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A NEW PROCEDURE FOR FORESTRY DATABASE UPDATING WITH  
GIS AND REMOTE SENSING 

Luis M. T. de Carvalho1; Jan G. P. W. Clevers2;  Steven M. de Jong3  Andrew K. Skidmore4 

 

(Recebido: 4 de dezembro de 2002; aceito 20 de novembro de 2003) 

ABSTRACT: The aim of this study was to develop an automated, simple and flexible 
procedure for updating raster-based forestry database. Four modules compose the procedure: 
(1) location of changed sites, (2) quantification of changed area, (3) identification of the new 
land cover, and (4) database updating. Firstly, a difference image is decomposed with wavelet 
transforms in order to extract changed sites. Secondly, segmentation is performed on the 
difference image. Thirdly, each changed pixel or each segmented region is assigned to the 
land cover class with the highest probability of membership. Then, the output is used to 
update the GIS layer where changes took place. This procedure was less sensitive to 
geometric and radiometric misregistration, and less dependent on ground truth, when 
compared with post classification comparison and direct multidate classification. 
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UM NOVO PROCEDIMENTO PARA A ATUALIZAÇÃO DE BANCO DE  
DADOS FLORESTAL  COM SIG E SENSORIAMENTO REMOTO 

RESUMO: O intuito deste estudo foi desenvolver um procedimento automático, simples e 
flexível para a atualização de base de dados florestais em formato matricial. Quatro módulos 
compõem o procedimento: (1) localização das áreas que sofreram modificações, (2) 
quantificação da área modificada, (3) identificação das novas classes de ocupação do solo e 
(4) atualização da base de dados. Primeiramente, uma imagem diferença é decomposta 
usando a transformada ondaleta para extrair os locais onde ocorreram modificações. 
Posteriormente, a imagem diferença é segmentada nestes locais. Num terceiro estágio, cada 
pixel ou cada região que sofreu modificação é classificada. Por fim, o resultado é usado para 
atualizar a base de dados. Este procedimento mostrou-se menos sensível a distorções nos 
registros geométricos e radiométricos e menos dependente de informações coletadas em 
campo quando comparado com dois procedimentos tradicionalmente usados para detecção 
de mudanças. 
 
Palavras-chave: ondaletas, segmentação, classificação, raster, detecção de mudança, 
sensoriamento remoto. 
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1 INTRODUCTION 

 
Remote sensing and GIS are being 

increasingly used in combination. GIS 
databases are used to improve the extraction of 
relevant information from remote sensing 
imagery, whereas remote sensing data provide 
periodic pictures of geometric and thematic 
characteristics of terrain objects, improving our 
ability to detect changes and update GIS 
databases (Janssen, 1993). In a previous work, a 
method to extract change information at 
varying spatial scales was presented and 
discussed (Carvalho et al., 2001). This paper 
incorporates multiscale change analysis in an 
operational environment to, automatically, 
detect changes and to update GIS databases, 
using multitemporal remote sensing imagery. 

Most research efforts for monitoring land 
cover change with remote sensing have dealt 
with localised case studies of  experimental 
nature (Wyatt, 2000). Considering monitoring 
of forests, the PRODES project (Estimate of 
Amazon gross deforestation) from the Brazilian 
Institute for Space Research (INPE) is one of 
the few examples of operational application of 
high spatial resolution remote sensing data for 
change analysis over large geographical areas. 
It has been providing valuable estimates of 
deforestation since 1974. Until 2003, the 
methodology used by PRODES relied on 
manual delineation of deforested areas, 
involving for each assessment approximately 
50,000 man-hours with a team of 70 remote 
sensing specialists supervised by 15 researchers 
(INPE, 2000). Such a framework would be 
inapplicable for complex fragmented 
landscapes, as in the case study presented in 
this paper, unless automation of some tasks is 
achieved. The Landsat Pathfinder project 
(deforestation in the humid tropics) is another 
relevant attempt to monitor land cover at large 
scales with high spatial resolution imagery, 
which gave strong evidence for the need of 

automated approaches as well (Townshend et 
al., 1997). 

The difficulties of dealling with land 
cover change detection are further complicated, 
when compared to land cover mapping, 
imposing limits to automation. In fact, as 
change analysis with remote sensing compares 
image snap shots acquired at intervals of time, 
they, inevitably, inherit problems of single-date 
image analysis and rise new ones related to the 
integration of multitemporal data sets. The first 
difficulty while handling time-series of 
remotely sensed data is (1) the geometric 
transformation of each image in the series to 
match a reference image or map. Errors result 
from this process and part of detected changes 
is caused by misregistration (Townshend et al., 
1992). Another important spatial aspect is 
related to (2) the size of changes to be 
observed. Change detection is limited by the 
nominal spatial resolution of the sensor, the 
degree of fragmentation of the landscape and 
the nature of boundaries between objects. They 
influence land cover mixture in a pixel, which 
may vary from one date to the other, even if no 
land cover change occurs. (3) Temporal scales 
in which changes occur must be considered as 
well, and the choice of sensors to provide data 
should be guided by the nature of processes 
under investigation. (4) Atmospheric conditions 
by the time of image acquisition vary 
considerably and might weaken the signal that 
reaches the sensor or even obstruct it 
completely, generating differences that can be 
misinterpreted as land cover change. (5) 
Remote sensing-based land cover studies rely 
on the premise that the radiometric response of 
objects on the Earth’s surface must differ in the 
spectral region covered by the sensor. Finally, 
(6) some changes are gradual and their 
detection is difficult. Forest degradation and 
regeneration, for instance, are much harder to 
quantify with remote sensing when compared to 
forest removal. Advances on hyper-spectral and 
temporal data analysis may help to study such 
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cases, but their use for change detection is still 
premature (Wyatt, 2000). 

Automation has been one of the early 
goals of geoinformation processing due to the 
potential of performing unsupervised tasks 
provided by computer-aided analysis 
(Tzschupke, 1976; Dobson, 1983). In digital 
change detection, little work has been carried 
out in this direction and the few established 
procedures are related to image classification 
(Tou & Gonzales, 1974). Automated change 
detection using remote sensing data is reported 
by a few recent studies (Chavez & Mackinnon, 
1994; Michener & Houhoulis, 1997; Pristnall & 
Glover, 1998; Hamë et al., 1998; Kwartenge & 
Chavez 1998; Salvador et al., 2000). Even so, 
the term ‘automated’ is causing confusion in the 
literature, considering that the process of 
change detection is very broad and should not 
be misinterpreted as the simple act of 
automatically producing, for instance, a 
difference or ratio image. 

The approach proposed by Priestnall & 
Glover (1998) for updating vector-based GIS 
databases represents an effective step towards 
automation of change detection. Yet, they 
concluded that the project is still in the 
beginning and many challenges are still to be 
met. This is because their aim is on 
cartographic-quality updating of high spatial 
resolution databases involving increased 
complexity of contextual information, which in 
turn makes the approach complex. Hamë et al. 
(1998) described an interesting procedure 
(called “AutoChange”) as a change detection 
and recognition system that could be considered 
automatic. The procedure is also complex and 
though the term ‘recognition’ was used to 
describe it, the outputs only provide changes 
and their magnitudes, but not labels. 
Furthermore, its best reported performance was 
below 66% of correct distinction between 
changed and unchanged pixels. Machine 
learning techniques are potential tools for 

automatic change detection, which were 
evaluated in studies by Abuelgasim et al. 
(1999) using fuzzy neural networks and Dai & 
Khorram (1999) using multi-layer perceptron 
(MLP). 

The aim of this study was to develop an 
automated, simple and flexible procedure for 
updating raster-based forestry databases. 
Automated in the sense that changes are 
detected, segmented, classified, and the GIS 
layers updated without human interaction, 
though ground-truth for changed sites and 
spectral signatures of the new land cover 
classes must be known in advance. Note that 
this is also the case with the so-called 
unsupervised classification algorithms, where 
the analyst still has to label clusters. Flexibility 
relates to the possibility of accommodating 
various segmentation and classification 
schemes (e.g., machine learning algorithms, 
parametric classifiers), of taking into 
consideration knowledge on the changes of 
interest (i.e., denoising), and of using pixel - or 
object-oriented approaches during classifica-
tion. 
 
 

2 MATERIALS AND METHODS 

2.1 A compound procedure for automatic 
GIS updating 

The procedure proposed and illustrated in 
this paper (figure 1) uses as input two remotely 
sensed (RS) images acquired at different points 
in time (t1 and t2), GIS layers representing the 
land cover types under investigation, and a set 
of ground-truth data (GT) for the present land 
cover pattern and for changed sites. The most 
recent image is used to update the GIS layers 
based on radiometric differences with the oldest 
image. This latter should have been acquired 
near the map production date to give a 
representative picture of the land cover pattern 
by that time. 
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Figure 1. Flow diagram illustrating the main modules of the procedure. 

Figura 1. Fluxograma ilustrando os principais módulos do procedimento. 

Four modules compose the procedure 
according to the main tasks performed: (1) 
location of changed sites, (2) quantification of 
changed area, (3) classification of the new land 
cover type, and (4) updating the database. First, 
the difference image is decomposed with 
wavelet transforms and the maxima of 
multiscale products, representing significant 
singularities, are extracted at changed sites. 
Secondly, segmentation is performed on the 
difference image based on a decision rule to 
check if the pixels surrounding each detected 
maximum are spectrally similar. Thirdly, each 
changed pixel or each segmented region is 
assigned to the land cover class with the highest 
probability of membership. Then, the output is 
used to update all the GIS layers where changes 
took place. Each module is explained in more 
detail in the following sections. 
 

2.1.1  Search module 

The extraction of meaningful information 
from noisy, high-dimensional and multi-modal 
data sets is a complex task, which requires new 
and appropriate tools for tackling the problem. 
For the present algorithm, feature extraction is 
performed with the aid of multiresolution 
wavelet analysis and the so-called multiscale 
products (Sadler & Swami 1999; Carvalho et 

al., 2001), where maxima points are extracted at 
changed sites. Small area changes and 
geometric misregistration are captured in the 
fine wavelet scales whereas overall changes, 
such as variations due to phenology, are 
captured at the coarse wavelet scales and at the 
smoothed representation of the original 
difference image. Thus, multiscale products are 
calculated using only intermediate wavelet 
scales to filter out spurious effects of 
misregistration and to reduce the search space 
(Carvalho et al., 2001). At this stage, maxima 
points are located in the filtered multiscale 
product if the value of a pixel is greater than its 
eight immediate neighbours. In this study, the 
difference image was produced by subtracting 
images of different dates. 
 

2.1.2 Segmentation module 

For abrupt radiometric changes (e.g. 
deforestation, burnings, geometric misregis-
tration etc) the decision of what represents 
change is easily taken by level slicing the 
difference image. In this experiment, 
segmentation of changed areas was performed 
with a simple region-growing algorithm, where 
neighbouring pixels of the detected maxima 
were sequentially evaluated by a decision rule 
until no more neighbours of the grown region 
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meet the defined criterion. The decision 
threshold used was empirically extracted from 
groundtruth as 1.5 standard deviations from the 
mean value of the difference image. For 
example, if some neighbours of the pixel under 
consideration are greater than a threshold, they 
are stored sequentially in a temporary array. 
The first one is now turned into the pixel under 
consideration and its neighbours, greater than 
the threshold, are stored at the end of the same 
temporary array. This process iterates until the 
pixel under consideration has no neighbours 
greater than the threshold. Then, the next pixel 
in the temporary array is considered. The 
segmentation stops when the end of the 
temporary array is reached. Alternatively, the 
module may use adaptive thresholding with 
parametric or non-parametric rules applied to 
the spatial context surrounding each seed pixel 
(i.e., detected maximum) in single band or 
multispectral difference images. 
 

2.1.3 Classification module 

The classification of changed areas may 
be performed according to any desired decision 
rule (e.g., maximum likelihood, minimum 
distance, neural networks, decision trees etc) or 
even by an unsupervised procedure. If 
classification is unsupervised, the output 
clusters will have no label. In the supervised 
case, groundtruth for land cover classes of the 
most recent image must exist with which to 
compare the segmented areas. The comparison 
might be performed pixel-by-pixel or assuming 
homogeneity within the segmented regions. In 
the first case, each pixel is assigned to the class 
that has the largest probability of membership. 
The second case can be viewed as an object-
oriented approach, where each segmented area 
is considered a single object, which is assigned 
to the class that has the largest probability of 
membership. The output of this module is a 
thematic change layer where pixels that did not 
change are zero-valued. For this study a 
supervised scheme with maximum likelihood 

decision rules was used in a pixel-by-pixel 
base. 
 

2.1.4 Updating module 

This module assumes that GIS layers are 
input to the procedure as binary raster-based 
masks. Then, updating is straightforward with 
two simple conditional statements. (1) If a 
given location (i.e., pixel) in the change layer 
and in the GIS input layer are different from 
zero, then the land cover at this position has 
changed and the corresponding pixel in the GIS 
layer is assigned a value of zero. (2) If the 
changed pixel belongs to the land cover class 
represented by the input GIS layer, then a value 
of one is assigned to that location in the GIS 
layer under consideration. In this way, an 
updated binary mask representing the new land 
cover configuration is generated for each input 
GIS layer. 
 

2.2 Other approaches to automatic change 
detection 

Two other methods for change detection 
and identification were applied in this study: 
post classification comparison and direct 
multidate classification using artificial neural 
networks. The post classification comparison 
was chosen because it is the most popular in an 
operational context and a standard reference in 
change detection studies, whereas the neural 
network approach was chosen because it has 
been regarded as a promising tool for various 
automated tasks concerning geoinformation 
processing. 
 

2.2.1 Post-classification comparison 

This simple approach consists of 
comparing the properly coded results of two 
separate classifications. Normally, the map 
from time t1 is compared with the map 
produced at time t2, and a complete matrix of 
categorical changes is obtained. For comparison 
purposes, the post classification approach could 
be illustrated as in the diagram of figure 2.  
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2.2.2 Artificial Neural networks 

Neural network based change detection 
follows the same principles of traditional image 
classification, but includes the land cover 
classes of both times. The direct multidate 
classification procedure proposed and described 
in Dai & Khorran (1999) for change detection 
was implemented in the present study. The 
authors used the MLP neural network model to 
classify a single data set composed by 12 
Landsat TM bands, six from time t1 and six 
from time t2. Slightly different from the 
procedure used by Dai & Khorran (1999), our 
architectural settings were defined as follows: a 
four-layer fully interconnected network with 
back-propagation learning algorithm was used. 
The network had six nodes in the input layer 
because only three image bands were available 
for each date. The output layer had one node for 
each of the 16 change classes (i.e., direct output 
encoding) and the two intermediate (hidden) 
layers had 6 nodes each. The selected activation 
method was the sigmoid function with a fixed 
learning rate set to 0.001 and learning 
momentum set to 0.00005. The use of neural 
networks for change detection is illustrated in 
Figure 3.  

 

2.3 Test site and data 

The case study comprised subsets of 187 
x 250 pixels of co-registered Landsat TM 
images (path 218, row 75) from October 1984 
and August 1999 (figure 4), for which detailed 
ground truth was available. Two raster layers 
from a GIS database concerning semi-natural 
areas of forest and rocky-fields were used as the 
subjects to be updated (figure 5). Note that 
illumination and phenological conditions are 
distinct within the imagery set. The image from 
1999 has more relief shadows and the overall 
reflectance of vegetated areas in 1984 is notably 
higher. Yet, no attempt was made to correct 
these differences, as the proposed method is 
less sensitive to them (Carvalho et al., 2001). It 
is important to mention that the proposed 
method is also considered to be less dependent 
on accurate image registration (Carvalho et al., 
2001). Thus, only five ground control points 
(GCPs) were used to register a large image of 
6500 x 4000 pixels, which was subset 
afterwards for this study. The root mean square 
error was 0.64 pixel, but visually evaluated 
displacements ranged from one to three pixels. 
TM band 3 was input to the search and 
segmentation modules whereas bands 3, 4 and 5 
to the classification module.  
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Figure 2. Flow diagram illustrating post classification comparison. 

Figura 2. Fluxograma ilustrando o método de comparação pós-classificação. 



CARVALHO, L.M.T.  et  al. 

Cerne, Lavras, v.9, n.2, p. 164-177,  jul./dez. 2003 

170

 
GIS (t1) 

RS (t1) 

RS (t2) 

Locate 
changes 

Qualify 
changes 

Neural network classification 
module 

Quantify 
changes 

Modify 
layer 

… 

Updating 
module 

GT (t1) 

GIS (t2) 

RS (t2) 

RS (t3) 

GT (t2) 
GT (t2) 

GT (t3) 

 

Figure 3. Flow diagram illustrating the neural network approach for change detection. 

Figura 3. Fluxograma ilustrando a abordagem de redes neurais para detecção de mudanças.  

 

 

Figure 4. Images used in this study. 

Figura 4. Imagens usadas neste estudo. 
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Figure 5. GIS database to be updated. 

Figura 5. Banco de dados a ser atualizado. 

 
Ancillary data comprised a complete 

orthophoto mosaic (1:10,000) from 1984, 
small-format aerial photos, and GPS 
measurements on the ground acquired during 
field campaigns in 1999. Orthophotos were 
used during field surveys to locate ground-truth 
samples. Thirty sample pixels of forest, rocky-
field, grass land and rock exploitation sites 
were used to train the classifiers. In the neural 
network approach, training samples included all 
possible combinations of changes, whereas the 
other two approaches required only samples 
representing the four land cover classes 
occurring in the area. For accuracy assessment, 
deforestation and new rock exploitation sites 
were identified within a random set of 200 
forest pixels and 200 rocky-field pixels. The 
change maps obtained with the proposed 
procedure, post-classification comparison, and 
neural networks were organised in contingency 

tables from which standard per pixel error 
estimates were extracted. 
 
 

3 RESULTS AND DISCUSSION 

Figure 6 (a) and (b) illustrates the local 
maxima (arrows) found in the multiscale 
product image. They correspond to sites where 
land cover has changed in the GIS layers under 
consideration. The multiscale product image 
presented in figure 6(a) and (b) is almost flat 
everywhere except for changed sites facilitating 
their automatic location. The detected maxima 
are then located in the data set that will be 
subject to the region growing algorithm, which, 
in the present case corresponds to a single band 
difference image (figure 6c). The regions 
segmented with the region growing algorithm 
are illustrated in figure 6 (d). Pixels 
surrounding the detected maxima were 
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considered to have changed and included in the 
region if they exceeded the threshold value. In 
this study, the threshold value was empirically 
determined because enough groundtruth data 
were available. Yet, this threshold might be 
automatically defined by considering the 
standard deviation of immediate neighbours of 
all detected maxima and by applying statistical 
significance tests. Finally, figure 6 (e) shows 
the segmented regions classified on a pixel-by-
pixel basis. These results were then used to 
update the GIS layer representing forest areas. 

 

Tables 1, 2, and 3 show the calculated 
change detection accuracy for the method 
proposed in this paper, the neural network-
based change detection, and for the 
classification comparison method, respectively. 
Although not significantly different (z = 
0.1992) (Cohen, 1960), artificial neural 
networks performed slightly better than our 
approach. On the other hand, post classification 
comparison results were far worse than the 
other approaches, confirming the expected error 
propagation of separate classifications. 

 

 
 

Figure 6. Sequence of the results produced by the first three modules of the procedure proposed in this 
work. Identification of maxima points (a and b), output from search module (c), output from segmentation 
module (d), and output from classification module (e). 

Figura 6. Seqüência de resultados produzidos pelos três primeiros módulos do procedimento proposto 
neste trabalho. Identificação de pontos de máxima (a e b), resultado do módulo de busca (c), resultado do 
módulo de segmentação (d) e resultado do módulo de classificação (e). 
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Table 1. Confusion matrix of the change detection results produced by the method proposed in this work. 

Tabela 1. Matriz de confusão dos resultados de detecção de mudança produzidos pelo método proposto 
neste trabalho. 

 Ground truth (pixels) 

 
Mapped class 

Rock exploitation  
Grass 

Rocky field  
Forest 

 
Totals 

Rock exploitation 14 0 0 0 14 
Grass 1 21 0 3 25 
Rocky field 4 1 181 1 187 
Forest 0 4 0 170 174 
Totals 19 26 181 174 400 

Overall Accuracy = 96.5% (386/400)                  Kappa Coefficient = 0.9410 

 
 
Table 2. Confusion matrix of the change detection results produced by the neural network-based change 
detection. 

Tabela 2. Matriz de confusão dos resultados de detecção de mudança produzidos pelo método de redes 
neurais. 

 Ground truth (pixels) 
 
Mapped class 

Rock exploitation  
Grass 

Rocky field  
Forest 

 
Totals 

Rock exploitation 15 0 0 0 15 
Grass 0 21 0 3 25 
Rocky field 4 0 181 1 186 
Forest 0 5 0 170 175 
Totals 19 26 181 174 400 

Overall Accuracy = 96.75% (387/400)            Kappa Coefficient = 0.9452 

 
 
Table 3. Confusion matrix of change detection results produced by the post classification comparison 
method. 

Tabela 3. Matriz de confusão dos resultados de detecção de mudança produzidos pelo método de 
comparação pós-classificação. 

 Ground truth (pixels) 

 
Mapped class 

Rock exploitation  
Grass 

Rocky field  
Forest 

 
Totals 

Rock exploitation 15 0 1 1 17 
Grass 0 21 16 7 44 
Rocky field 4 2 142 8 156 
Forest 0 3 22 158 183 
Totals 19 26 181 174 400 

Overall Accuracy = 84.0% (336/400)            Kappa Coefficient = 0.7400  
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Field surveys revealed that changed 
patches were converted to only one new cover 
type. Forest areas were replaced by grassland, 
and rocky-field areas by rock exploitation. 
Thus, the results provided by our approach 
might be further improved if an object-oriented 
approach is used. Each segmented region would 
then be treated as a single entity and assigned to 
a unique class. This would reduce the problem 
of speckled misclassification, which was not 
well represented in the test samples but visually 
detected as a considerable problem in changes 
from rocky-field to rock exploitation areas, 
mainly at the segments’ edges. On the other 

hand, classification of deforested areas was well 
described by the confusion matrix, since visual 
evaluation showed just a few misclassifications.  

Figure 7 shows the change maps 
produced by each method evaluated in this 
study to update the GIS layer representing 
forest cover. Note the strong effect of geometric 
misregistration represented by many small and 
linear change patterns depicted with post 
classification comparison (figure 7c) and the 
neural network-based change detection (figure 
7b). The method proposed here (figure 7a) was 
more effective in depicting important changes. 

 
 

 

Figure 7. Change maps produced with our compound procedure (a), with artificial neural networks (b), and 
with post classification comparison (c). 

Figura 7. Mapas de mudanças produzidos usando o nosso procedimento (a), usando redes neurais (b) e 
usando comparação pós-classificação (c). 

 

The techniques currently available for 
detecting changes on remotely sensed data are 
dependent on accurate radiometric and 
geometric rectification (Dai & Khorram, 1998; 
Schott et al., 1988), which are difficult tasks in 
most situations (e.g. poor quality of old 
sensors). The method proposed here detected 

changes using TM band 3, which is the one 
most influenced by atmospheric effects within 
the available set (i.e., bands 3, 4 and 5). 
Temporal images were acquired in different 
seasons of the year and were considerably 
misregistered. Even so, the procedure 
performed well and was insensitive to these 
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problems. The methodology developed in an 
earlier work (Carvalho et al., 2001) and 
incorporated in the present procedure enabled 
the automation of change detection with 
remotely sensed data by taking advantage of 
singularity detection and denoising capabilities 
of wavelet transforms. These capabilities have 
already proven to be useful in the field of 
remote sensing to automate other tasks like 
GCPs definition for geometric registration 
(Djamdji et al., 1993) and extraction of linear 
features (Ji, 1996). Furthermore, the wavelet 
approach eases change detection in images with 
different pixel sizes in a straightforward manner 
because of its multiresolution nature (Carvalho 
et al., 2001). Remotely sensed images are 
relatively noisy signals, which provide lots of 
information at different spatial scales. In this 
sense, the procedure presented in this paper 
provides considerable improvements over post 
classification comparison and direct multidate 
classification (figure 7), even considering that 
the latter provided a slightly better classification 
accuracy (compare tables 1 and 2).  

In spite of considering only one spectral 
band for analysis, the algorithm proposed here 
can be easily extended to the multispectral case 
by adding data integration steps during search 
and segmentation. Because information 
provided by various spectral bands is different, 
detected maxima in the search module would 
also differ from band to band. Segmentation in 
multidimensional space would have to evaluate 
the feature vector of each pixel being 
considered for inclusion in the region in the 
very same way as multispectral classification. 
These are two future directions to improve the 
procedure. 

The possibility of using different decision 
rules in the segmentation and labelling modules 
is an important characteristic of the procedure 
to meet specific requirements in different 
situations. For instance, when classes under 
investigation are accurately modelled by 
unimodal probability distributions, a maximum 

likelihood decision rule would be well suited. 
Unfortunately, this is not always the case and 
the possibility of using other non-parametric 
rules is acknowledged. Finally, the procedure is 
especially attractive for monitoring large areas, 
where detailed inspection of difference images 
is prohibitive. 
 

 

4 CONCLUSIONS 

In this paper, a framework for digital 
change detection and automatic GIS updating 
has been developed, demonstrated, and 
compared with other commonly used methods. 
The approach is relatively simple and provides 
advantages over traditional methods like post 
classification comparisons and direct multidate 
classifications. Firstly, the method is less 
sensitive to geometric and radiometric 
misregistrations because of the multiresolution 
approach to feature extraction included in the 
search module. Secondly, different from post 
classification comparisons, it requires ground-
truth data only for the present land cover 
pattern. In comparison to direct multidate 
classification, change-classes do not need to be 
defined or training samples to be collected at 
changed sites. Finally, an object-oriented 
approach might be used, avoiding speckled 
misclassifications, which could improve 
classification accuracy. Further refinements of 
the procedure include the automatic threshold 
definition and the possibility of working with 
multivariate difference images. 
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