Buscar

 

RI UFLA (Universidade Federal de Lavras) >
DEX - Departamento de Ciências Exatas >
DEX - Programa de Pós-graduação >
DEX - Estatística e Experimentação Agropecuária - Doutorado (Teses) >

Por favor, utilize esse identificador para citar este item ou usar como link: http://repositorio.ufla.br/jspui/handle/1/4303

Título: Estimação de riqueza de espécies de macroinvertebrados bentônicos utilizando o modelo michaelis-menten: uma abordagem bayesiana
Título Alternativo: Estimating species richness of benthic macroinvertebrates using michaelis-menten model: a bayesian approach
Autor(es): Machado, Eustáquio José
Orientador: Muniz, Joel Augusto
Membro da banca: Louzada, Júlio Neil Cassa
Savian, Taciana Villela
Beijo, Luiz Alberto
Sáfadi, Thelma
Área de concentração: Estatística e Experimentação Agropecuária
Assunto: Inferência bayesiana
Modelo não-linear
Estimação em espécies
Método de monte carlo via cadeias de markov
Macroinvertebrados bentônicos
Bayesian inference
Non-linear model
Estimation of species
Monte carlo method via markov chain
Benthic macroinvertebrates
Data de Defesa: 18-Fev-2010
Data de publicação: 3-Out-2014
Referência: MACHADO, E. J. Estimação de riqueza de espécies de macroinvertebrados bentônicos utilzando o modelo de Michaelis-Menten: uma abordagem bayesiana. 2010. 94 p. Tese (Doutorado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2010.
Resumo: O levantamento do número de espécies é o primeiro passo em qualquer estudo sobre diversidade biológica e essencial para avaliação do status de conservação por ser a extinção um processo irreversível, e a falta de informação implicar em estratégias de conservação equivocadas, aumentando, conseqüentemente a perda de espécies que, em grande parte, ainda não foram estudadas. Neste estudo, estimou-se o número de espécies biológicas denominadas macroinvertebrados bentônicos, por meio do modelo de regressão não-linear conhecido no contexto ecológico como equação de Michaelis-Menten, a partir de amostras coletadas em igarapés (riachos) de águas brancas e claras em estudo de Lima (2008). A metodologia utilizada fez uso da inferência bayesiana para a estimação dos parâmetros do modelo por meio de métodos de Monte Carlo via cadeias de Markov usando o amostrador de Gibbs e o algoritmo de Metropolis-Hastings. Utilizou-se a função de autocorrelação para produzir independência para a amostra obtida. A análise de convergência das cadeias foi monitorada pelos critérios: Raftery & Lewis ((1992), Gelman & Rubin (1992), e Geweke (1992), sendo que a implementação das análises foi realizada por meio de rotinas e do pacote BOA executável no sofware R (2010). Os resultados encontrados indicaram o aumento considerável da precisão das estimativas dos parâmetros utilizando como critérios: o intervalo HPD (Highest Posterior Density), erro de Monte Carlo e desvio padrão. O modelo de Michaelis-Menten ajustou-se muito bem aos dados observacionais nas três massas de dados utilizadas. Em virtude dos resultados apresentados, conclui-se que são bastante satisfatórios e promissores com a utilização da abordagem Bayesiana em estudos de estimação em espécies na ecologia.
A SURVEY of number of species is the first step in any study about biological diversity and essential for evaluating the conservation status being the extinction an irreversible process, and the lack of information implies in misdeeds in conservation strategies, increasing consequently, the species loss which in most part, have not been studied yet. In this study, the number of biological species called benthic macroinvertebrates was estimated through the non-linear regression model known as Michalis-Menten equation in the ecological context, from samples collected in clear and clean-water stream in Lima´s study (2008). The methodology used was the Bayesian inference for the model parameters estimation through Monte Carlo methods via Markov chains using the Gibbs´ sampler and Metropolis-Hastings algorithm. The autocorrelation function was used for producing independence to the sample obtained. The convergence analysis of the chains was monitored through criteria: Raftery & Lewis (1992), Gelman & Rubin (1992) and Geweke (1992), so that the implementation of the analysis was carried out through routines and BOA pack executable in the R (2010) software. The results found indicated a considerable increasing of the accuracy in parameter estimation using HPD (highest posterior density) interval, Monte Carlo error and standard deviation as criteria. Michaelis-Menten model fitted well to observational data in three data mass used. Because of the results presented, one can conclude they are quite satisfactory and promising by using the Bayesian approach in ecological studies on estimation of species.
URI: http://repositorio.ufla.br/jspui/handle/1/4303
Publicador: UNIVERSIDADE FEDERAL DE LAVRAS
Idioma: pt_BR
Aparece nas coleções: DEX - Estatística e Experimentação Agropecuária - Doutorado (Teses)

Arquivos neste Item:

Arquivo Descrição TamanhoFormato
TESE_Estimação de riqueza de espécies de macroinvertebrados bentônicos utilizando o modelo Michaelis-Menten uma abordagem Bayesiana.pdf2,78 MBAdobe PDFVer/abrir

Itens protegidos por copyright, com todos os direitos reservados, Salvo indicação em contrário.


Mostrar estatísticas

 


DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback