Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/32797
Título: Quantitative modeling of bioconcentration factors of carbonyl herbicides using multivariate image analysis
Palavras-chave: Bioconcentration
Carbonyl herbicides
Image analysis
Multiple linear regression
Root mean square error
Bioconcentração
Herbicidas de carbonilo
Análise de imagem
Regressão linear múltipla
Erro quadrático médio raiz
Data do documento: Jun-2016
Editor: Elsevier
Citação: FREITAS, M. R. et al. Quantitative modeling of bioconcentration factors of carbonyl herbicides using multivariate image analysis. Chemosphere, Oxford, v. 152, p. 190-195, June 2016.
Resumo: The bioconcentration factor (BCF) is an important parameter used to estimate the propensity of chemicals to accumulate in aquatic organisms from the ambient environment. While simple regressions for estimating the BCF of chemical compounds from water solubility or the n-octanol/water partition coefficient have been proposed in the literature, these models do not always yield good correlations and more descriptive variables are required for better modeling of BCF data for a given series of organic pollutants, such as some herbicides. Thus, the logBCF values for a set of carbonyl herbicides comprising amide, urea, carbamate and thiocarbamate groups were quantitatively modeled using multivariate image analysis (MIA) descriptors, derived from colored image representations for chemical structures. The logBCF model was calibrated and vigorously validated (r2 = 0.79, q2 = 0.70 and rtest2 = 0.81), providing a comprehensive three-parameter linear equation after variable selection (logBCF = 5.682 − 0.00233 × X9774 − 0.00070 × X813 − 0.00273 × X5144); the variables represent pixel coordinates in the multivariate image. Finally, chemical interpretation of the obtained models in terms of the structural characteristics responsible for the enhanced or reduced logBCF values was performed, providing key leads in the prospective development of more eco-friendly synthetic herbicides.
URI: https://www.sciencedirect.com/science/article/pii/S0045653516303174?via%3Dihub#!
http://repositorio.ufla.br/jspui/handle/1/32797
Aparece nas coleções:DQI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.