Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DEG - Departamento de Engenharia >
DEG - Artigos publicados em periódicos >

Por favor, utilize esse identificador para citar este item ou usar como link: http://repositorio.ufla.br/jspui/handle/1/11682

Título: Using data mining to identify factors that influence the degree of leg injuries in broilers
Título Alternativo: Uso de mineração de dados para identificação de fatores que influenciam o grau de lesões de perna em frangos de corte
Autor(es): Cordeiro, Alexandra Ferreira da Silva
Baracho, Marta dos S.
Naas, Irenilza de Alencar
Nascimento, Guilherme R. do
Assunto: Árvore de decisão
Avicultura
Gait score
Decision trees
Aviculture
Publicador: Associação Brasileira de Engenharia Agrícola
Data de publicação: 2012
Referência: CORDEIRO, A. F. da S. et al. Using data mining to identify factors that influence the degree of leg injuries in broilers. Engenharia Agrícola, Jaboticabal, v. 32, n. 4, p. 642-649, jul./ago. 2012.
Resumo: Problemas locomotores impedem a ave de se movimentar livremente, prejudicando o bem-estar e a produtividade, além de gerarem lesões nas pernas dos frangos. O objetivo deste trabalho foi avaliar a influência da idade, do uso de vitamina D, da assimetria de membros e do gait score, no grau de lesões de perna em frangos de corte, utilizando mineração de dados. A análise foi realizada em um conjunto de dados obtidos de um experimento de campo, em que foram utilizados dois grupos de aves com 30 aves cada, sendo um grupo-controle e outro tratado com vitamina D. Foram avaliados o gait score, a assimetria entre os dedos dos pés direito e esquerdo, e o grau de lesões de perna. O software Weka® foi utilizado na mineração de dados. Em particular, o algoritmo C4.5 (também conhecido como J48 no ambiente Weka) foi utilizado para a geração de uma árvore de decisão. Os resultados mostraram que a idade é o fator que mais influencia o grau de lesões de perna e que os dados provenientes das avaliações de gait score não se mostraram confiáveis para estimar problemas locomotores em frangos de corte.
Abstract: Locomotor problems prevent the bird to move freely, jeopardizing the welfare and productivity, besides generating injuries on the legs of chickens. The objective of this study was to evaluate the influence of age, use of vitamin D, the asymmetry of limbs and gait score, the degree of leg injuries in broilers, using data mining. The analysis was performed on a data set obtained from a field experiment in which it was used two groups of birds with 30 birds each, a control group and one treated with vitamin D. It was evaluated the gait score, the asymmetry between the right and left toes, and the degree of leg injuries. The Weka ® software was used in data mining. In particular, C4.5 algorithm (also known as J48 in Weka environment) was used for the generation of a decision tree. The results showed that age is the factor that most influences the degree of leg injuries and that the data from assessments of gait score were not reliable to estimate leg weakness in broilers.
URI: http://repositorio.ufla.br/jspui/handle/1/11682
Idioma: en_US
Aparece nas coleções: DEG - Artigos publicados em periódicos

Arquivos neste Item:

Arquivo Descrição TamanhoFormato
ARTIGO_Using data mining to identify factors that influence the degree of leg injuries in broilers.pdf189,28 kBAdobe PDFVer/abrir

Este item está licenciado com Licença Creative Commons
Creative Commons

Itens protegidos por copyright, com todos os direitos reservados, Salvo indicação em contrário.


Mostrar estatísticas

 


DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback