Buscar

 

RI UFLA (Universidade Federal de Lavras) >
Revistas UFLA >
CERNE >

Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/14859

Title: FOREST FUEL MOISTURE VARIATION IN TERMS OF FOREST FIRE DANGER INDEX
???metadata.dc.creator???: Pereira, José Fernando
Batista, Antonio Carlos
Soares, Ronaldo Viana
Keywords: Monte Alegre Formula, Modified Monte Alegre Formula, Forest Fires prevention.
Publisher: CERNE
CERNE
???metadata.dc.date???: 5-Apr-2016
Other Identifiers: http://www.cerne.ufla.br/site/index.php/CERNE/article/view/834
Description: This research was carried out in a Pinus elliottii plantation, established in 1984, located in the Rio Negro Forest Research Station- Rio Negro – Paraná, owned by the Paraná Federal University, Paraná State, Brazil. The research objectives were to analyze the correlations between the FMA and FMA+ fire danger indices and the fine fuel moisture, and develop mathematical models to estimate the fuel moisture based on these indices. The meteorological variables were obtained from a SIMEPAR weather station, located 50km away, and from a pluviograph and a thermo-hygrograph installed in the study area. The dead forest fuels were collected from 30x30cm plots, between 12 noon and 2:00PM, and classified as: AA – surface layer; AB – intermediate layer; AC – lower layer; and B -woody material with 0.7 to 2.5cm diameter. The total fuel load varied from 3185.50 to 4266.01g.m-2. The fire danger indices were daily calculated and the values obtained in the fuel colleting days were used to calculate the correlations. The correlation coefficients between relative humidity and fuel classes were 0.42; 0.36; 0.32; and 0.41 for the AA, AB, AC, and B classes, respectively. The correlation coefficients between precipitation and fuel classes were 0.57; 0.38; 0.34; and 0.15 for the AA, AB, AC, and B classes, respectively. The correlation coefficients between the fuel classes and the FMA+ were -0.53; -0.56; -0.63; and 0.81 for the classes B, AB, AA, and AC, respectively. The FMA+ was the most efficient variable in modeling development to estimate dead forest fuel moisture.
???metadata.dc.language???: eng
Appears in Collections:CERNE

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


View Statistics

 


DSpace Software Copyright © 2002-2010  Duraspace - Feedback