Please use this identifier to cite or link to this item:
metadata.artigo.dc.title: The wire drawing mechanics of near-equiatomic NITI SMA
metadata.artigo.dc.creator: Antunes, André da Silva
Santos, Osmar de Sousa
Naito, Leonardo Kenji Fudo
Rigo, Odair Dona
Otubo, Jorge
metadata.artigo.dc.subject: Shape memory alloys
Wire drawing
Uniform work
Transformation work 2018
metadata.artigo.dc.identifier.citation: ANTUNES, A. da S. et al. The wire drawing mechanics of near-equiatomic NITI SMA. Materials Research, São Carlos, v. 21, n. 3, 2018.
metadata.artigo.dc.description.abstract: The wire drawing mechanic of Ti-49.82Ni (at. %) Shape Memory Alloy (SMA) was investigated through the true stress-strain curves and drawing stresses. The tensile tested solution treated wire presented a four steps elongation at temperatures below the austenite finish temperature (AF), and a conventional one-step behavior above the martensite deformation temperature (MD). The tensile yield stress for the formation of detwinned martensite (DTM) or stress-induced martensite (SIM) increased as the testing temperature increased; however, for larger deformation, the behavior reversed. The efficiency of drawing work, which is the ratio of uniform work to total work, increased from 10% for 0.07 area reduction at 25 °C to 50% for 0.21 at 110 °C. Therefore, wire drawing temperature and area reduction should be combined to increase the efficiency, taking into account the desired properties with reasonable workability. Furthermore, transformation work should be considered on wire drawing shape memory alloys as phase transformation occurs in temperatures below MD.
metadata.artigo.dc.language: en_US
Appears in Collections:DEG - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_The wire drawing mechanics of near-equiatomic NITI SMA.pdf1,22 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons