Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DEX - Departamento de Ciências Exatas >
DEX - Programa de Pós-graduação >
DEX - Estatística e Experimentação Agropecuária - Mestrado (Dissertações) >

Por favor, utilize esse identificador para citar este item ou usar como link: http://repositorio.ufla.br/jspui/handle/1/3467

Título: Identificação de outliers via componentes principais com amostras corrigidas por distâncias do tipo qui-quadrado
Título Alternativo: Identification of outliers by principal components with samples corrected for distances of type chi-square
Autor(es): Veloso, Manoel Vítor de Souza
Orientador: Cirillo, Marcelo Ângelo
Membro da banca: Sáfadi, Thelma
Tavares, Marcelo
Scalon, João Domingos
Área de concentração: Estatística e Experimentação Agropecuária
Assunto: Curtose
MAD
Normal contaminada
Monte Carlo
Bootstrap
Kurtosis
Contaminated normal
Data de Defesa: 19-Fev-2009
Data de publicação: 3-Set-2014
Referência: VELOSO, M. V. S. Identificação de outliers via componentes principais com amostras corrigidas por distâncias do tipo qui-quadrado. 2010. 58 p. Dissertação (Mestrado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2010.
Resumo: Dentre as inúmeras técnicas utilizadas para identificar outliers no âmbito do contexto p-dimensional, a técnica de Componentes Principais tem sido amplamente utilizada. Diante disso, este trabalho teve por objetivo propor um teste de significância baseado nos coeficientes de curtose robustos, com a finalidade de evidenciar, estatisticamente, qual componente é mais apropriado para a identificação dos outliers multivariados. Com este propósito, procedeu-se a um estudo Monte Carlo, considerando diferentes números de variáveis, tamanhos de amostras, porcentagem de contaminação da mistura de distribuições e diferentes correções por distâncias do tipo qui-quadrado aplicadas nas amostras. Por fim, diante das conclusões do estudo realizado, recomenda-se tal teste de significância para amostras corrigidas por distâncias do tipo qui-quadrado de Pearson.
Among the many techniques used to identify outliers within the context of p-dimensional, the technique of principal components has been widely used. Thus, this study aimed to propose a test of significance based on robust kurtosis coefficients, in order to show statistically which component is most appropriate for identifying multivariate outliers. For this purpose, we proceeded to a Monte Carlo study, considering different numbers of variables, sample size, percentage of contamination of the mixture of different distributions and corrections to distances of type chi-square applied to the samples. Finally, given the findings of the study, it is recommended that test of significance for samples of type distances corrected by chi-square test.
URI: http://repositorio.ufla.br/jspui/handle/1/3467
Publicador: UNIVERSIDADE FEDERAL DE LAVRAS
Idioma: pt_BR
Aparece nas coleções: DEX - Estatística e Experimentação Agropecuária - Mestrado (Dissertações)

Arquivos neste Item:

Arquivo Descrição TamanhoFormato
DISSERTAÇÃO_Identificação de outliers via componentes principais com amostras corrigidas por distâncias do tipo qui-quadrado.pdf2,14 MBAdobe PDFVer/abrir

Itens protegidos por copyright, com todos os direitos reservados, Salvo indicação em contrário.


Mostrar estatísticas

 


DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback