Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DEX - Departamento de Ciências Exatas >
DEX - Programa de Pós-graduação >
DEX - Estatística e Experimentação Agropecuária - Doutorado (Teses) >

Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/15066

Title: Equações de estimações generalizadas para dados ordinais em análise sensorial de cafés especiais e critérios de seleção para matrizes de correlação de trabalho
???metadata.dc.creator???: Silva, Jackelya Araujo
???metadata.dc.creator.Lattes???: http://lattes.cnpq.br/9595940897662539
???metadata.dc.contributor.advisor1???: Cirillo, Marcelo Ângelo
???metadata.dc.contributor.referee1???: Brighenti, Carla Regina Guimarães
???metadata.dc.contributor.referee2???: Borém, Flávio Meira
???metadata.dc.contributor.referee3???: Bueno Filho, Júlio Silvio de Souza
???metadata.dc.contributor.referee4???: Rodrigues, Letícia Lima Milani
???metadata.dc.contributor.referee5???: Guimarães, Paulo Henrique Sales
Keywords: Cafés especiais - Análise sensorial
Matriz de correlação
Dados correlacionados
Specialty coffee - Sensory analysis
Correlation data
Working correlation structure
???metadata.dc.date.submitted???: 11-Jul-2017
Issue Date: 21-Jul-2017
Citation: SILVA, J. A. da. Equações de estimações generalizadas para dados ordinais em análise sensorial de cafés especiais e critérios de seleção para matrizes de correlação de trabalho. 2017. 94 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2017.
???metadata.dc.description.resumo???: Neste trabalho estão presentes duas partes. A primeira parte contempla a fundamentação teórica desta tese. A segunda parte é composta de dois artigos científicos. O primeiro artigo, refere-se a modelagem em análise sensorial para múltiplas respostas repetidas em um experimento em análise sensorial, realizado com cafés especiais. A análise sensorial aplicada aos cafés especiais permitiu a organização de um conjunto de dados com medidas repetidas em níveis de provadores/genótipos ao longo de quatro safras. Isso ocorreu, devido ao fato de que diferentes provadores para diferentes amostras de cinco xícaras, realizaram avaliações de um mesmo genótipo em duas situações: ao longo das safras e durante a execução da degustação para atribuição das notas. Nesse sentido, houve a necessidade do estudo das associações em duas direções. A primeira no que se refere ao provador, e a segunda direção associada às notas ao efeito das safra. Concluiu-se que a metodologia proposta nesse primeiro artigo identificou as covariáveis sensoriais que são semelhantes ao longo das safras, bem como produziu estimativas de probabilidades para a categorização dos cafés especiais nas classes de melhores notas, associadas as degustações realizadas por safra. O segundo artigo apresenta um critério de seleção para matriz de correlação de trabalho, utilizada em equações de estimação generalizadas. O referido critério, diferentemente dos critérios de seleção expostos neste trabalho, faz uso da estimativa limitante dos parâmetros de associação como uma medida para a escolha da matriz de correlação de trabalho. Para tanto, realizou-se simulação Monte Carlo com diferentes cenários, comparando o seu resultado com os demais critérios. Além disso, são apresentadas duas aplicações, uma está relacionada a um conjunto de dados consagrados da literatura e a outra refere-se ao conjunto de dados provenientes de uma análise sensorial de cafés especiais. Foi possível concluir que o critério proposto, mostrou-se competitivo aos demais critérios.
Abstract: In this work two parts are presented. The first part considers the theoretical basis of this thesis. The second part is composed of two scientific articles. The first article refers to modeling in sensory analysis for multiple repeated responses in an experiment with specialty coffees. In the sensory analysis applied to specialty coffees, it was possible to construct a data set with repeated measurements at taster / genotype levels and over four crop seasons. This was due to the fact that different tasters for different cup tests carried out evaluations of the same genotype in two situations: throughout the crop seasons and during the execution of the tasting to assign the notes. In this sense, it was necessary to study the associations in two directions. The first one regarding the taster and the second direction associated with the grades to the effect of the harvest. It was concluded that the methodology proposed in this first article identified the sensory covariates that are similar throughout the harvests, as well as producing estimates of probability for the categorization of specialty coffees in the best grades classes, associated with tastings performed by harvest. The second article presents a selection criterion for labor correlation matrix, used in generalized estimation equations. This criterion, unlike the selection criteria presented in this paper, makes use of the limiting estimate of the association parameters as a measure for the choice of the work correlation matrix. For that, Monte Carlo simulation was performed with different scenarios, comparing its result with the other criteria. In addition, two applications are presented, one related to a set of literature data and the other refers to the set of data coming from a sensory analysis of specialty coffees. It was possible to conclude that the proposed criterion proved to be competitive to the other criteria.
Description: Arquivo retido, a pedido da autora, até julho de 2018.
URI: http://repositorio.ufla.br/jspui/handle/1/15066
Publisher: Universidade Federal de Lavras
???metadata.dc.language???: por
Appears in Collections:DEX - Estatística e Experimentação Agropecuária - Doutorado (Teses)

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


View Statistics

 


DSpace Software Copyright © 2002-2010  Duraspace - Feedback