Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/43169
metadata.artigo.dc.title: Aplicação da análise de agrupamento de dados de expressão gênica temporal a dados em painel
metadata.artigo.dc.title.alternative: Application of cluster analysis of temporal gene expression data to panel data
metadata.artigo.dc.creator: Nascimento, Moysés
Sáfadi, Thelma
Silva, Fabyano Fonseca e
metadata.artigo.dc.subject: Bioinformática
Método de Tocher
Método de Ward
Microarranjo
Modelo autorregressivo
Série temporal
Bioinformatics
Tocher's method
Ward's method
Microarray
Autoregressive model
Time series
metadata.artigo.dc.publisher: Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Secretaria de Pesquisa e Desenvolvimento (SPD)
metadata.artigo.dc.date.issued: Nov-2011
metadata.artigo.dc.identifier.citation: NASCIMENTO, M.; SÁFADI, T.; SILVA, F. F. e. Aplicação da análise de agrupamento de dados de expressão gênica temporal a dados em painel. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 46, n. 11, p. 1489-1495, Nov. 2011. DOI: 10.1590/S0100-204X2011001100010.
metadata.artigo.dc.description.resumo: O objetivo deste trabalho foi determinar a melhor alternativa, entre os métodos de agrupamento hierárquico (Ward) e de otimização (Tocher), para a formação de grupos homogêneos de séries de expressão gênica, e realizar previsões quanto à expressão gênica dessas séries, a partir de pequeno número de observações temporais. Os dados utilizados referem-se à expressão de genes que atuam sobre o ciclo celular de Saccharomyces cerevisiae e corresponderam a 114 séries de expressão gênica, cada uma com dez valores de "fold-change" (medida da expressão gênica) ao longo do tempo (0, 15, 30, 45, 60, 75, 90, 105, 120 e 135 min). As estimativas dos parâmetros dos modelos autorregressivos AR(p) foram previamente ajustadas a séries individuais (de cada gene) de dados "microarray time series" e utilizadas, como variáveis, no processo de agrupamento. As previsões da expressão gênica foram feitas dentro de cada grupo formado, a partir dos ajustes no modelo AR(p) para dados em painel. O método de Ward foi o mais apropriado para a formação de grupos de genes com séries homogêneas. Uma vez obtidos esses grupos, é possível ajustar o modelo AR(2) para dados em painel e predizer a expressão gênica em um tempo futuro (135 min), a partir de um pequeno número de observações temporais (os outros nove valores de "fold-change").
metadata.artigo.dc.description.abstract: The objective of this work was to determine the best alternative for the formation of homogeneous groups of gene expression series among the hierarchical clustering (Ward) and optimization (Tocher) methods, and to perform predictions regarding the gene expression of these series from a small number of temporal observations. The data used refer to the expression of genes that act on cell cycle of Saccharomyces cerevisiae, and corresponded to 114 gene expression series, with ten-fold-change values (expression measure) each, over time (0, 15, 30, 45, 60, 75, 90, 105, 120, and 135 min). The parameter estimates of autoregressive models AR(p) were previously adjusted to individual series (from each gene) of microarray time series data and used as variables in the clustering process. Gene expression predictions were made within each formed group from the adjustments in AR(p) model for panel data. The Ward's method was the more suited for the formation of gene groups with homogeneous series. Once these groups are obtained, it is possible to adjust the model AR(2) for panel-data, and successfully predict gene expression at a future time (135 min) from a small number of temporal observations (the nine other fold-change values).
metadata.artigo.dc.identifier.uri: http://repositorio.ufla.br/jspui/handle/1/43169
metadata.artigo.dc.language: pt_BR
Appears in Collections:DEX - Artigos publicados em periódicos



This item is licensed under a Creative Commons License Creative Commons