Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42730
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMaciel, Daniel Andrade-
dc.creatorSilva, Vânia Aparecida-
dc.creatorAlves, Helena Maria Ramos-
dc.creatorVolpato, Margarete Marin Lordelo-
dc.creatorBarbosa, João Paulo Rodrigues Alves de-
dc.creatorSouza, Vanessa Cristina Oliveira de-
dc.creatorSantos, Meline Oliveira-
dc.creatorSilveira, Helbert Rezende de Oliveira-
dc.creatorDantas, Mayara Fontes-
dc.creatorFreitas, Ana Flávia de-
dc.creatorCarvalho, Gladyston Rodrigues-
dc.creatorSantos, Jacqueline Oliveira dos-
dc.date.accessioned2020-08-31T17:41:53Z-
dc.date.available2020-08-31T17:41:53Z-
dc.date.issued2020-03-
dc.identifier.citationMACIEL, D. A. et al. Leaf water potential of coffee estimated by landsat-8 images. PLoS ONE, [S. I.], v. 15, n. 3, e0230013. DOI: https://doi.org/10.1371/journal.pone.0230013.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/42730-
dc.description.abstractTraditionally, water conditions of coffee areas are monitored by measuring the leaf water potential (ΨW) throughout a pressure pump. However, there is a demand for the development of technologies that can estimate large areas or regions. In this context, the objective of this study was to estimate the ΨW by surface reflectance values and vegetation indices obtained from the Landsat-8/OLI sensor in Minas Gerais—Brazil Several algorithms using OLI bands and vegetation indexes were evaluated and from the correlation analysis, a quadratic algorithm that uses the Normalized Difference Vegetation Index (NDVI) performed better, with a correlation coefficient (R2) of 0.82. Leave-One-Out Cross-Validation (LOOCV) was performed to validate the models and the best results were for NDVI quadratic algorithm, presenting a Mean Absolute Percentage Error (MAPE) of 27.09% and an R2 of 0.85. Subsequently, the NDVI quadratic algorithm was applied to Landsat-8 images, aiming to spatialize the ΨW estimated in a representative area of regional coffee planting between September 2014 to July 2015. From the proposed algorithm, it was possible to estimate ΨW from Landsat-8/OLI imagery, contributing to drought monitoring in the coffee area leading to cost reduction to the producers.pt_BR
dc.languageenpt_BR
dc.publisherPLOSpt_BR
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePlos Onept_BR
dc.subjectLeaf water potentialpt_BR
dc.subjectVegetation indicespt_BR
dc.subjectCoffee plantingpt_BR
dc.subjectDrought monitoringpt_BR
dc.subjectPotencial hídrico foliarpt_BR
dc.subjectÍndices de vegetaçãopt_BR
dc.subjectCafeiculturapt_BR
dc.subjectSeca - Monitoramentopt_BR
dc.titleLeaf water potential of coffee estimated by landsat-8 imagespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DBI - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Leaf water potential of coffee estimated by landsat-8 images.pdf2,36 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons