Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42701
Registro completo de metadados
Campo DCValorIdioma
dc.creatorLobato, Raphael Longuinhos Monteiro-
dc.creatorSoares, Jenaina Ribeiro-
dc.date.accessioned2020-08-28T19:00:08Z-
dc.date.available2020-08-28T19:00:08Z-
dc.date.issued2020-05-
dc.identifier.citationLOBATO, R. L. M.; SOARES, J. R. Superior stiffness and vibrational spectroscopic signature of two-dimensional diamond-like carbon nitrides. Physica E: Low-dimensional Systems and Nanostructures, [S. I.], v. 119, May 2020. DOI: https://doi.org/10.1016/j.physe.2020.114007.pt_BR
dc.identifier.urihttps://doi.org/10.1016/j.physe.2020.114007pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/42701-
dc.description.abstractCarbon nitride materials are promising for applications in electronics, clean energy production, and heat dissipation. Two-dimensional (2D) diamond-like carbon nitrides -CN, -CN, and -CN rise as beyond graphene semiconductors. Here, we apply first-principles calculations and group theory to study their structure, mechanical properties, and vibrational signature. The -CN is the strongest among them, with a 2D Young’s modulus equal to 616(6) N/m, followed by the -CN with an equal to 632(6) N/m and 581(7) N/m along its zigzag and armchair directions, respectively, and the -CN with an equal to 582(9) N/m. These materials are about 2 times stiffer than graphene, and are the stiffest among 2D networks of carbon and nitrogen atoms. The zigzag direction of 2D -CN is approximately 8% stronger than its armchair direction, unusual for in-plane anisotropic 2D materials, where the armchair direction is considerably weaker than the zigzag direction. These findings from stress–strain analysis are consistent with the high sound speed and elastic constants values we found by using 2D density-functional perturbation theory framework, suggesting them for mechanical reinforcement. We report the phonon wavenumber, atomic vibrational pattern, and Raman and infrared spectra for all polytypes. The longitudinal and transverse optical modes of the in-plane isotropic polytypes display the breakdown of LO–TO splitting, characteristic of 2D polar crystals. We found that the difference between their phonon wavenumbers can be probed in their unpolarized Raman and infrared spectra. The simulated angular dependency of the Raman intensity under backscattering parallel and cross polarizations show how to assign the and modes of the -CN, the and modes of the -CN, and of the and modes of the -CN, being key for polytype identification. These results provide comprehensive information on the emerging 2D diamond-like carbon nitrides, necessary for further developments on their synthesis, characterization, and future devicept_BR
dc.languageenpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourcePhysica E: Low-dimensional Systems and Nanostructurespt_BR
dc.subjectVibrational spectroscopypt_BR
dc.subjectMechanical stiffnesspt_BR
dc.subjectFirst-principles calculationspt_BR
dc.subjectDiamond-like carbon nitridespt_BR
dc.subjectTwo-dimensional materialspt_BR
dc.subjectEspectroscopia vibracionalpt_BR
dc.subjectRigidez mecânicapt_BR
dc.subjectCálculos de primeiros princípiospt_BR
dc.subjectCarbono tipo diamantept_BR
dc.subjectMateriais bidimensionaispt_BR
dc.titleSuperior stiffness and vibrational spectroscopic signature of two-dimensional diamond-like carbon nitrides☆pt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DFI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.