Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DCA - Departamento de Ciência dos Alimentos >
DCA - Artigos publicados em periódicos >

Por favor, utilize esse identificador para citar este item ou usar como link: http://repositorio.ufla.br/jspui/handle/1/10933

Título: Monte Carlo based test for inferring about the unidimensionality of a Brazilian coffee sensory panel
Autor(es): Amorim, Isabel de Sousa
Ferreira, Eric Batista
Lima, Renato Ribeiro de
Pereira, Rosemary Gualberto Fonseca Alvarenga
Assunto: Coffee - Brazil
Monte Carlo
Sensory analysis
Unidimensionality
Publicador: Elsevier
Data de publicação: 6-Set-2009
Referência: AMORIM, I. de S. et al. Monte Carlo based test for inferring about the unidimensionality of a Brazilian coffee sensory panel. Food Quality and Preference, Barking, v. 21, n. 3, p. 319–323, Apr. 2010.
Abstract: Sensory science uses the human senses as instruments of measurement. Sensory analysis makes it possible to study organoleptic properties of products using a panel of assessors. Kermit and Lengard (2006) say that a good sensory panel should provide results that are accurate, discriminating and precise. Thus, in a successful analysis, it is key to have a set of robust tools for monitoring individual assessor’s performances as well as the performance of the panel as a whole. The success of using a sensory panel depends on its performance, i.e., its ability to identify small differences between products in certain attributes with statistical significance. A good panel performance is achieved when each panelist discriminates between products (large product variability), repeats the assessments (small within-assessor variability) and agrees with all other panelists on the sensory sensation that is described by a particular attribute with certain strength (small between-assessor variability) (Derndorfer, Baierl, Nimmervoll, & Sinkovits, 2005). Evaluating unidimensionality of panel is essential for the efficient use of the sensory analysis. For such purpose, the Monte Carlo based test revealed to be powerful for large panel and sample sizes. It can be adopted as a tool for checking the efficiency of the training process of a panel.
URI: http://www.sciencedirect.com/science/article/pii/S0950329309001232
http://repositorio.ufla.br/jspui/handle/1/10933
Idioma: en_US
Aparece nas coleções: DCA - Artigos publicados em periódicos

Arquivos neste Item:

Não há arquivos associados para este Item.

Itens protegidos por copyright, com todos os direitos reservados, Salvo indicação em contrário.


Mostrar estatísticas

 


DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback