Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/40893
metadata.artigo.dc.title: Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study
metadata.artigo.dc.title.alternative: Análise de variância autoregressiva para experimentos com dependência espacial entre parcelas: um estudo de simulação
metadata.artigo.dc.creator: Rossoni, Diogo Francisco
Lima, Renato Ribeiro de
metadata.artigo.dc.subject: Autoregressive model
Geostatistic
ANOVA-AR
Modelo autoregressivo
Geoestatística
metadata.artigo.dc.publisher: Universidade Federal de Lavras
metadata.artigo.dc.date.issued: 2019
metadata.artigo.dc.identifier.citation: ROSSONI, D. F.; LIMA, R. R. de. Autoregressive analysis of variance for experiments with spatial dependence between plots: a simulation study. Revista Brasileira de Biometria, Lavras, v. 37, n. 2, 2019.
metadata.artigo.dc.description.resumo: A análise de variância continua sendo uma das técnicas mais apreciadas na experimentação de campo, mesmo apósquase cem anos de sua primeira proposta. No entanto, em muitos casos, sua aplicação pode ser prejudicada devido àfalta -ou mesmo do esquecimento –dos pressupostos. Em vários experimentos, os pesquisadores fazem uso de blocos para controlar a heterogeneidade local, no entanto, em alguns casos, apenas isso pode ser insuficiente, Rev. Bras. Biom., Lavras, v.37, n.2, p.244-257, 2019 -doi: 10.28951/rbb.v37i2.388255especialmente em experimentos onde os dados possuem algum tipo de dependência espacial. Assim, para aumentar a precisão das comparações entre tratamentos, uma alternativa é considerarna análise o estudo da dependência espacial das variáveis. Com o conhecimento das posições relativas das parcelas (dados referenciados), a variabilidade espacial pode ser utilizada como um fator positivo, colaborando com os resultados experimentais. Para desenvolver este estudo, foram usados dados gerados por simulação. Os dados foram gerados segundo um delineamento de blocos casualizados (DBC), com dezoito e cinco tratamentos por bloco; e vários cenários de dependência espacial no erro. Comparamos a análise não espacial (que considera os erros independentes) com a análise espacial (análise de variância considerando o modelo autoregressivo -ANOVA-AR). O uso de ferramentas estatísticas espaciais na análise de dados aumentou a precisão da análise, através da redução do Quadrado Médio do Erro. Observamos também uma redução do Quadrado Médio do Blocoe do Quadrado Médio do Tratamento. A maior redução foi observada na ANOVA-AR3 na maiorparte dos cenários simulados, principalmente naqueles com forte dependência espacial. Os experimentos com um pequeno número de tratamentos por bloco não apresentaram redução do Quadrado Médio do Erro, no entanto, a redução do Quadrado Médio do Bloco e do Quadrado Médio do Tratamento, aliado ao fato dos dados possuírem dependência espacial, justificaramo uso da ANOVA-AR.
metadata.artigo.dc.description.abstract: The analysis of variance remains one of the most appreciated techniques of field experiment, even despite almost a hundred years of its first proposal. However, in many cases, its application can be several impaired due the fact of lack –or even forgotten -of assumptions. In several experiments, the researchers make use of blocks to control the local heterogeneity, nevertheless, in some cases, only thisitcannot be enough, especially in experiments where the data have some kind of spatial dependence. Therefore, to increase the accuracy of comparisons between treatments, an alternative is to consider the study of the spatial dependence of the variables in the analysis. With the knowledge of the relative positions of the plots (referenced data), the spatial variability canbe used as a positive factor, collaborating with the experimental results. To develop this study we used data generated by simulation. The data was generated according a Randomized Complete Block Design (RCBD), with eighteen and five treatments per block;and several scenarios of spatial dependence in the error. We compared the non-spatial analysis (which considers the errors independent) with spatial analysis (analysis of variance considering the autoregressive model -ANOVA-AR). The use of spatial statistical tools in the analysis of data increased the precision of the analysis, through the reduction of the Mean Squared Error. We also noticed a reduction of Mean Squared Block and Mean Squared Treatment. The greater reduction was notice in ANOVA-AR3 for great part of the simulated scenarios, mainly in those with strong spatial dependence. The experiments with a small number of treatments per block did not present a reduction of Mean Squared Error, however, the reduction of Mean Squared Block and Mean Squared Treatment, ally to the fact that data are spatial dependent justify the use of ANOVA-AR.
metadata.artigo.dc.identifier.uri: http://repositorio.ufla.br/jspui/handle/1/40893
metadata.artigo.dc.language: en_US
Appears in Collections:DES - Artigos publicados em periódicos
DEX - Artigos publicados em periódicos



This item is licensed under a Creative Commons License Creative Commons