Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/33974
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Silva, Carlos Pereira da | - |
dc.date.accessioned | 2019-05-02T20:05:22Z | - |
dc.date.available | 2019-05-02T20:05:22Z | - |
dc.date.issued | 2019-05-02 | - |
dc.date.submitted | 2019-04-12 | - |
dc.identifier.citation | SILVA, C. P. da. Uso do algoritmo Reversible Jump Markov Chain Monte Carlo para seleção de termos multiplicativos do modelo AMMI. 2019. 127 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)–Universidade Federal de Lavras, Lavras, 2019. | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/33974 | - |
dc.description.abstract | Additive Main effects and Multiplicative Interaction model (AMMI) has acquired great applicability for the analysis of data from multi-environmental trials. The determination of how many bilinear terms are required to explain the genotype environment interaction (GEI) has been exhaustively studied in the context of the AMMI frequentist analysis. In the Bayesian context (AMMI-Bayesian), this problem has been approached through information criteria and Bayesian factor. However, these procedures involve intensive computation, making applications impossible when model space is large. The main objective of this work is to propose the determination of the number of multiplicative terms in AMMI-Bayesian model using the Reversible Jump algorithm. For that, three versions of the AMMI-Bayesian were considered, which differ only by the assumed priori for the scale parameter of the singular values: BAMMI based on the principle of insufficient reason (uniform); BAMMIS based on the invariance principle (Jeffreys priori) and BAMMIE, which uses the concept of priori of maximum entropy. To exemplify the method, a data set was simulated in which 20 genotypes were tested in nine environments in a randomized block design, with three replicates, whose variable was productivity. The predictive evaluation indicated that AMMI analysis, in general, is robust and Reversible Jump proved to be a good method for adjustment and selection of models, and the correlation between values observed and predicted by this method was always greater in comparison to AMMI adjusted by conventional Markov chain Monte Carlo (MCMC). Biplots conditional on the most probable models, and also marginal in relation to the bilinear terms, were implemented and presented practically the same pattern. The question of the selection of models in AMMI analysis in the Bayesian perspective has not been much approached in the current literature and, in this sense, studies, as proposed here, are of great importance to encourage and to make feasible the use of AMMI-Bayesian method that, even being well-founded, has not yet become a common multi-environmental analysis procedure. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | pt_BR |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal de Lavras | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.subject | Análise bayesiana | pt_BR |
dc.subject | Estabilidade | pt_BR |
dc.subject | Interação genótipos por ambientes | pt_BR |
dc.subject | Seleção de componentes | pt_BR |
dc.subject | Bayesian analysis | pt_BR |
dc.subject | Stability | pt_BR |
dc.subject | Selection of components | pt_BR |
dc.subject | Genotype by environment interaction | pt_BR |
dc.title | Uso do algoritmo Reversible Jump Markov Chain Monte Carlo para seleção de termos multiplicativos do modelo AMMI | pt_BR |
dc.title.alternative | Use of the Jump Markov Chain Monte Carlo reversible algorithm for selection of multiplicative terms of the AMMI model | pt_BR |
dc.type | tese | pt_BR |
dc.publisher.program | Programa de Pós-graduação em Estatística e Experimentação Agropecuária | pt_BR |
dc.publisher.initials | UFLA | pt_BR |
dc.publisher.country | brasil | pt_BR |
dc.contributor.advisor1 | Balestre, Marcio | - |
dc.contributor.referee1 | Bueno Filho, Júlio Sílvio de Sousa | - |
dc.contributor.referee2 | Morais, Augusto Ramalho de | - |
dc.contributor.referee3 | Fargnoli Filho, Helvécio Geovani | - |
dc.contributor.referee4 | Teodoro, Paulo Eduardo | - |
dc.description.resumo | O modelo de efeitos principais aditivos e interação multiplicativa (AMMI) adquiriu grande aplicabilidade para análise de dados provenientes de ensaios multiambientais. A determinação de quantos termos bilineares são necessários para explicar a interação genótipos por ambientes (GEI) tem sido exaustivamente estudada no contexto da análise AMMI frequentista. No contexto bayesiano (AMMI-Bayesiano), esse problema tem sido abordado por meio de critérios de informação e fator de Bayes. Contudo, esses procedimentos envolvem computação intensiva inviabilizando aplicações quando o espaço do modelo é grande. O principal objetivo deste trabalho é propor a determinação do número de termos multiplicativos em modelo AMMI-Bayesiano utilizando o algoritmo Reversible Jump. Para tanto foram consideradas três versões do AMMI-bayesiano, que se diferenciam apenas pela priori assumida para o parâmetro de escala dos valores singulares, são elas: BAMMI fundamentado no princípio da razão insuficiente (uniforme); BAMMIS que tem por base o princípio da invariância (priori de Jeffreys) e ainda BAMMIE que utiliza o conceito de priori de máxima entropia. Para exemplificar o método foi simulado um conjunto de dados em que 20 genótipos foram testados em nove ambientes em delineamento de blocos casualizados, com três repetições, cuja variável foi a produtividade. A avaliação preditiva indicou que a análise AMMI, de modo geral, é robusta e o Reversible Jump se mostrou um bom método para ajuste e seleção de modelos, sendo que a correlação entre valores observados e preditos por esse método foi sempre maior em comparação ao AMMI ajustado por meio de cadeias MCMC (Markov Chain Monte Carlo) convencionais. Biplots condicionais aos modelos mais prováveis e, ainda, marginais em relação aos termos bilineares foram implementados e apresentaram praticamente o mesmo padrão. A questão da seleção de modelos em análise AMMI na perspectiva Bayesiana não tem sido muito abordada na literatura atual e nesse sentido, estudos, como o aqui proposto, são de grande importância para incentivar e viabilizar a utilização do método AMMI-Bayesiano que, mesmo sendo bem fundamentado, ainda não se tornou um procedimento comum de análise multiambiental. | pt_BR |
dc.publisher.department | Departamento de Estatística | pt_BR |
dc.subject.cnpq | Processos Markovianos | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/0832467492651829 | pt_BR |
Aparece nas coleções: | Estatística e Experimentação Agropecuária - Doutorado (Teses) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TESE_Uso do algoritmo Reversible Jump Markov Chain Monte Carlo para seleção de termos multiplicativos do modelo AMMI.pdf | 5,89 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.