Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DEX - Departamento de Ciências Exatas >
DEX - Programa de Pós-graduação >
DEX - Estatística e Experimentação Agropecuária - Mestrado (Dissertações) >

Por favor, utilize esse identificador para citar este item ou usar como link: http://repositorio.ufla.br/jspui/handle/1/1788

Título: Abordagem geométrica do método dos quadrados mínimos parciais com uma aplicação a dados de seleção genômica
Título Alternativo: Geometric approach of the Partial Least Squares method with an application to genomic selection data
Autor(es): Silveira, Fernanda Gomes da
Orientador: Chaves, Lucas Monteiro
Coorientador(es): Silva, Fabyano Fonseca e
Membro da banca: Ferreira, Daniel Furtado
Balestre, Márcio
Paiva, André Luís da Costa
Carneiro, Antonio Policarpo Souza
Área de concentração: Estatística e Experimentação Agropecuária
Assunto: Projeção
Regressão
Componente principal
Suíno
Abordagem geométrica
Quadrado mínimo parcial
Seleção genômica ampla
Geometric approach
Partial least squares
Regression
Genome wide selection
Data de Defesa: 27-Jan-2014
Data de publicação: 2014
Agência de Fomento: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Referência: SILVEIRA, F. G. da. Abordagem geométrica do método dos quadrados mínimos parciais com uma aplicação a dados de seleção genômica. 2014. 176 p. Tese (Doutorado em Estatística e Experimentação Agropecuária) - Universidade Federal de Lavras, Lavras, 2014.
Resumo: Quando, em uma regressão múltipla, tem-se relações lineares ou quase colinearidade entre as covariáveis ou, ainda, quando o número de covariáveis é maior que o número de observações, o método dos Quadrados Mínimos Ordinários pode não ser adequado. Neste contexto, o método dos Quadrados Mínimos Parciais (PLS) tem se mostrado eficiente. O método consiste em obter a redução de dimensionalidade, uma vez que a regressão é realizada em relação a componentes relevantes. O método é abordado na literatura principalmente sob dois aspectos: algorítmico e algébrico. Neste trabalho, uma abordagem geométrica, utilizando projeções ortogonais, é apresentada no sentido de explicitar todas as etapas teóricas e da construção do algoritmo PLS. No intuito de tornar o texto mais didático, a abordagem geométrica também foi aplicada na teoria da Regressão em Componentes Principais (PCR), uma vez que os métodos PLS e PCR são similares. Uma rotina foi desenvolvida usando o software R, visando também a explicitar o passo a passo da construção do algoritmo. Como em qualquer análise de redução de dimensionalidade, um passo importante na aplicação do método PLS é a determinação de um número ótimo de componentes. Para tal, foi apresentada a teoria de Graus de Liberdade e o método de Validação Cruzada. Os métodos PCR e PLS, além da regressão tradicional sem redução de dimensionalidade, foram aplicados em uma análise de seleção genômica em suínos considerando um painel de marcadores SNPs de baixa densidade e dois fenótipos relacionados com a qualidade da carne.
When estimating the coefficients of a multiple regression model, if the vectors of predictors are highly correlated, meaning that one can be (almost) a linear combination of the others, or if the number of predictors is greater than the number of observations, the Ordinary Least Square method may be non-appropriate. In that case, the Partial Least Square (PLS) method has shown to be efficient. It consists of obtaining a reduction in dimension by restricting the regression to relevant components. It is usual the literature to be restricted to two main aspects: algorithmic and algebraic. In this work, a geometric approach, based in orthogonal projections, is used to explicit all the theory behind the PLS method as well as in the construction of the PLS algorithm. Aiming to make the text more didactic, the same approach is applied to the Principal Components Regression (PCR) method, since both PLS and PCR are similar. Also a step by step routine for the PLS algorithm was developed using the R software. As in any procedure of reduction of dimensionality, the determination of the optimal number of components is a key step. To do that, we have described and used the Degree of Freedom Method and the Cross Validation Method. Both the PLS and PCR methods, besides the usual regression with no dimensionality reduction, were applied to a genomic selection analysis of pigs, considering a panel of low density SNP markers and two phenotypes related to meat quality.
Informações adicionais: Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós-Graduação em Estatística e Experimentação Agropecuária, área de concentração em Estatística e Experimentação Agropecuária, para a obtenção do título de Doutor.
URI: http://repositorio.ufla.br/jspui/handle/1/1788
Publicador: UNIVERSIDADE FEDERAL DE LAVRAS
Idioma: pt_BR
Aparece nas coleções: DEX - Estatística e Experimentação Agropecuária - Mestrado (Dissertações)

Arquivos neste Item:

Arquivo Descrição TamanhoFormato
TESE Abordagem geométrica do método dos quadrados mínimos parciais com uma aplicação a dados de seleção genômica.pdf2,23 MBAdobe PDFVer/abrir

Itens protegidos por copyright, com todos os direitos reservados, Salvo indicação em contrário.


Mostrar estatísticas

 


DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback