Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/41813
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Goodarzi, Mohammad | - |
dc.creator | Freitas, Matheus P. | - |
dc.creator | Heyden, Yvan Vander | - |
dc.date.accessioned | 2020-07-12T22:45:34Z | - |
dc.date.available | 2020-07-12T22:45:34Z | - |
dc.date.issued | 2011-10 | - |
dc.identifier.citation | GOODARZI, M.; FREITAS, M. P.; HEIDEN, Y.V. Linear and nonlinear QSAR modeling of the HIV-1 reverse transcriptase inhibiting activities of thiocarbamates. Analytica Chimica Acta, [S.l.], v. 705, n. 1-2, p. 166-173, Oct. 2011. DOI: 10.1016/j.aca.2011.04.046. | pt_BR |
dc.identifier.uri | https://www.sciencedirect.com/science/article/abs/pii/S0003267011006015 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/41813 | - |
dc.description.abstract | For a series of thiocarbamates, non-nucleoside HIV-1 reverse transcriptase inhibitors, few descriptors have been selected from a large pool of theoretical molecular descriptors by means of the ant colony optimization (ACO) feature selection method. The selected descriptors were correlated with the bioactivities of the molecules using the well known multiple linear regression (MLR) and partial least squares (PLS) regression techniques, and, to account for nonlinearity, also PLS coupled to radial basis function (RBF) on the one hand and radial basis function neural network (RBFNN) on the other. In this case study, the RBF/PLS results were better than those from the other modeling techniques applied. The prediction ability of the ACO/RBF/PLS-based quantitative structure–activity relationship (QSAR) model was found to be significantly superior to comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models previously established for this series of compounds. It was also demonstrated that RBF as a nonlinear approach is useful in deriving simple and predictive QSAR models, without the need to recourse to expeditious 3D methodologies. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Analytica Chimica Acta | pt_BR |
dc.subject | Thiocarbamates | pt_BR |
dc.subject | HIV-1 reverse transcriptase | pt_BR |
dc.subject | Ant colony optimization | pt_BR |
dc.subject | Radial basis function | pt_BR |
dc.subject | Partial least squares | pt_BR |
dc.title | Linear and nonlinear QSAR modeling of the HIV-1 reverse transcriptase inhibiting activities of thiocarbamates | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DQI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.