Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42839
Título: A spectral agrometeorological model for estimating soybean grain productivity in Mato Grosso, Brazil
Palavras-chave: Geographic information system
Mathematical modeling
Remote sensing
Agrometeorology
Crop monitoring
Sistema de informação geográfica
Modelagem matemática
Sensoriamento remoto
Agrometeorologia
Monitoramento de safra
Soja - Produtividade
Data do documento: Jun-2020
Editor: Associação Brasileira de Engenharia Agrícola
Citação: SARMIENTO, C. M. et al. A spectral agrometeorological model for estimating soybean grain productivity in Mato Grosso, Brazil. Engenharia Agrícola, Jaboticabal, v. 40, n. 3, p. 405-412, mai./jun. 2020. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v40n3p405-412/2020.
Resumo: This study used spectral data integrated with the agrometeorological model by Doorenbos and Kassam to estimate soybean grain productivity in the state of Mato Grosso, Brazil. In the developed model, spectral data were used instead of meteorological data and biophysical parameters of the crop. For this purpose, the products of real and potential evapotranspiration (MOD16), normalized difference vegetation index – NDVI (MOD13Q1), and leaf area index (MOD15A2H) from the MODIS satellite were used, in addition to sunstroke data obtained by using the visible channel from the satellite GOES IMAGER. The results obtained showed that, with the proposed methodology, it was possible to follow the development of soybean cultivation throughout the cycle and to estimate production and productivity in the study area. Willmott's agreement index was 0.99 and 0.96 and Pearson's correlation coefficient was 0.99 and 0.84 for production and productivity, respectively.
URI: http://repositorio.ufla.br/jspui/handle/1/42839
Aparece nas coleções:DEA - Artigos publicados em periódicos
DEG - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_A spectral agrometeorological model for estimating soybean grain productivity in Mato Grosso, Brazil.pdf971,96 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons