Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/37141
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMagriotis, Zuy M.-
dc.creatorLeal, Paulo V. B.-
dc.creatorSales, Priscila F. de-
dc.creatorPapini, Rísia M.-
dc.creatorViana, Paulo R. M.-
dc.creatorArroyo, Pedro Augusto-
dc.date.accessioned2019-10-09T14:06:41Z-
dc.date.available2019-10-09T14:06:41Z-
dc.date.issued2014-04-
dc.identifier.citationMAGRIOTIS, ZUY M. et al. A comparative study for the removal of mining wastewater by kaolinite, activated carbon and beta zeolite. Applied Clay Science, [S.l.], v. 91-92, p. 55-62, Apr. 2014. DOI: 10.1016/j.clay.2014.02.007.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0169131714000428pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/37141-
dc.description.abstractThe present work aimed to compare the use of kaolinite, activated carbon and beta zeolite in the removal of etheramine from water. It evaluated the influence of physical–chemical parameters on etheramine adsorption in the three adsorbent materials. The initial concentration of etheramine was 200 mg L− 1 and the water/adsorbent ratio was 1:100; the adsorption was favorable at pH 10.0. The adsorption equilibrium was reached in 30 min and the removal efficiencies of etheramine for kaolinite, activated carbon and beta zeolite were 80%, 96% and 98%, respectively. The adsorption isotherms were determined under optimized conditions and in the concentration range of 0 to 4000 mg L− 1. The etheramine adsorbed per unit mass of adsorbent was 33.5 mg g− 1, 65.5 mg g− 1 and 80.8 mg g− 1 for kaolinite, activated carbon and beta zeolite, respectively. However, comparing the amount adsorbed for monolayer formation and the available specific surface area of the adsorbent, kaolinite is the most efficient adsorbent. The etheramine adsorption isotherms are better fitted to the Langmuir model. The adsorption kinetics of etheramine on kaolinite could be explained by a pseudo second-order model, while on activated carbon and beta zeolite by a pseudo-first-order model. The results suggest that the influence of the interaction of adsorbate/adsorbent is more important for the adsorption of etheramine on kaolinite, which has a smaller specific surface area and larger pore size, than it is for the activated carbon and beta zeolite which present a larger specific surface area and smaller pore size. The adsorbents may be regenerated by washing: kaolinite showed 1.1% of loss of efficiency after the third re-use, while the activated carbon showed 1.5% after the first re-use.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceApplied Clay Sciencept_BR
dc.subjectAdsorptionpt_BR
dc.subjectKaolinitept_BR
dc.subjectActivated carbonpt_BR
dc.subjectBeta zeolitept_BR
dc.subjectEtheramine removalpt_BR
dc.subjectWastewater treatmentpt_BR
dc.titleA comparative study for the removal of mining wastewater by kaolinite, activated carbon and beta zeolitept_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.