Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/43009
Registro completo de metadados
Campo DCValorIdioma
dc.creatorAndrade, Renata-
dc.creatorSilva, Sérgio Henrique Godinho-
dc.creatorWeindorf, David C.-
dc.creatorChakraborty, Somsubhra-
dc.creatorFaria, Wilson Missina-
dc.creatorMesquita, Luiz Felipe-
dc.creatorGuilherme, Luiz Roberto Guimarães-
dc.creatorCuri, Nilton-
dc.date.accessioned2020-09-11T17:58:54Z-
dc.date.available2020-09-11T17:58:54Z-
dc.date.issued2020-01-01-
dc.identifier.citationANDRADE, R. et al. Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains. Geoderma, Amsterdam, v. 357, 113957, 1 January 2020. DOI: https://doi.org/10.1016/j.geoderma.2019.113957.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0016706119307530#!pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/43009-
dc.description.abstractPortable X-ray fluorescence (pXRF) spectrometry is becoming increasingly popular for predicting soil properties worldwide. However, there are still very few works on this subject under tropical conditions. Therefore, the objectives of this study were to use pXRF data to characterize the Brazilian Coastal Plains (BCP) soils and assess four machine learning algorithms [ordinary least squares regression (OLS), cubist regression (CR), XGBoost (XGB), and random forest (RF)] for prediction of total nitrogen (TN), cation exchange capacity (CEC), and soil organic matter (SOM) using pXRF data. A total of 285 soil samples were collected from the A and B horizons representing Ultisols, Oxisols, Spodosols, and Entisols. The pXRF reported elements helped in the characterization of the BCP soils. In general, the RF model achieved the best performances for TN (R2 = 0.50), CEC (0.75), and SOM (0.56) when A and B horizons were combined, although better results have been reported in the literature for soils from other regions of the world. The results reported here for the BCP soils represent alternatives for reducing costs and time needed for assessing such data, supporting agronomic and environmental strategies.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceGeodermapt_BR
dc.subjectTotal nitrogenpt_BR
dc.subjectCation exchange capacitypt_BR
dc.subjectSoil organic matterpt_BR
dc.subjectMachine learning algorithmspt_BR
dc.subjectKaolinitic soilspt_BR
dc.subjectCohesive soilspt_BR
dc.subjectNitrogênio totalpt_BR
dc.subjectCapacidade de troca de catiõespt_BR
dc.subjectMatéria orgânica do solopt_BR
dc.subjectAlgoritmos de aprendizado de máquinapt_BR
dc.subjectSolos cauliníticospt_BR
dc.subjectSolos coesivospt_BR
dc.titleAssessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plainspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.