa  et  al.  2018,
2019, Zanuncio et al. 2018, Li et al. 2020).

Most  of  the  studies  involving  NIR  and
wood  characterization  have  been  carried

© SISEF https://iforest.sisef.org/ 372 iForest 15: 372-380

Department of Forest Sciences, Federal University of Lavras, PO Box 3037, 37200-900 
Lavras, MG (Brazil)

@@ Taiana Guimaraes Arriel (taianaarriel@hotmail.com)

Received: Dec 01, 2021 - Accepted: Jul 21, 2022

Citation: Loureiro BA, Arriel TG, Guedes Ramalho FM, Hein PRG, Trugilho PF (2022). NIR-
based models for estimating selected physical and chemical wood properties from fast-
growing plantations. iForest 15: 372-380. – doi: 10.3832/ifor4030-015 [online 2022-10-05]

Communicated by: Manuela Romagnoli

Research ArticleResearch Article
doi: doi: 10.3832/ifor4030-01510.3832/ifor4030-015

vol. 15, pp. 372-380vol. 15, pp. 372-380

http://www.sisef.it/iforest/contents/?id=ifor4030-015
mailto:taianaarriel@hotmail.com


Assis Loureiro B et al. - iForest 15: 372-380

out  using  spectra  recorded  from  solid
wood.  However,  few  studies  have  evalu-
ated  the  performance  of  models  devel-
oped from milled  wood,  as it  can be col-
lected  from  trees  using  a  handheld  drill
without harvesting them. Moreover, most
predictive  models  depend  on  the  age  of
trees.  Here,  we  developed  multivariate
models based on representative NIR spec-
tra recorded from wood powder of an en-
tire tree to predict the chemical and physi-
cal  properties  of  wood.  Moreover,  we
tested  two  approaches,  namely,  external
validation by clone and by age, to validate
the  model  for  extractive  estimation.  The
objective is to validate robust and reliable
predictive models for estimating the chem-
ical and physical properties of wood based
on NIR signatures taken from milled wood
samples regardless of the clone or the age
of the tree.

Material and methods

Sampling material
Three  Eucalyptus  urophylla clones  from

commercial  plantations  (plantation  spac-
ing: 9.0 m2) of the company Plantar located
in the municipalities of Curvelo and Felixl-
ndia (Minas Gerais State) in southern Brazil
were used in this study (Tab. 1). Five trees
were randomly selected and sampled. Each
selected tree represents the average diam-
eter by age.

Seven discs were selected from each tree
corresponding to 0%, 2%, 10%, 30%, 50%, 70%
and 100% of the commercial height of the

stem. The commercial  height was defined
up to a minimum diameter of 4.0 cm with
bark.  Two  opposite  wedges  (knot  free)
were removed from discs to determine the
basic  density,  whereas  the  remaining
wedges were milled  for  chemical  analysis
of the wood and for recording NIR signa-
tures.

Chemical analyses
For  all  chemical  analyses,  composite

wood samples were used, that is, one sam-
ple per tree with material from all longitu-
dinal  sampling  positions.  In  elementary
chemical  analyses,  oven dry  sawdust  was
selected in overlapping screens of 200 and
270 meshes, using the fraction removed in
the latter. In structural chemistry analyses,
the fraction retained between the 40 and
60 mesh sieves was used.

Tab. 2 lists the reference analyses carried
out to characterize wood samples and to
perform  the  calibration  and  validation  of
NIR models.

NIR spectra measurements
NIR  spectra  were  recorded  using  a

Fourier  transform  spectrometer  (MPA,
Bruker Optik GmbH, Ettlingen, Germany) in
diffuse reflection mode in conjunction with
the software program OPUS v.  7.5.  Spec-
tral  signatures  were  measured  between
12500 and 3600 cm-1 with a resolution of 8
cm-1 using an integrating sphere, but only
the 9000 to 4000 cm-1 range was used for
analysis. A gold standard was used as a ref-
erence,  using  16  scans,  before  spectra
were collected in the wood powders.

The  discs  of  each  tree  were  grounded
and mixed.  Wood powder  samples repre-
sented an entire tree. Only the fraction re-
tained between 40 and 60 mesh sieves was
used for recording NIR spectra. The pow-
der was stored in an appropriate vial, and
16  scans  were  taken  for  each  spectrum.
The  mean  of  two  NIR  spectra  per  tree/
powder  sample  was  calculated  and  used
for  regression  analysis.  Spectra  were  re-
corded in an acclimatized room with a tem-
perature of approximately 20 °C and rela-
tive humidity of approximately 65%. Under
these conditions, the equilibrium moisture
of  the  wood  powders  reached  approxi-
mately 12%.

Development of NIR-based models
The  spectral  data  were  correlated  with

the basic  density and chemical  properties
of wood by partial least squares regression
(PLS-R)  using  the  software  Chemoface  v.
1.63  (Nunes  et  al.  2012).  The  matrix  was
composed of  the reference values  of  the
chemical  and  physical  analyses  (deter-
mined by standardized procedures) and by
the NIR spectra collected in the respective
samples of wood powder.

Predictive models for basic density, total
extractives,  ash,  holocellulose,  S/G  ratio
and elementary components (nitrogen and
carbon) of the wood were developed from
NIR spectra measured in the 105 samples.
PLS-R  models  were  developed  using  un-
treated and treated spectra. The following
mathematical  treatments  were applied to
NIR spectra:  central averaging, normaliza-
tion,  first  derivative  (13-point  filter  and  a
second-order  polynomial),  second  deriva-
tive  (25-point  filter  and  a  second-order
polynomial),  multiplicative  scatter  correc-
tion  (MSC)  and  standard  normal  variate
(SNV).  Derivatives  were  calculated  from
the Savitzky-Golay algorithm.

PLS-R  was  validated  by  cross-validation
and independent set validation. The leave-
one-out method was used for full cross-val-
idations,  while independent set  validation
was  performed  using  2/3  of  the  samples
chosen at random for calibrations and 1/3
of the remaining specimens for test set val-
idation.

The statistical parameters used to select
the best forecasting models were the de-
termination  coefficient  of  cross-validation
(R2cv)  and  independent  validation  (R2p);
mean square error of  the cross-validation
(RMSEcv) and independent validation (RM-
SEp);  performance ratio  for  deviation for
cross-validation (RPDcv)  and independent
validation (RPDp) and the number of latent
variables used in the calibration (LV). The
RPD is the ratio between the standard de-
viation of the reference values and RMSE.
These statistics are a way of identifying the
accuracy of the calibration, even between
different wood traits.

Results and discussion

Spectral signature
Fig.  1 shows the NIR signatures of pow-

dered  wood  of  Eucalyptus  urophylla.  The
use of this interval allows greater spectral
information correlated to the chemical and
physical properties of the wood. According
to  Pasquini (2003), NIR radiation interacts
with  the C-H,  N-H,  O-H and S-H bonds of
the chemical components of biological ma-
terials. Studies that were developed to esti-
mate basic density and the chemical prop-
erties of wood (Estopa et al. 2017) for Euca-
lyptus used the same wave range as this re-
search.

It is possible to observe noise and a lack
of  relevant  information  throughout  the
range up to 9000 cm-1. Most regions with
useful  spectral  information  occur  before
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Tab. 1 - Identification of the genetic mat-
erial used.

Clone Age (yrs) City Location

1 1, 4, 5, 6 Curvelo 18°42′ S 
44°33′ W

1 2, 3 Felixlândia 18°46′ S
44°53′ W

2 1 to 6 Curvelo 18°42′ S
44°33′ W

3 1, 2 Felixlândia 18°46′ S
44°53′ W

3 3 to 6 Curvelo 18°42′ S
44°33′ W

Tab. 2 - Analysis of wood properties. (H): hydrogen content; (N): nitrogen content;
(S): sulfur content; (O): oxygen content.

Analysis Procedure

Basic density (BD) NBR 11941 (ABNT 2003a)

Nitrogen (N) ASTM E870-82 (ASTM 2013)

Carbon (C) C = 100 - H - N - S - O - ASH

Extractives content (EXT) TAPPI T280 pm-99 (TAPPI 2000)

Syringyl/guaiacyl ratio (S/G) Lin & Dence (1992)

Ash content (ASH) NBR 13999 (ABNT 2003b)

Holocellulose content (HOLO) HOLO = 100 - total lignin - EXT - ASH
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NIR-based models to estimate wood properties

7000 cm-1. These regions are attributed to
the polymer variations associated with the
chemical  constitution of wood. According
to  Workman  &  Weyer  (2008),  the  most
prominent  bands  for  wood  are  7100  to
6240  cm-1  (water)  and  4405  cm-1 (lignin),
and the peaks are at 5495, 4218, 4019 and
4405  cm-1 (cellulose)  and  4762  and  4545
cm-1 (carbohydrates).  Absorption  Band  1
(Band  1)  mainly  refers  to  water,  and  the
other  absorption bands (Band 2) refer  to
the  wood  chemical  components  (Fig.  1).
Multivariate statistical analysis is necessary
to assist in the extraction and interpreta-
tion of useful information contained in the
NIR spectrum.

The interpretation of the NIR spectrum of
wood  is  complicated  because  wood  is  a
complex material, mainly composed of cel-
lulose,  hemicelluloses,  and  lignin,  along
with minor amounts of extractives and in-
organics (Panshin & Zeeuw 1970). Similari-
ties or differences between wood samples
can be easily observed by principal compo-
nent analyses of their NIR spectra informa-
tion. Thus, PCA was carried out from first
derivative spectra to investigate the effect
of clone or age on NIR signatures of wood
(Fig.  2).  Principal  components  (PC1  and
PC2) accounted for 89% of the spectral vari-
ability, and no clear clusters were found in
the scatter plot of scores for PC1 and PC2.

Although  it  was  not  possible  to  accu-
rately  discriminate  clones  (Fig.  2A),  the
spectral  variability  is  likely  to  depend  on
tree age (Fig. 2B), as the scores are distrib-
uted along the plot according to age (see
gradient of colours in Fig. 2). Dark samples
represent  younger  trees  (1  to  3  years),
while lighter samples represent more ma-
ture trees (6 years).

Predicting wood properties from NIR 
models

Tab.  3 shows  the  statistics  associated
with the calibrations and cross-validations
presenting the best performance for esti-
mating the wood properties. The spectral
range and  data  treatment  influenced  the
model performance.  For all  wood proper-
ties, models developed from spectra rang-
ing from 9000 to 4000 cm-1 achieved better
predictive performances  than the  models
(not  shown)  developed  from  the  entire
NIR range (12500 to 3600 cm -1).  For basic
density,  ash,  holocellulose  and  S/G  ratio,
models developed from the first derivative
of spectral signatures performed better. To
estimate  the  extractive  nitrogen  and car-
bon  contents,  the  best  models  were  ob-
tained  from  NIR  spectra  treated  by  MSC
(multiplicative  scatter  correction),  un-
treated  spectra  and  spectra  after  SNV
(standard normal variate) processing (Tab.
3,  Fig. 3). No outliers were removed from
the database.  It  is  worth noting that  the
suppression  of  a  large  number  of  outlier
samples results in a decrease in representa-
tiveness and elimination of important infor-
mation from the data (Pasquini 2003).

The model  developed for the prediction

of ash content showed a higher coefficient
of determination in cross-validation (R2cv =
0.961) and ratio of performance to devia-
tion (RPD = 5.08). The lowest statistics of
the model  were presented for  estimating
the  nitrogen  content  (R2cv  =  0.498  and
RPD  =  1.41).  The  higher  the  RPD  is,  the
more robust the model is (Fujimoto et al.

2008).  For  complex  materials  such  as
wood,  models  with RPD values above 1.5
can be used for preliminary screening (Pra-
des et al. 2014, Todorovic et al. 2015).

Several studies have reported that wood
density  can be predicted from  NIR signa-
tures  (Hein  et  al.  2010,  2012,  Arriel  et  al.
2019). In this study, the best model for esti-
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Fig. 1 - Original NIR spectra of wood samples of Eucalyptus urophylla.

Fig. 2 - Two-dimen-
sional scatter plots
for PC1 and PC2 
from principal 
component analy-
ses (PCAs) of the 
first derivative NIR
spectra grouping 
samples by Clone 
(A) and Age (B). 
Differences in 
clones or ages are 
highlighted by the 
colour scale.
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mating the basic density presented a R2cv
of 0.754 and RMSEcv of 0.023 and reached
a satisfactory RDP value (2.01), as stated by
Schimleck et  al.  2003 (Model  #1  – Tab.  3,

Fig.  3).  This  model  was  developed  from
eight latent variables and the first deriva-
tive of the NIR spectra.

This  kind  of  predictive  model  presents

many  industrial  applications  since  wood
density  offers  considerable  information
about  wood.  Wood  density  is  related  to
several  key  properties,  which  highlights
that it is a parameter of wood quality appli-
cable in several situations of industrial ac-
tivity  (Pereira  et  al.  2012,  Gouvêa  et  al.
2015). Until then, most studies for estimat-
ing the basic density were carried out using
spectra of solid wood. However, this study
presents  a  new  approach  based  on  NIR
spectra recorded in milled wood. The sta-
tistics associated with the PLS-R infer that
the NIR spectra recorded from wood pow-
der provide a reliable estimate of the wood
density.

This is especially important from an oper-
ational point of view. That is, this model is
capable  of  estimating  values  that  can  be
used to rank unknown materials and clas-
sify them in terms of quality from spectra
collected  from  the  dust  of  their  wood,
without  the  need  to  cut  down  the  trees
and transport them to the laboratory.

Concerning the chemical composition of
wood, NIR spectroscopy detects variations
in  the  chemical  constitution  and  can  be
used to assess key properties (Hein et al.
2012)  and  estimate  the  performance  of
wood in industrial operations, such as pulp-
ing and bleaching. Predictive models for es-
timating the extractive content with good
performance  for  material  selection  and
tree breeding programmes have been re-
ported (Estopa et al. 2017). In the present
study, the model for extractives (Model #2
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Tab. 3 - Statistics associated with PLS-R calibrations, cross-validations and test set vali-
dations for estimating the wood properties of  Eucalyptus urophylla. (Treat): mathe-
matical treatment; (LV): latent variables; (R2): coefficient of determination for calibra-
tion (R2c), cross-validation (R2cv) and test set (R2p); (RMSE): root mean square error
for calibration (RMSEC), cross-validation (RMSECV) and test set (RMSEP); (RPD): ratio
of performance to deviation for cross-validation (RPDcv) and test set (RPDp); (BD):
basic density; (EXT): total extractives content; (ASH): ash content; (HOLO): holocellu-
lose content; (S/G): syringyl to guaiacyl ratio; (N): nitrogen content; (C): carbon con-
tent.

Method Y Variable BD EXT ASH HOLO S/G N C

C
ro

ss
-v

al
id

at
io

n

Model #1 #2 #3 #4 #5 #6 #7

Treat. 1D MSC 1D 1D 1D - SNV

LV 8 10 8 7 8 6 10

R2c 0.864 0.936 0.979 0.666 0.718 0.6 0.843

RMSEC 0.017 0.458 0.049 0.991 0.193 0.059 0.339

R2cv 0.754 0.907 0.961 0.503 0.527 0.498 0.761

RMSEcv 0.023 0.553 0.067 1.222 0.253 0.067 0.421

RPDcv 2.01 3.3 5.08 1.41 1.45 1.41 2.04

Te
st

 s
et

 v
al

id
at

io
n

Model #8 #9 #10 #11 #12 #13 #14

LV 10 10 10 5 8 6 10

R2c 0.862 0.929 0.966 0.564 0.605 0.607 0.833

RMSEC 0.017 0.461 0.061 1.131 0.224 0.059 0.354

R2p 0.768 0.912 0.936 0.239 0.525 0.509 0.697

RMSEp 0.023 0.586 0.104 1.69 0.284 0.068 0.492

RPDp 2.04 3.4 3.44 1.03 1.35 1.41 1.72

Fig. 3 - Relationship between
wood properties determined
in the laboratory and esti-
mated from cross-validation 
models based on NIR signa-
tures.

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



NIR-based models to estimate wood properties

– Tab. 3,  Fig. 3) showed promising perfor-
mance with a R2cv of 0.907, RPDcv of 3.30
and RMSEcv of 0.553%. According to  So &
Eberhardt (2006), the application of math-
ematical treatments of NIR data improved
the performance of the calibration, leading
to  better  predictions.  The  predictive  per-
formance  of  Model  #2  was  achieved
through the application of MSC treatment
on the NIR spectra and the use of ten la-
tent variables.

When  the  objective  is  to  produce  char-
coal  from  wood,  for  instance,  chemical
composition  is  an  aspect  affecting  indus-
trial performance. In general, wood with a
high  lignin  content  and  percentage  of
some extracts is more suitable for energy
use (Brand et al. 2011,  Gouvêa et al. 2015).
Thus,  the  selection  of  genetic  materials
taking into account these chemical proper-
ties of wood is essential. The PLS-R models
presented in Tab. 3 can bring agility to tree
breeding programmes in forest companies
that need to phenotype large wood pow-
der samplings.

The  model  for  estimating  ash  content
from  first  derivative  NIR  spectra  yielded
the highest determination coefficient (R2 =
0.961) in cross-validation (Model #3  – Tab.
3). Three wood samples with high ash con-
tents  positively influenced the model  sta-
tistics (Fig. 3). Ash content is related to ex-
tractive content and very often and also to
basic  density.  According  to  Chen  et  al.
(2003), the content of inorganic materials
in wood can be successfully estimated us-
ing  NIR  spectra,  as  demonstrated  in  the
present  study.  High  R2 values  imply  a
greater  correlation  between  the  values
predicted by the NIR and the reference val-

ues (Ramadevi et al. 2016). From a bioener-
getic point of view, the minerals present in
biomass  fuels  are  harmful,  as  they  can
form incrustations in equipment and pipes
when the biomass is burned in furnaces, in
addition to decreasing the calorific value of
the combustible material (Brand et al. 2011,
Paula et al. 2011). The possibility of quickly
identifying these minerals in wood is very
important for industrial purposes.

With regard to the predictive models for
holocellulose,  the  previous  investigations
have  shown  promising  findings.  For  in-
stance, Hou & Li (2011) developed a model
with  high  R2 (0.98)  and  low  RMSEcv
(0.34%)  values.  Zhou  et  al.  (2015) found
high  correlation  coefficients  in  predicting
the holocellulose content of different hard-
woods (R2 = 0.93).  Likewise,  models with
good  calibrations  for  holocellulose  (R2 =
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Tab. 4 - Statistics associated with PLS-R test set validations by clone for estimating
total extractive contents in  Eucalyptus urophylla wood. (LVs): latent variables; (R2):
coefficient  of  determination  for  calibration  (R2c)  and  test  set  (R2p);  (RMSE):  root
mean square error for calibration (RMSEC) and test set (RMSEP); (RPD): ratio of per-
formance to deviation for calibration (RPDc) and test set (RPDp).

Model #15 #16 #17 #18

LV 5 8 7 8

Cal set
Clones

all 2 and 3 1 and 3 1 and 2

Min 1.49 1.49 1.49 3.55

Mean 5.40 5.34 5.55 5.35

Max 9.26 8.87 9.26 9.26

R²c 0.872 0.949 0.978 0.912

RMSEC 0.541 0.348 0.267 0.347

RPDc 2.81 3.39 6.79 4.51

Val set all 1 2 3

Min 1.49 3.61 3.55 1.49

Mean 5.40 5.56 5.21 5.53

Max 9.26 9.26 7.43 8.87

R²p 0.816 0.882 0.228 0.915

RMSEp 0.667 0.481 0.907 0.624

RPDp 2.28 2.93 1.09 3.48
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extractive contents deter-

mined in the laboratory and
estimated from cross-valida-
tion (Model #15) and valida-

tions by clone (Models 
#16-18).
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0.79 and RMSEcv = 1.19%) were reported by
Zhou et al. (2016) in samples of Eucalyptus
dunnii. However, Model #4 (Tab. 3), devel-
oped  to  estimate  the  holocellulose  frac-
tion, did not obtain highly satisfactory sta-
tistics,  as  found for  the other  properties.
Similarly, the PLS-R to estimate the ratio of
the S/G units,  as well  as the holocellulose
content,  presented  statistics  associated
with the model with unsatisfactory values
for cross-validation (Tab. 3,  Fig. 3). The co-
efficient  of  determination  (R2cv  =  0.527)
was not considered high enough, but the
error (RMSEcv = 0.253) was low. Hein et al.
(2010) reported  satisfactory  cross-valida-
tions for the S to G ratio in Eucalyptus uro-
phylla with R2cv ranging from 0.71 to 0.86,
RMSEcv  from  0.12  to  0.18  and  RPD  from
1.90  to  2.88.  Baillères  et  al.  (2002) pre-
sented an RMSEcv value similar to that of
the  present  study,  with  a  value  of  0.22;
however, the R2cv showed a higher value.
For the production of bioenergy from char-
coal,  the  highest  proportion  of  G-type
structures,  causing  the  lowest  S/G  ratio,
has been related to the higher yield of the
carbonization process (Pereira et al.  2013,
Santos et al. 2016).

Cross-validations  for  nitrogen  content
showed the lowest R2cv (0.498), an RMSE
of 0.067 and an RPD of 1.41, similar to that
of holocellulose (Tab. 3). It is worth noting
that  high  levels  of  N  are  undesirable  in
wood for use as a source of bioenergy, es-
pecially  for  thermochemical  conversion
processes. The release of this  constituent
in the atmosphere can cause the formation
of toxic oxides (NOx), promote air pollution
and the formation of acid rain (Demirbas &
Demirbas  2004,  Obernberger  et  al.  2006)
and  decrease  the  caloric  value  of  fuel

(Huang  et  al.  2009).  As  with  sulfur,  the
presence of nitrogen is harmful to the envi-
ronment and human health.

The model for estimating carbon content
(Tab. 3,  Fig. 3) yielded a satisfactory deter-
mination coefficient (R2cv = 0.761) and low
error (RMSEcv = 0.421). Carbon content is
an important parameter for assessing the
quality of wood for energy purposes. For
charcoal  production,  higher  levels  of  car-
bon are desirable,  as carbon is converted
into fixed carbon, which is mainly responsi-
ble for energy storage. In general, the per-
centage of elemental carbon has a positive
relationship with the yield in charcoal due
to its thermal degradation (Protásio et al.
2015).

In  summary,  the  predictive  models  pre-
sented in  Tab.  3 could be applied for  the
rapid characterization of wood and to se-
lect materials that are more adequate for
industrial application.

These models were rebuilt to test them in
independent  validations.  In  other  words,
the  database  was  randomly  divided  into
sets: one to calibrate (2/3 of samples) and
the other (1/3  of samples) to validate the
models  independently.  Tab.  3 also  shows
the  statistics  associated  with  the  models
developed using test set validation for un-
treated NIR spectra. As expected, the PLS-
R  models  showed  lower  performance  in
terms of  R2p, RMSEp and RPDp than the
cross-validations.  The  models  developed
for  basic  density,  extracts  and ashes  per-
formed well and generated acceptable es-
timates  of  these  properties  in  the  “un-
known” wood samples of the independent
set. Therefore, these models can be consid-
ered satisfactory and are validated for esti-
mating these wood properties,  indicating

that the representativeness of the materi-
als is more important than just a large num-
ber of samples.

Predicting the extractive content: 
validations by clones

In the present study, the PLS-R model for
estimating extractive content was selected
to be validated by different approaches be-
cause the reference data and NIR spectra
yielded  promising  cross-validation  results
(Model #15 – Tab. 4). In the first approach,
we developed NIR models  based on  two
clones  and  validated  them  using  the  re-
maining  clone.  Tab.  4 shows  the  calibra-
tions  and test  set-validated PLS-R models
for  estimating  the  extractive  content  of
each clone. These models were developed
from the first derivative of the NIR spectra.

Most of the predictive models presented
adequate  statistics.  All  PLS-R  calibrations
presented  R2c  values  greater  than  90%.
PLS-R  models  validated  using  clone  1
(Model #16) and clone 3 (Model #18) pre-
sented  good  statistics,  while  Model  #17
(Tab. 4) validated with samples from clone
2 yielded a low R² value, probably due to
the  narrow  range  of  variation  (3.55%  to
7.43%)  in  the  extractive  content.  Fig.  4
shows  reliable  agreements  between  NIR-
estimated  and  laboratory-determined  val-
ues for the extractive content of wood of
models presented in  Tab.  4 including cali-
bration (white circles) and validation (grey
circles) set samples.

The statistics of Models #16 to #18 (Tab.
4) suggest that it is important to select rep-
resentative  wood  samples  (trees)  for  de-
veloping NIR models. The models to be ap-
plied  to  unknown  samples  must  encom-
pass every possible variation in the wood
properties.  If  wood samples  with  proper-
ties  varying  in  ranges  are  different  from
those used to calibrate the model, then the
estimates may contain errors.

Predicting extractive content: 
validations by age

The samples in this study represent trees
from  three  clone varieties  slaughtered at
ages ranging from 1 to 6 years. Thus, the
same clone was evaluated at ages 1, 2, 3, 4,
etc.

In  this  second  approach,  NIR  models
were developed based  on  wood samples
of one age range and then were validated
using wood samples of the remaining age.
Tab. 5 shows the calibrations and test set
validations  for  estimating  the  extractive
content  for  different  ages.  These  models
were also fitted from the first derivative of
NIR signatures,  and the PLS-R validations
presented  promising  findings.  The  coeffi-
cient of variation of the calibrations ranged
from 69.6% to 92.8%, while the R2p of vali-
dation varied between 71.2% and 91.7% (Tab.
5).  Fig. 5 shows NIR predicted vs. lab-mea-
sured values plot for extractive content of
Eucalyptus wood  for  both  calibration
(white circles)  and test  sets (grey circles)
for each age set.
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Tab. 5 - Statistics associated with PLS-R test set validations by age for estimating total
extractive contents in  Eucalyptus urophylla wood. (LVs): latent variables; (R2): coeffi-
cient  of  determination for  calibration (R2c)  and test  set  (R2p);  (RMSE):  root  mean
square error for calibration (RMSEC) and test set (RMSEP);  (RPD): ratio of perfor -
mance to deviation for calibration (RPDc) and test set (RPDp).

Model #19 #20 #21 #22 #23 #24

LV 4 2 2 6 7 7

Cal set
Ages

1-9 1.3-9 1-2.4-9 1-3.5-9 1-4.5-9 1-5.7-9

Min 3.36 1.49 1.49 1.49 1.49 1.49

Mean 5.68 5.63 5.51 5.32 5.36 5.10

Max 9.26 9.26 9.26 9.26 9.26 7.57

R2c 0.822 0.707 0.696 0.898 0.928 0.919

RMSEC 0.567 0.820 0.870 0.502 0.419 0.368

RPDc 2.39 1.86 1.83 3.16 3.79 3.56

Val set 1 2 3 4 5 6

Min 1.49 3.36 3.55 4.25 4.08 5.34

Mean 3.72 4.11 4.85 5.99 5.74 7.30

Max 5.37 5.01 6.39 7.57 7.47 9.26

R2p 0.884 0.907 0.917 0.836 0.712 0.759

RMSEp 0.807 0.483 0.2969 0.443 0.575 1.259

RPDp 1.72 1.04 2.82 2.00 1.80 1.07

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



NIR-based models to estimate wood properties

The results  obtained in  this  study show
that  the  sample  selection  approach  is  of
fundamental  importance,  as  it  makes  it
possible to drastically  reduce the number
of analyses carried out in the laboratory for
the development of NIR calibrations, with-
out  loss  of  precision and covering all  the
variability found in the dataset to be evalu-
ated.

According to Models #19 to #24 (Tab. 5),
NIR spectroscopy has the potential to be-
come a tool for rapid and reliable classifica-
tions of wood in terms of extractive con-
tents  in  unknown wood samples,  even  if
tree samples of some age ranges were not
included in the calibration set.

Conclusions
PLS-R models were validated by an inde-

pendent set of wood specimens and pre-
sented  promising statistics  for  estimating
wood  density  (R²p  =  0.768),  extractives
(R²p = 0.912), ash (R²p = 0.936) and carbon
content (R²p = 0.697) from NIR signatures
measured  in  milled  wood  of  young  trees
from 1 to 6 years old.

Then, NIR models for estimating the ex-
tractive content of wood were developed
based on clones or ages and validated us-
ing the clones or ages left out. Most of the
predictive models presented adequate sta-
tistics (R2 greater than 90%) and could be
applied to routine laboratory analyses or to
select potential  trees in  Eucalyptus breed-
ing programmes.

In the outline of this study, our objective
was to develop robust and reliable regres-
sions  to  estimate  wood properties  based
on  NIR  spectra  taken  regardless  of  the
clone or the age of the tree. These results
showed that it is important to select repre-
sentative  wood  samples  for  developing
NIR  models.  NIR  models  developed  with
representative  wood samples  are able  to
satisfactorily  estimate  the  extractive  con-
tents  of  unknown  wood  samples  even
when tree  samples  of  some  age  ranges
were not included in the calibration set.

These models are able to quickly and reli-
ably generate estimates of key wood prop-
erties to rank unknown materials and clas-
sify them in terms of wood quality without

the need to fell and transport the tree. This
approach can be associated with a motor-
driven coring system in which wood sam-
ples were extracted from standing young
trees  in  the  field,  as  required  for  wood
breeding programmes.
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