Use este identificador para citar ou linkar para este item:
Título : Pair quenched mean-field theory for the susceptible-infected-susceptible model on complex networks
Autor: Mata, Angélica S.
Ferreira, Silvio C.
Palavras-chave: Networks and genealogical trees
Critical point phenomena
Dynamics of social systems
Publicador: EPL Association
Data da publicação: 4-Ago-2013
Referência: MATA, A. S.; FERREIRA, S. C. Pair quenched mean-field theory for the susceptible-infected-susceptible model on complex networks. EPL, [S. l.], v. 103, n. 4, Aug. 2013.
Abstract: We present a quenched mean-field (QMF) theory for the dynamics of the susceptible-infected-susceptible (SIS) epidemic model on complex networks where dynamical correlations between connected vertices are taken into account by means of a pair approximation. We present analytical expressions of the epidemic thresholds in the star and wheel graphs and in random regular networks. For random networks with a power law degree distribution, the thresholds are numerically determined via an eigenvalue problem. The pair and one-vertex QMF theories yield the same scaling for the thresholds as functions of the network size. However, comparisons with quasi-stationary simulations of the SIS dynamics on large networks show that the former is quantitatively much more accurate than the latter. Our results demonstrate the central role played by dynamical correlations on the epidemic spreading and introduce an efficient way to theoretically access the thresholds of very large networks that can be extended to dynamical processes in general.
Idioma: en_US
Aparece nas coleções:DFI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.

Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.