Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DCC - Departamento de Ciência da Computação >
DCC - Artigos publicados em periódicos >

Por favor, utilize esse identificador para citar este item ou usar como link: http://repositorio.ufla.br/jspui/handle/1/12309

Título: Model and implementation of body movement recognition using Support Vector Machines and Finite State Machines with cartesian coordinates input for gesture-based interaction
Autor(es): Bettio, Raphael Winckler de
Silva, André H. C.
Heimfarth, Tales
Freire, André Pimenta
Sá, Alex G. C. de
Assunto: Support Vector Machines (SVM)
Finite State Machines (FSM)
Video games
Computer games
Games – Data processing
Máquinas de vetores de suporte
Jogos para computador
Jogos – Processamento de dados
Publicador: Universidad Nacional de La Plata
Data de publicação: Out-2013
Referência: BETTIO, R. W. de et al. Model and implementation of body movement recognition using Support Vector Machines and Finite State Machines with cartesian coordinates input for gesture-based interaction. Journal of Computer Science and Technology, Buenos Aires, v. 13, n. 2, p. 69-75, Oct. 2013.
Abstract: The growth in the use of gesture-based interaction in video games has highlighted the potential for the use of such interaction method for a wide range of applications. This paper presents the implementation of an enhanced model for gesture recognition as input method for software applications. The model uses Support Vector Machines (SVM) and Finite State Machines (FSM) and the implementation was based on a Kinect R device. The model uses data input based on Cartesian coordinates. The use of Cartesian coordinates enables more flexibility to generalise the use of the model to different applications, when compared to related work encountered in the literature based on accelerometer devices for data input. The results showed that the use of SVM and FSM with Cartesian coordinates as input for gesture-based interaction is very promising. The success rate in gesture recognition was 98%, from a training corpus of 9 sets obtained by recording real users’ gestures. A proof-of-concept implementation of the gesture recognition interaction was performed using the application Google Earth(R). A preliminary acceptance evaluation with users indicated that the interaction with the system via the implementation reported was satisfactory.
URI: http://hdl.handle.net/10915/29803
http://repositorio.ufla.br/jspui/handle/1/12309
Idioma: en_US
Aparece nas coleções: DCC - Artigos publicados em periódicos

Arquivos neste Item:

Não há arquivos associados para este Item.

Itens protegidos por copyright, com todos os direitos reservados, Salvo indicação em contrário.


Mostrar estatísticas

 


DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback