Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42417
Título: Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil
Título(s) alternativo(s): Modelagem da distribuição espacial de volume de madeira em um fragmento de Cerrado Stricto Sensu no estado de Minas Gerais, Brasil
Palavras-chave: Geostatistical models
Landsat 5 TM imagery
Multiple linear regression
Regression kriging
Brazilian savanna
Modelos geoestatísticos
Imagens Landsat 5 TM
Regressão linear múltipla
Krigagem com regressão
Cerrado
Data do documento: 2020
Editor: Instituto de Pesquisas e Estudos Florestais
Citação: REIS, A. A. dos et al. Modeling the spatial distribution of wood volume in a cerrado stricto sensu remnant in Minas Gerais state, Brazil. Scientia Forestalis, [S.l.], v. 48, n. 125, e2844, 2020.
Resumo: The Brazilian Savanna, the second largest biome in the country, has scarce information about its wood volume production. Since our aim was to contribute to the better wood volume characterization in Brazilian Savanna vegetation, we conducted a case study in a Cerrado Sensu Stricto remnant in Minas Gerais state, Brazil, using different approaches and datasets to model the spatial distribution of wood volume, including forest inventory data, remotely-sensed imagery, and geostatistical models. Wood volume data were obtained from a forest inventory carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Ordinary kriging, multiple linear regression analysis, and regression kriging methods were used for wood volume estimation. Ordinary kriging resulted in estimates closer to each other in non-sampled areas (less variability) than the other methods for not considering information from these areas in the interpolation process. As multiple linear regression and regression kriging take into account the spectral data from remotely-sensed images, these methods provide higher discrimination potential for wood volume estimate mapping when vegetation presents high spatial heterogeneity, as in the Cerrado Sensu Stricto. Integration between field data, remotely-sensed imagery and geostatistical models provides a potential approach to spatially estimate wood volume in native vegetation.
URI: http://repositorio.ufla.br/jspui/handle/1/42417
Aparece nas coleções:DCF - Artigos publicados em periódicos



Este item está licenciada sob uma Licença Creative Commons Creative Commons