Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DAG - Departamento de Agricultura >
DAG - Programa de Pós-graduação >
DAG - Agronomia/Fitotecnia - Doutorado (Teses) >

Por favor, utilize esse identificador para citar este item ou usar como link: http://repositorio.ufla.br/jspui/handle/1/3242

Título: Modelagem matemática na previsão de colheita de bananeira: regressão linear múltipla x redes neurais artificiais
Título Alternativo: Mathematical modeling to predict crop of banana: multiple regression x neural networks
Autor(es): Soares, Joyce Dória Rodrigues
Orientador: Pasqual, Moacir
Coorientador(es): Lacerda, Wilian Soares
Membro da banca: Silva, Sebastião Oliveira e
Araujo, Aparecida Gomes
Braga, Francyane Tavares
Pio, Leila Aparecida Salles
Área de concentração: Produção Vegetal
Assunto: Banana
Inteligência computacional
Previsão de colheita
Computational intelligence
Forecasting crop
Data de Defesa: 7-Dez-2010
Data de publicação: 26-Ago-2014
Referência: SOARES, J. D. R. Modelagem matemática na previsão de colheita de bananeira: regressão linear múltipla x redes neurais artificiais. 2010. 115 p. Tese (Doutorado em Agronomia/Fitotecnia)-Universidade Federal de Lavras, Lavras, 2010.
Resumo: Um dos entraves relevantes à bananicultura brasileira é a falta de variedades comerciais produtivas com porte adequado, resistentes às principais pragas e doenças e adaptadas a diferentes ecossistemas. O desenvolvimento de cultivares constitui estratégia para a solução deste problema, mediante programas de melhoramento genético, bem como, sua avaliação e caracterização em áreas de produção quando são comparadas às cultivares tradicionais. Os caracteres observados em áreas experimentais têm natureza fenotípica e na maioria das vezes baseia-se apenas na experiência do produtor, mensuração do peso do cacho e as correlações das variáveis envolvidas são estimadas visando mensurar alterações em um caracter quando se altera outro relacionado. O presente trabalho teve como objetivos: 1) Desenvolver um modelo matemático baseado em regressão linear simples; 2) Estudar a relação entre o peso do cacho e as variáveis que compõem o modelo; 3) Criar um modelo de previsão de colheita baseado em redes neurais artificiais; 4) Comparar os sistemas de predição de peso de cacho: regressão e redes neurais. O experimento constituiu-se de um ensaio de uniformidade, conduzido em Guanambi, BA, com a cultivar Tropical (YB42-21), híbrido tetraplóide AAAB, plantado no espaçamento de 3 m x 2 m, formado de 11 fileiras de 52 plantas cada e consideradas como útil as 9 fileiras centrais com 40 plantas por fileira, num total de 360 plantas e área de 2.160 m2. Avaliaram-se os caracteres vegetativos, altura da planta, perímetro do pseudocaule, número de filhos emitidos e número de folhas vivas no florescimento e na colheita e os caracteres de rendimento, peso do cacho, número de pencas e frutos, peso da segunda penca, comprimento e diâmetro do fruto em dois ciclos de produção. Nas avaliações, cada planta foi considerada como uma unidade básica (ub), área de 6 m2, perfazendo assim, 360 unidades básicas (ub). As principais conclusões são: não é indicado a utilização de modelos lineares para previsão do peso do cacho; a RNA implementada obteve uma eficiente previsão de produção, sendo que a rede que obteve o melhor resultado possui a arquitetura 10:10:1.
One of the barriers relevant to the banana crop in Brazil is the lack of productive commercial varieties with adequate size, resistant to major pests and diseases and adapted to different ecosystems. The development of cultivars is the strategy for solving this problem through breeding programs, as well as its characterization and evaluation in areas of production when compared to traditional cultivars. The characters observed in the experimental areas have phenotypic nature and most often based solely on the experience of the producer, the measurement of bunch weight and the correlations of the variables involved are estimated in order to measure changes in a character when he altered another. This study aimed to: 1) Develop a model based in mathematic simple linear regression, 2) study the relationship between bunch weight and the variables that make up the model, 3) Create a prediction model based on neural networks harvest artificial; 4) Compare systems of predicting bunch weight: regression and neural networks. The experiment consisted of a uniformity trial, conducted in Guanambi, BA, with cultivar Tropical (YB42-21), AAAB tetraploid hybrid, planted at a spacing of 3 mx 2 m, consisting of 11 rows of 52 plants each and considered how useful the nine central rows with 40 plants per row, totaling 360 plants and an area of 2,160 m2. We assessed the vegetative characters, plant height, pseudostem circumference, number of children issued and number of green leaves at flowering and harvest, and the characters of yield, bunch weight, number of hands and fruits, weight of the second hand, length and diameter of the fruit in two growing seasons. In the evaluation, each plant was considered as a basic unit (bu), area of 6 m2 totaling well, 360 basic units (bu). It is inappropriate to use linear models for predicting the weight of the bunch. The RNA had implemented an efficient production forecast, and the network that obtained the best result has 10:10:1 architecture.
URI: http://repositorio.ufla.br/jspui/handle/1/3242
Publicador: UNIVERSIDADE FEDERAL DE LAVRAS
Idioma: pt_BR
Aparece nas coleções: DAG - Agronomia/Fitotecnia - Doutorado (Teses)

Arquivos neste Item:

Arquivo Descrição TamanhoFormato
TESE_Modelagem matemática na previsão de colheita de bananeira regressão linear múltipla x redes neurais artificiais.pdf1,1 MBAdobe PDFVer/abrir

Itens protegidos por copyright, com todos os direitos reservados, Salvo indicação em contrário.


Mostrar estatísticas

 


DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback