Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/43205
metadata.artigo.dc.title: Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry
metadata.artigo.dc.title.alternative: Correção da determinação em campo dos teores de elementos em solos via espectrometria de fluorescência de raios-X portátil
metadata.artigo.dc.creator: Dijair, Thaís Santos Branco
Silva, Fernanda Magno
Teixeira, Anita Fernanda dos Santos
Silva, Sérgio Henrique Godinho
Guilherme, Luiz Roberto Guimarães
Curi, Nilton
metadata.artigo.dc.subject: Portable X-ray fluorescence (pXRF)
Soil moisture
Soil texture
Soil organic matter
Prediction models
Fluorescência de raios-X portátil (pXRF)
Umidade do solo
Textura do solo
Matéria orgânica do solo
Modelos de predição
metadata.artigo.dc.publisher: Universidade Federal de Lavras
metadata.artigo.dc.date.issued: Jun-2020
metadata.artigo.dc.identifier.citation: DIJAIR, T. S. B. et al. Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry. Ciência e Agrotecnologia, Lavras, v. 44, e002420, 2020. DOI: http://dx.doi.org/10.1590/1413-7054202044002420.
metadata.artigo.dc.description.resumo: A espectrometria portátil de fluorescência de raios-X (pXRF) tem sido útil em todo o mundo para determinar o teor dos elementos no solo em condições de campo e de laboratório. No entanto, os resultados obtidos em campo podem ser influenciados por vários fatores, como umidade (U), textura (T) e matéria orgânica do solo (MOS). Assim, o objetivo deste trabalho foi criar modelos matemáticos lineares para a conversão dos teores dos elementos obtidos por pXRF em campo para resultados obtidos em laboratório, i.e., na Terra Fina Seca ao Ar (TFSA), utilizando U, T e MOS como variáveis auxiliares, uma vez que elas influenciam as leituras. As análises com pXRF foram realizadas em 12 perfis de solo com diferentes materiais de origem, seguidas por coleta de 59 amostras. Leituras com pXRF foram realizadas também em laboratório em amostras de TFSA. Os dados de pXRF obtidos em campo foram utilizados sozinhos ou combinados aos dados de U, T e MOS como variáveis auxiliares, para criar modelos de regressão linear para predição dos resultados de pXRF em TFSA. A acurácia dos modelos foi calculada pelo método leave-one-out cross-validation. À exceção de elementos mais leves, as leituras de campo com pXRF subestimaram o teor total dos elementos. Modelos de predição incluindo T apresentaram maior acurácia na predição de Al2O3, SiO2, V, Ti e Zr, enquanto a predição dos teores de Fe e K2O foi insensível à adição das variáveis auxiliares. A melhora relativa (MR) nos modelos de predição foi maior nas predições de SiO2 (T+MOS: MR = 22,29%), V (U+T: MR = 18,90%) e Ti (T+MOS: MR = 11,18%). Este trabalho demonstrou que é possível a correção dos dados de pXRF obtidos em campo através de modelos de regressão linear.
metadata.artigo.dc.description.abstract: Portable X-ray fluorescence (pXRF) spectrometry has been useful worldwide for determining soil elemental content under both field and laboratory conditions. However, the field results are influenced by several factors, including soil moisture (M), soil texture (T) and soil organic matter (SOM). Thus, the objective of this work was to create linear mathematical models for conversion of Al2O3, CaO, Fe, K2O, SiO2, V, Ti and Zr contents obtained by pXRF directly in field to those obtained under laboratory conditions, i.e., in air-dried fine earth (ADFE), using M, T and SOM as auxiliary variables, since they influence pXRF results. pXRF analyses in field were performed on 12 soil profiles with different parent materials. From them, 59 samples were collected and also analyzed in the laboratory in ADFE. pXRF field data were used alone or combined to M, T and SOM data as auxiliary variables to create linear regression models to predict pXRF ADFE results. The models accuracy was assessed by the leave-one-out cross-validation method. Except for light-weight elements, field results underestimated the total elemental contents compared with ADFE. Prediction models including T presented higher accuracy to predict Al2O3, SiO2, V, Ti and Zr, while the prediction of Fe and K2O contents was insensitive to the addition of the auxiliary variables. The relative improvement (RI) in the prediction models were greater in predictions of SiO2 (T+SOM: RI=22.29%), V (M+T: RI=18.90%) and Ti (T+SOM: RI=11.18%). This study demonstrates it is possible to correct field pXRF data through linear regression models.
metadata.artigo.dc.identifier.uri: http://repositorio.ufla.br/jspui/handle/1/43205
metadata.artigo.dc.language: en
Appears in Collections:DCS - Artigos publicados em periódicos



This item is licensed under a Creative Commons License Creative Commons