Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/14988
Título: Translation rules and ANN based model for english to urdu machine translation
Autor: Shahnawaz, Ahmad
Mishra, R. B.
Palavras-chave: Neural network
Back-propagation
Rule based translation
Machine translation system
Artificial Intelligence
Publicador: Universidade Federal de Lavras (UFLA)
Data: 1-Set-2011
Referência: SHAHNAWAZ, A.; MISHRA, R. B. Translation rules and ANN based model for english to urdu machine translation. INFOCOMP Journal of Computer Science, Lavras, v. 10, n. 3, p. 25-35, Sept. 2011.
Abstract: In this paper we discuss the working of our English to Urdu Machine Translation (MT) system. We used feed-forward back-propagation artificial neural network for the selection of Urdu words/tokens (such as verb, noun/pronoun etc.) and translation rules for grammar structure equivalent to English words/tokens and grammar structure rules respectively. As English is SVO class language while Urdu is SOV class language so grammar structure transfer is main task in English-Urdu machine translation problem. Our system is able to translate sentences having gerund, having infinitives (maximum two), having prepositions and prepositional objects (maximum three), direct object, indirect object etc. Neural network works as the knowledge base for linguistic rules and bilingual dictionary. Bilingual dictionary not only stores the meaning of English word in Urdu but also stores linguistic features attached to the word. The output of our system is presented in Romanized Urdu. The n-gram blue score achieved by the system is 0.6954; METEOR score achieved is 0.8583 and F-score of 0.8650.
Outras Identificações : http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/336
Idioma: eng
Aparece nas coleções:Infocomp

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.