Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/41815
Registro completo de metadados
Campo DCValorIdioma
dc.creatorGoodarzi, Mohammad-
dc.creatorFreitas, Matheus P.-
dc.date.accessioned2020-07-12T22:50:57Z-
dc.date.available2020-07-12T22:50:57Z-
dc.date.issued2011-
dc.identifier.citationGOODARZI, M.; FREITAS, M. P. MIA-QSAR coupled to different regression methods for the modeling of antimalarial activities of 2-aziridinyl and 2,3-bis-(aziridinyl)-1,4-naphtoquinonyl sulfate and acylate derivatives. Medicinal Chemistry, [S.l.], v. 7, n. 6, p. 645-654, 2011. DOI: 10.2174/157340611797928343.pt_BR
dc.identifier.urihttp://www.eurekaselect.com/89035/articlept_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/41815-
dc.description.abstractThe antimalarial activities of a series of 2-aziridinyl and 2,3-bis-(aziridinyl)-1,4-naphtoquinonyl sulfate and acylate derivatives have been modeled using multivariate image analysis (MIA) descriptors. The two-dimensional chemical structures correlated reasonably well with dependent variables (Y block) through partial least squares - PLS (for the unfolded data) and multilinear partial least squares – N-PLS (for the three-way array). However, the use of PCA-ranking as variable selection method and least-squares support vector machines (LS-SVM) as regression method improved significantly the prediction ability of the model. All models were validated through leave-one-out and leave-25%-out crossvalidations, as well as by means of a Y-randomization test, and demonstrated advantages in prediction performance over an existing model, in which descriptors related to physicochemical and geometric properties of molecules were used to derive multiple linear regression (MLR) and artificial neural networks (ANN) based models. Accounting for non-linearity seems to be an important task for the QSAR modeling of bioactivities of the studied antimalarial compounds.pt_BR
dc.languageen_USpt_BR
dc.publisherBentham Science Publisherspt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceMedicinal Chemistrypt_BR
dc.subjectANNpt_BR
dc.subjectantimalarial activitiespt_BR
dc.subjectLS-SVMpt_BR
dc.subjectMIA-QSARpt_BR
dc.subjectN-PLSpt_BR
dc.subjectPLSpt_BR
dc.subject2-aziridinylpt_BR
dc.subject2,3-bis-(aziridinyl)-1,4-naphtoquinonylpt_BR
dc.subjectAcylate derivativespt_BR
dc.subjectMultivariate image analysis (MIA)pt_BR
dc.subjectLeast squares support vector machine (LS-SVM)pt_BR
dc.subjectMultivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR)pt_BR
dc.subjectPartial least squares (PLS)pt_BR
dc.subjectMultiway partial least squares (NPLS)pt_BR
dc.subjectArtificial neural network (ANN)pt_BR
dc.titleMIA-QSAR coupled to different regression methods for the modeling of antimalarial activities of 2-aziridinyl and 2,3-bis-(aziridinyl)-1,4-naphtoquinonyl sulfate and acylate derivativespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DQI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.