Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/15301
Registro completo de metadados
Campo DCValorIdioma
dc.creatorLeite, Daniel-
dc.creatorPalhares, Reinaldo M.-
dc.creatorCampos, Victor C. S.-
dc.date.accessioned2017-08-31T17:08:58Z-
dc.date.available2017-08-31T17:08:58Z-
dc.date.issued2015-08-
dc.identifier.citationLEITE, D.; PALHARES, R. M.; CAMPOS, V. C. S. Evolving granular Fuzzy model-based control of nonlinear dynamic systems. IEEE Transactions on Fuzzy Systems, [S. l.], v. 23, n. 4, p. 923-938, Aug. 2015.pt_BR
dc.identifier.urihttp://ieeexplore.ieee.org/document/6846287/pt_BR
dc.identifier.urirepositorio.ufla.br/jspui/handle/1/15301-
dc.description.abstractUnknown nonstationary processes require modeling and control design to be done in real time using streams of data collected from the process. The purpose is to stabilize the closed-loop system under changes of the operating conditions and process parameters. This paper introduces a model-based evolving granular fuzzy control approach as a step toward the development of a general framework for online modeling and control of unknown nonstationary processes with no human intervention. An incremental learning algorithm is introduced to develop and adapt the structure and parameters of the process model and controller based on information extracted from uncertain data streams. State feedback control laws and closed-loop stability are obtained from the solution of relaxed linear matrix inequalities derived from a fuzzy Lyapunov function. Bounded control inputs are also taken into account in the control system design. We explain the role of fuzzy granular data and the use of parallel distributed compensation. Fuzzy granular computation provides a way to handle data uncertainty and facilitates incorporation of domain knowledge. Although the evolving granular approach is oriented to control systems whose dynamics is complex and unknown, for expositional clarity, we consider online modeling and stabilization of the well-known Lorenz chaos as an illustrative example.pt_BR
dc.languageen_USpt_BR
dc.publisherIEEEpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceIEEE Transactions on Fuzzy Systemspt_BR
dc.subjectAdaptation modelspt_BR
dc.subjectProcess controlpt_BR
dc.subjectData modelspt_BR
dc.subjectMathematical modelpt_BR
dc.subjectControl systemspt_BR
dc.subjectNumerical modelspt_BR
dc.subjectFuzzy controlpt_BR
dc.subjectModelos de adaptaçãopt_BR
dc.subjectControle de processospt_BR
dc.subjectModelos de dadospt_BR
dc.subjectModelos matemáticospt_BR
dc.subjectSistemas de controlept_BR
dc.subjectModelos numéricospt_BR
dc.subjectControle Fuzzypt_BR
dc.titleEvolving granular Fuzzy model-based control of nonlinear dynamic systemspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.