Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/37003
Registro completo de metadados
Campo DCValorIdioma
dc.creatorArantes, Tássia Borges-
dc.creatorChaves, Michel Eustáquio Dantas-
dc.creatorBastos, Rafael Lemos-
dc.creatorCarvalho, Luis Marcelo Tavares de-
dc.creatorOliveira, Marcelo Silva de-
dc.date.accessioned2019-09-30T16:51:19Z-
dc.date.available2019-09-30T16:51:19Z-
dc.date.issued2017-
dc.identifier.urihttp://www.taaeufla.deg.ufla.br/index.php/TAAE/issue/view/1/Geomaticspt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/37003-
dc.description.abstractVegetation is one of the most important components of ecosystems, attracting attention and interest of the scientific community due to its undergoing constant transformation. The remote sensing systems provide data to detect, identify, map and monitor these changes. This study aimed at (1) evaluating the effectiveness of the BFAST algorithm to characterize time series of dense forest, agriculture and pasture in the Amazon region; (2) performing statistical tests in order to compare these series, and (3) fitting models to predict future values. By using the cumulative sums test, the time series of the three classes of land use were statistically different from each other, when comparing in pairs. As the series were different, the time series analysis of remote sensing data was useful in the identification and classification of different types of land use. The use of adjusted models to predict future values of the time series has proven effective for the use of Agriculture and Pasture, but not for the Forest class. It is concluded that the BFAST algorithm characterization of time series for the subsequent adjustment of models was useful for predicting harvests, considering the Agriculture use class.pt_BR
dc.languageen_USpt_BR
dc.publisherUniversidade Federal de Lavras (UFLA), Departamento de Engenharia (DEG)pt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceARANTES, T. B. et al. Effectiveness of BFAST algorithm to characterize time series of dense forest, agriculture and pasture in the Amazon region. Theoretical and Applied Engineering, Lavras, v. 1, n. 1, p. 10-19, 2017.pt_BR
dc.subjectVegetation dynamicspt_BR
dc.subjectMODISpt_BR
dc.subjectLand usept_BR
dc.subjectLand coverpt_BR
dc.subjectModerate Resolution Imaging Spectroradiometerpt_BR
dc.subjectBFASTpt_BR
dc.subjectBreaks For Additive Seasonal and Trend (BFAST)pt_BR
dc.titleEffectiveness of BFAST algorithm to characterize time series of dense forest, agriculture and pasture in the Amazon regionpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DES - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.